Какие свойства влажности воздуха
Статья подготовлена ведущим инженером-проектировщиком ООО «Легенда» Шубиным В.С.
+7 (812) 309-32-30, info@legenda-spb.com
1. Общие сведения о воздухе
Воздух (атмосферный воздух) – это смесь газов, основными компонентами которого являются азот и кислород, которые в сумме составляют 98-99%. Воздух необходим для существования и жизнедеятельности всех живых организмов.
Федеральный закон N 96-ФЗ от 04.05.1999 «Об охране атмосферного воздуха» трактует понятие «воздуха» следующим образом – «Атмосферный воздух — жизненно важный компонент окружающей среды, представляющий собой естественную смесь газов атмосферы, находящуюся за пределами жилых, производственных и иных помещений».
Кислород, содержащийся в воздухе, в процессе дыхания поступает в клетки организма и используется в процессе окисления, в результате которого происходит выделение необходимой для жизни энергии (метаболизм, аэробы).
В 1754 году шотландский химик и физик Джозеф Блэк экспериментально доказал, что воздух представляет собой смесь газов, а не простое вещество.
Смесь газов, содержащихся в атмосферном воздухе, без водяного пара и аэрозолей называется сухим воздухом.
Химический состав сухого воздуха представлен в таблице 1:
Таблица 1
Газовый состав сухого воздуха относительно стабилен, однако от погоды, времени года, географического положения, высоты местности, природных (газообмен атмосферы, гидросферы, литосферы и биосферы) и антропогенных факторов (загрязнение от транспорта, объектов энергетики и промышленных предприятий и т.п.) возможны небольшие изменения количества некоторых компонентов.
При расчетах инженерных систем зданий и сооружений атмосферный воздух рассматривается как смесь сухого воздуха и водяных паров. В технической термодинамике смесь сухого и водяного пара называется влажным воздухом.
Основными физическими параметрами, характеризующими состояние влажного воздуха являются:
- Температура;
- Барометрическое давление;
- Парциальное давление сухого воздуха и водяного пара;
- Влагосодержание;
- Относительная влажность;
- Плотность;
- Удельная энтальпия.
Температура воздуха – это физическое свойство воздуха, характеризующее его степень нагрева или охлаждения, определяемая с помощью термометров.
Барометрическое давление определяется высотой над уровнем моря. Значения барометрического давления для различных населенных пунктов приведены в таблице 3.1 СП 131.13330.2018 «Строительная климатология». Для зданий высотой до 100 метров, расположенных на относительно небольшой высоте на уровнем моря, с достаточной для инженерных расчетов точностью, можно принять барометрическое давление Рб равным 101325 Па.
Величина барометрического давления равна сумме парциального давления сухого воздуха (Рс) и парциального давления водяного пара (Рп).
Рб = Рс + Рп
Парциальное давление Р (Па) – это давление, которое имел бы газ, входящий в состав смеси, если бы он находился в том же количестве, в том же объеме и при той же температуре, что и в смеси.
Парциальное давление сухого воздуха зависит от температуры воздуха, а парциальное давление водяного пара – от температуры воздуха и содержания влаги в нем.
Влагосодержание d (кг) – это величина, характеризующая отношение массы водяного пара во влажном воздухе Мп к массе сухого воздуха Мс в определенном объеме V.
d= Мп / Мc
Плотность влажного воздуха ρ (кг/м3) — это величина, характеризующая отношение суммы массы сухого воздуха Мс и массы водяного пара во влажном воздухе Мп к объему V.
ρ = (Мс + Мп) / V
Плотность влажного воздуха ρп, в диапазоне наиболее часто используемом для систем вентиляции и кондиционирования — от минус 400С до плюс 500С, отличается от плотности сухого воздуха ρс незначительно, на величину не более 5 %. Поэтому, с достаточной для инженерных расчетов степенью точности, можно принять ρ примерно равным ρс.
ρ ≈ ρс
Удельная энтальпия влажного воздуха I (Дж/кг) – это количество теплоты, содержащейся во влажном воздухе при заданных температуре и давлении, отнесенное к 1 кг сухого воздуха. Удельная энтальпия влажного воздуха вычисляется по формуле:
I= cct+ (r+cпt)d
где:
t – Температура воздуха (С0);
d – Влагосодержание воздуха (кг / кг);
сс – Теплоемкость сухого воздуха;
сп – Теплоемкость водяного пара;
r – Удельная теплота парообразования воды.
2. Физические свойства влажного воздуха
2.1. Влажность воздуха
Влажность воздуха — это мера содержания влаги (водяного пара) в воздухе. Чем больше водяного пара в объеме воздуха, тем больше его влажность. При низкой влажности, мера водяного пара в воздухе снижена, и воздух становится сухим. Влажность воздуха на улице и в помещении меняется в зависимости от погодных условий, процессов жизнедеятельности людей, работы технического оборудования, системы отопления, вентиляции и кондиционирования.
Степень сухости и влажности воздуха, находятся в прямой зависимости от того, насколько водяной пар близок к насыщению, иными словами к 100-процентной влажности (т.е. такое состояние воздуха, при котором он полностью насыщен влагой). Если охладить влажный воздух, можно довести находящуюся в нем влагу до такого состояния, что она начинает конденсироваться, т.е. превращаться в воду. Данное явление можно наблюдать при охлаждении воздуха в обычном кондиционере, при охлаждении комнатного воздуха, в кондиционере начинает образовываться конденсат. В природе данное явление наблюдается при возникновении росы ранним утром, после конденсации охладившегося ночного воздуха.
Сам процесс конденсации охлаждаемого воздуха проявляется в появлении капель сконденсировавшейся жидкости – росы. Температура, при которой происходит перенасыщение водяного пара, находящегося в воздухе, т.е. возникновение конденсата, называется точкой росы.
2.2. Виды влажности, абсолютная и относительная влажность
Для того чтобы охарактеризовать влажность, употребляют такие термины, как абсолютная и относительная влажность воздуха.
Абсолютнаявлажность воздуха — это весовое количество водяных паров, содержащихся в 1м3 воздуха. В состоянии насыщения (при максимально возможном содержании влаги) абсолютную влажность воздуха называют влагоёмкостью.
Несмотря на то, что абсолютную влажность можно представить, тем не менее это не дает полного понятия о влажности или сухости воздуха. Для того, чтобы определить степень сухости или влажности воздуха, введено такое понятие, как относительная влажность.
Относительная влажность дает другое абстрактное понятие содержания влаги в воздухе. Данная величина показывает долю в процентном отношении, на сколько насыщен воздух водяным паром.
Другими словами, относительная влажность – это отношение массы влаги, находящейся в воздухе в данный момент, к максимальной массе влаге, которая вообще может находиться в этом объеме воздуха при данной температуре.
Когда говорят о влажности воздуха, например, в сводках метеопрогноза, всегда имеют в виду именно относительную влажность воздуха, выраженную в процентах.
2.3. Давление водяного пара.
Основной характеристикой влажности является парциальное давление водяного пара (давление водяного пара) и относительная влажность.
Водяной пар, как всякий газ, обладает упругостью, иными словами давлением. Давление водяного пара зависит от его плотности (массе в единице объема, кг/м3) и его абсолютной температуре. Оно выражается в тех же единицах, что и давление воздуха и всех его составных частей. В настоящее время в научной литературе обязательным является употребление Международной системы единиц (СИ), в которой основной единицей давления служит паскаль (1 Па = 1 Н/м2; 1 гПа= 102 Па).
Давление водяного пара в состоянии насыщения (т.е. при 100% относительной влажности, когда воздух при определенной температуре, полностью насыщен водяным паром) называют давлением насыщенного водяного пара. В данном состоянии водяной пар имеет максимальное давление, которое возможно при данной температуре. Например, при температуре 0°С давление насыщенного пара составляет 6,1 гПа. Если воздух содержит водяного пара меньше, чем нужно для насыщения его при данной температуре (т.е. достижения его максимального содержания влаги), можно определить, насколько воздух близок к состоянию насыщения.
Таким образом, имея два основных параметра:
e – фактическое давление водяного пара, находящегося в воздухе;
Е — давление насыщенного пара (с максимально возможным содержанием влаги) при данной температуре воздуха,
можно определить относительную влажность воздуха, выраженную в %, по следующей формуле:
Для примера, при температуре 20°С, давление пара, при его полном насыщении воздуха составляет 23,4 гПа. Если, в данный момент времени, фактическое давление водяного пара в воздухе будет составлять, например, 11,7 гПа, то относительная влажность воздуха составит:
Следует также заметить, что чем теплее воздух, тем больше водяного пара может он содержать в состоянии насыщения и, стало быть, тем больше может быть в нем давление водяного пара.
2.4. Влагосодержание
Влагосодержание (d) – это масса водяного пара (выраженная в граммах), приходящаяся на один килограмм сухого воздуха. Единица измеряется — г/кг.
где, mв.п. – масса водяного пара, растворенного в воздухе, г
mc.в. – масса сухого воздуха, кг.
2.5. I-d диаграмма влажного воздуха
I-d диаграмма влажного воздуха – это основной инструмент для отражения различных процессов изменения состояния воздуха – его нагрева, охлаждения, осушения и увлажнения.
Данная диаграмма значительно упрощает понимание различных процессов, происходящих с воздухом в системах вентиляции и кондиционирования, и позволяет легко снять данные о состоянии воздуха при любых его параметрах.
Данная диаграмма графически показывает полную взаимосвязь между основных параметрами состояния воздуха:
- температурой
- относительной влажностью
- влагосодержанием
- энтальпией
- парциальным давлением паров воды.
Следует отметить, что все значения указаны при определенном значении состояния воздуха при атмосферном давлении – 101,3 кПа.
На I-d диаграмме (рисунок 1) представлены следующие линии:
- криволинейные – линии относительной влажности (от 5 до 100%).
- прямые — постоянной энтальпии, температуры, парциального давления и влагосодержания.
Определить состояние воздуха в любой точке диаграммы возможно, зная любые два его параметра.
Рисунок 1
Графическое изображение любого процесса изменения состояния воздуха значительно облегчается с помощью дополнительно нанесенной круговой диаграммы. На данной диаграмме под разными углами показаны значения тепло-влажностного отношения ε.
Данная величина определяется наклоном луча процесса и рассчитывается как:
ε = Q / W
где, Q – подведенное (отведенное) тепло или теплопоступления, кДж/ч;
W — влага, поглощаемая или выделяемая из воздуха, (кг/ч).
Значение тепло-влажностного отношения ε делит всю диаграмму на четыре основных зоны, по которым можно определить процесс изменения состояния воздуха:
- ε = +∞ … 0 (нагрев + увлажнение).
- ε = 0 … -∞ (охлаждение + увлажнение).
- ε = -∞ … 0 (охлаждение + осушение).
- ε = 0 … +∞ (нагрев + осушение).
Ниже приведены основные процессы увлажнения воздуха – адиабатический (рисунок 2) и изотермический (рисунок 3)
Рисунок 2 Рисунок 3
2.6. Изменение влажности в зависимости от температуры
Относительная влажность воздуха зависит от его температуры. В процессе изменения температуры воздуха (при его нагреве или охлаждении) относительная влажность воздуха также изменяется. Данный процесс обусловлен изменением парциального давления водяных паров, содержащихся в воздухе.
Например, в процессе нагрева воздуха парциальное давление водяных паров в состоянии полного насыщения ими воздуха начинает увеличиваться, это обусловлено расширением газа (воздуха) при его нагреве. Учитывая данный факт, при увеличении температуры воздуха его относительная влажность начинает снижаться.
В процессе охлаждения воздуха происходит обратный процесс. Парциальное давление водяных паров в состоянии полного насыщения снижается, при охлаждении воздух сжимается, что вызывает увеличение его относительной влажности.
Следует отметить, что в процессе нагрева воздуха его влагосодержание остается неизменным, так как масса водяного пара в единице сухого воздуха не изменяется (процесс нагрева проходит без подвода или отвода влаги).
Процесс охлаждения воздуха проходит несколько сложнее. Здесь ключевым фактором является возможность конденсации водяных паров, растворенных во влажном воздухе. Например, при охлаждении воздуха без конденсации водяных паров, его влагосодержание остается неизменным (так как процесс проходит без подвода или отвода влаги — как и процесс нагрева воздуха). В случае охлаждения воздуха с конденсацией водяных паров, падает как его температура, так и влагосодержание (часть влаги конденсируется из воздуха), воздуха осушается, при этом, как было сказано выше, его относительная влажность увеличивается.
Ниже на рисунке 4, на I-d диаграммах состояния влажного воздуха, для отображения сути процесса изменения относительной влажности и влагосодержания воздуха при изменении его воздуха, представлены следующие процессы:
- нагрев воздуха
- охлаждение воздуха без конденсации водяных паров
- охлаждение воздуха с конденсацией водяных паров.
Рисунок 4
Рисунок 5
Рисунок 6
26 мая 2020, 09:40
ЛЕГЕНДА
Статьи
0
0
0
Источник
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 января 2020; проверки требуют 9 правок.
Вла́жность — показатель содержания воды в физических телах или средах. Для измерения влажности используются различные единицы, часто внесистемные.
Общие сведения[править | править код]
Влажность зависит от природы вещества, а в твёрдых телах, кроме того, от степени измельчённости или пористости. Содержание химически связанной, так называемой конституционной воды, например гидроокисей, выделяющейся только при химическом разложении, а также воды кристаллогидратной не входит в понятие влажности.
Единицы измерения и особенности определения понятия «влажность»[править | править код]
- Влажность обычно характеризуется количеством воды в веществе, выраженным в процентах (%) от первоначальной массы влажного вещества (массовая влажность) или её объёма (объёмная влажность).
- Влажность можно характеризовать также влагосодержанием, или абсолютной влажностью — количеством воды, отнесённым к единице массы сухой части материала. Такое определение влажности широко используется для оценки качества древесины.
Эту величину не всегда можно точно измерить, так как в ряде случаев невозможно удалить всю неконденсированную воду и взвесить предмет до и после этой операции. - Относительная влажность характеризует содержание влаги по сравнению с максимальным количеством влаги, которое может содержаться в веществе в состоянии термодинамического равновесия. Обычно относительную влажность измеряют в процентах от максимума.
Методы определения[править | править код]
Установление степени влажности многих продуктов, материалов и т. п. имеет важное значение. Только при определённой влажности многие тела (зерно, цемент и др.) являются пригодными для той цели, для которой они предназначены. Жизнедеятельность животных и растительных организмов возможна только в определённых диапазонах температуры и относительной влажности воздуха. Влажность может вносить существенную погрешность в массу предмета. Килограмм сахара или зерна с влажностью 5 % и 10 % будет содержать разное количество сухого сахара или зерна.
Измерение влажности определяется высушиванием влаги и титрованием влаги по Карлу Фишеру. Эти способы являются первичными. Помимо них разработано множество других, которые калибруются по результатам измерений влажности первичными способами и по стандартным образцам влажности.
Влажность воздуха[править | править код]
Влажность воздуха — это величина, характеризующая содержание водяных паров в атмосфере Земли — одна из наиболее существенных характеристик погоды и климата.
Влажность воздуха в земной атмосфере колеблется в широких пределах. Так, у земной поверхности содержание водяного пара в воздухе составляет в среднем от 0,2 % по объёму в высоких широтах до 2,5 % в тропиках. Упругость пара в полярных широтах зимой меньше 1 мбар (иногда лишь сотые доли мбар) и летом ниже 5 мбар; в тропиках же она возрастает до 30 мбар, а иногда и больше. В субтропических пустынях упругость пара понижена до 5—10 мбар.
Абсолютная влажность воздуха (f) — это количество водяного пара, фактически содержащегося в 1 м³ воздуха. Определяется как отношение массы содержащегося в воздухе водяного пара к объёму влажного воздуха.
Обычно используемая единица абсолютной влажности — грамм на метр кубический, [г/м³][1], реже [г/кг][2].
Относительная влажность воздуха (φ) — это отношение его текущей абсолютной влажности к максимальной абсолютной влажности при данной температуре. Она также определяется как отношение парциального давления водяного пара в газе к равновесному давлению насыщенного пара.
Температура t, °C | −30 | −20 | −10 | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Максимальная абсолютная влажность fmax, (г/м³) | 0,29 | 0,81 | 2,1 | 4,8 | 9,4 | 17,3 | 30,4 | 51,1 | 83,0 | 130 | 198 | 293 | 423 | 598 |
Относительная влажность обычно выражается в процентах.
Относительная влажность очень высока в экваториальной зоне (среднегодовая до 85 % и более), а также в полярных широтах и зимой внутри материков средних широт. Летом высокой относительной влажностью характеризуются муссонные районы. Низкие значения относительной влажности наблюдаются в субтропических и тропических пустынях и зимой в муссонных районах (до 50 % и ниже).
С высотой влажность быстро убывает. На высоте 1,5-2 км упругость пара в среднем вдвое меньше, чем у земной поверхности. На тропосферу приходится 99 % водяного пара атмосферы. В среднем над каждым квадратным метром земной поверхности в воздухе содержится 28,5 кг водяного пара.
Величины измерения влажности газа[править | править код]
Для обозначения содержащейся в воздухе влаги используются следующие величины:
абсолютная влажность воздуха
масса водяного пара, содержащаяся в единице объёма воздуха, то есть плотность содержащегося в воздухе водяного пара, [г/м³]; в атмосфере колеблется от 0,1-1,0 г/м³ (зимой над материками) до 30 г/м³ и более (в экваториальной зоне)[3][4];
максимальная влажность воздуха (граница насыщения)[источник не указан 1190 дней]
количество водяного пара, которое может содержаться в воздухе при определённой температуре в термодинамическом равновесии (максимальное значение влажности воздуха при заданной температуре), [г/м³ ]. При повышении температуры воздуха его максимальная влажность увеличивается;
упругость пара, давление пара
парциальное давление, которое оказывает водяной пар, содержащийся в воздухе (давление водяного пара как часть атмосферного давления). Единица измерения — Па.
дефицит влажности
разность между максимально возможным и фактическим давлением водяного пара [Па] (при данных условиях: температуре и давлении воздуха)[5], то есть между упругостью насыщения и фактической упругостью пара[6];
относительная влажность воздуха
отношение давления пара к давлению насыщенного пара, то есть абсолютной влажности воздуха к максимальной [% относительной влажности];
точка росы
температура газа, при которой газ насыщается водяным паром °C. Относительная влажность газа при этом составляет 100 %. С дальнейшим притоком водяного пара или при охлаждении воздуха (газа) появляется конденсат. Таким образом, хотя роса и не выпадает при температуре −10 или −50 °C, выпадает изморозь, иней, лёд или снег, точка росы в −10 или −50 °C существует и соответствует 2,361 и 0,063 г воды на 1м³ воздуха или другого газа под давлением одна атмосфера;
удельная влажность
масса водяного пара в граммах на килограмм увлажнённого воздуха [г/кг], то есть отношение масс водяного пара и увлажнённого воздуха[7];
температура смоченного термометра
температура, при которой газ насыщается водяным паром при постоянной энтальпии воздуха. Относительная влажность газа при этом составляет 100 %, влагосодержание увеличивается, а энтальпия равна начальной.
соотношение компонентов смеси (содержание водяного пара)
масса водяного пара в граммах на килограмм сухого воздуха [г/кг], то есть соотношение масс водяного пара и сухого воздуха.
Эффект[править | править код]
Животные[править | править код]
Влажность является одним из фундаментальных абиотических факторов, который определяет любую среду обитания (тундра, водно-болотные угодья, пустыня и т. д.), и определяет, какие животные и растения могут процветать в данной среде[8].
Человеческое тело рассеивает тепло посредством потоотделения и его испарения. Тепловая конвекция в окружающий воздух и тепловое излучение являются основными способами передачи тепла от тела. В условиях повышенной влажности скорость испарения пота с кожи уменьшается. Кроме того, если атмосфера такая же теплая, как кожа, во время высокой влажности, кровь, попадающая на поверхность тела, не может рассеивать тепло за счёт теплопроводности воздуха. При таком большом количестве крови, поступающем на внешнюю поверхность тела, меньше крови идёт на активные мышцы, мозг и другие внутренние органы. Раньше наступает снижение физической силы и усталость. Также может возникнуть замедление реакции и умственных способностей, что приводит к тепловому удару или гипертермии.
Люди чувствительны к влажному воздуху, потому что человеческое тело использует испарительное охлаждение в качестве основного механизма для регулирования температуры. В условиях повышенной влажности скорость испарения пота на коже ниже, чем в засушливых условиях. Поскольку люди воспринимают скорость передачи тепла от тела, а не температуру, мы чувствуем себя теплее, когда относительная влажность высокая, а не низкая.
Некоторые люди испытывают трудности с дыханием во влажной среде. Некоторые случаи могут быть связаны с респираторными заболеваниями, такими как астма, в то время как другие могут быть результатом беспокойства. Пациенты часто реагируют на гипервентиляцию, вызывающие, среди прочего, ощущения онемения, обморока и потери концентрации[9].
Кондиционер снижает дискомфорт, снижая не только температуру, но и влажность. Нагрев холодного наружного воздуха может снизить относительную влажность в помещении до уровня ниже 30 %[10], приводя к таким болезням, как сухость кожи, потрескавшиеся губы, сухость в глазах и чрезмерная жажда.
Более высокая влажность снижает инфекционность аэрозольного вируса гриппа[11].
Электроника[править | править код]
Электронные устройства часто рассчитаны на работу только при определённых условиях влажности (например, от 5 % до 95 %). В верхней части диапазона влажность может увеличить проводимость проницаемых изоляторов, что приведет к неисправности. Слишком низкая влажность может сделать материалы ломкими. Особую опасность для электронных устройств, независимо от заявленного диапазона рабочей влажности, представляет конденсат. Когда электронный элемент перемещается из холодного места (например, гараж, автомобиль, сарай) в теплое влажное место (дом, офис), конденсат может покрывать печатные платы и другие изоляторы, что приводит к короткому замыканию схемы внутри оборудования. Такие короткие замыкания могут привести к значительному повреждению, если оборудование включено до того, как конденсат испарится. Подобный эффект конденсации часто можно наблюдать, когда человек, носящий очки, приходит с холода[12]. Желательно, чтобы перед включением электронное оборудование акклиматизировалось в течение нескольких часов, после того как оно было перенесено с холода.
Некоторые электронные устройства могут обнаружить такую опасность и при включении указать, что его нельзя использовать до тех пор, пока существует риск выхода из строя оборудования. В ситуациях, когда необходимо в короткие сроки запустить оборудование, увеличение потока воздуха во внутренние элементы устройства, например, направив вентилятор в открытый корпус, значительно сократит время, необходимое для адаптации к новой среде.
Очень низкий уровень влажности способствует накоплению статического электричества, которое может привести к самопроизвольному отключению компьютеров при возникновении разрядов. Помимо ложных ошибочных функций, электростатические разряды могут вызвать диэлектрический пробой в твердотельных устройствах, что приводит к необратимым повреждениям. По этим причинам центры обработки данных часто отслеживают уровни относительной влажности.
См. также[править | править код]
- Влажность пара
Примечания[править | править код]
- ↑ Wyer, Samuel S. Fundamental Physical Laws and Definitions // A Treatise on Producer-Gas and Gas-Producers (англ.). — McGraw-Hill Education, 1906. — P. 23.
- ↑ Perry, R.H. and Green, D.W, (2007) Perry’s Chemical Engineers’ Handbook (8th Edition), Section 12, Psychrometry, Evaporative Cooling and Solids Drying McGraw-Hill, ISBN 978-0-07-151135-3
- ↑ Climate – Humidity indexes. Encyclopaedia Britannica. Дата обращения 15 февраля 2018.
- ↑ Climate/humidity table. Transport Information Service of the German Insurance Association. Дата обращения 15 февраля 2018.
- ↑ Дефицит влажности // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ Погода и климат — Психрометрическая таблица
- ↑ Seidel, Dian What is atmospheric humidity and how is it measured? (broken link) (недоступная ссылка). National Oceanic and Atmospheric Administration. National Oceanic and Atmospheric Administration. Дата обращения 17 ноября 2019. Архивировано 18 октября 2017 года.
- ↑ C.Michael Hogan. 2010. Abiotic factor. Encyclopedia of Earth. eds Emily Monosson and C. Cleveland. National Council for Science and the Environment Архивировано 8 июня 2013 года.. Washington DC
- ↑ Heat and humidity – the lung association. www.lung.ca. Дата обращения 14 марта 2018.
- ↑ Optimum Humidity Levels for Home. AirBetter.org (3 августа 2014).
- ↑ Noti, John D.; Blachere, Francoise M.; McMillen, Cynthia M.; Lindsley, William G.; Kashon, Michael L.; Slaughter, Denzil R.; Beezhold, Donald H. High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs (англ.) // PLOS ONE : journal. — 2013. — Vol. 8, no. 2. — P. e57485. — doi:10.1371/journal.pone.0057485. — Bibcode: 2013PLoSO…857485N. — PMID 23460865.
- ↑ Fogging Glasses.
Литература[править | править код]
- Усольцев В. А. Измерение влажности воздуха. — Л.: Гидрометеоиздат, 1959.
- Берлинер М. А. Измерения влажности. — Изд. 2-е, перераб. и доп. — М.: Энергия, 1973.
Источник