Какие свойства уравнений бывают

Какие свойства уравнений бывают thumbnail

Первое печатное появление знака равенства в книге Роберта Рекорда в 1557 году (записано уравнение 14x + 15 = 71)

Уравне́ние — равенство вида

,

где чаще всего в качестве выступают числовые функции, хотя на практике встречаются и более сложные случаи — например, уравнения для вектор-функций, функциональные уравнения и другие.

Решение уравнения[править | править код]

Иллюстрация графического метода нахождения корней уравнения x = f(x)

Решение уравнения — задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут быть наложены дополнительные условия (целочисленности, вещественности и т. д.).

Аргументы заданных функций (иногда называются «переменными») в случае уравнения называются «неизвестными».

Значения неизвестных, при которых это равенство достигается, называются решениями или корнями данного уравнения.

Про корни говорят, что они удовлетворяют данному уравнению.

Решить уравнение означает найти множество всех его решений (корней) или доказать, что корней нет.

Равносильные уравнения[править | править код]

Равносильными или эквивалентными называются уравнения, множества корней которых совпадают. Равносильными также считаются уравнения, которые не имеют корней.

Эквивалентность уравнений имеет свойство симметричности: если одно уравнение эквивалентно другому, то второе уравнение эквивалентно первому.

Эквивалентность уравнений имеет свойство транзитивности: если одно уравнение эквивалентно другому, а второе эквивалентно третьему, то первое уравнение эквивалентно третьему. Свойство эквивалентности уравнений позволяет проводить с ними преобразования, на которых основываются методы их решения.

Третье важное свойство задаётся теоремой: если функции заданы над областью целостности, то уравнение

эквивалентно совокупности уравнений

.

Это означает, что все корни первого уравнения являются корнями одного из двух других уравнений, и позволяет находить корни первого уравнения в два приёма, решая каждый раз более простые уравнения.

Основные свойства[править | править код]

С алгебраическими выражениями, входящими в уравнения, можно выполнять операции, которые не меняют его корней, в частности:

  1. в любой части уравнения можно раскрыть скобки;
  2. в любой части уравнения можно привести подобные слагаемые;
  3. любой член уравнения можно перенести из одной части в другую, заменив его знак на противоположный;
  4. к обеим частям уравнения можно прибавить одно и то же выражение;
  5. из обеих частей уравнения можно вычесть одно и то же выражение;
  6. обе части уравнения можно умножать или делить на одно и то же число, отличное от нуля.

Уравнения, которые являются результатом этих операций, являются эквивалентными начальному уравнению. Однако для свойств 4 и 5 существует ограничение: в случае прибавления к обеим частям уравнения одного и того же выражения (или в случае вычитания из обеих частей уравнения одного и того же выражения), содержащего неизвестное и теряющего смысл при неизвестном, принимающем значения корней данного уравнения, получится уравнение, неэквивалентное исходному (начальному). Но если к обеим частям уравнения прибавить одно и то же выражение (или из обеих частей уравнения вычесть одно и то же выражение), содержащее неизвестное и теряющее смысл лишь при значениях неизвестного, не являющихся корнями данного уравнения, то получится уравнение, эквивалентное начальному.

Умножение или деление обеих частей уравнения на выражение, содержащее неизвестное, может привести, соответственно, к появлению посторонних корней или к потере корней.

Возведение обеих частей уравнения в квадрат может привести к появлению посторонних корней.

Следствие уравнения и посторонние корни[править | править код]

Уравнение

называется следствием уравнения

,

если все корни второго уравнения являются корнями первого. Первое уравнение может иметь дополнительные корни, которые для второго уравнения называются посторонними. Посторонние корни могут появиться при преобразованиях, необходимых для нахождения корней уравнений. Для того чтобы их обнаружить, необходимо проверить корень подстановкой в исходное уравнение. Если при подстановке уравнение становится тождеством, то корень настоящий, если нет — посторонний.

Пример[править | править код]

Уравнение при возведении обеих частей в квадрат даёт уравнение , или . Оба уравнения являются следствием исходного. Последнее из них легко решить; оно имеет два корня и .

При подстановке первого корня в исходное уравнение образуется тождество . При подстановке другого корня получается неправильное утверждение . Таким образом, второй корень нужно отбросить как посторонний.

Виды уравнений[править | править код]

Различают алгебраические уравнения, уравнения с параметрами, трансцендентные, функциональные, дифференциальные и другие виды уравнений.

Некоторые классы уравнений имеют аналитические решения, которые удобны тем, что не только дают точное значение корня, а позволяют записать решение в виде формулы, в которую могут входить параметры. Аналитические выражения позволяют не только вычислить корни, а провести анализ существования и количества корней в зависимости от значений параметров, что часто бывает даже важнее для практического применения, чем конкретные значения корней.

К уравнениям, для которых известны аналитические решения, относятся алгебраические уравнения не выше четвёртой степени: линейное, квадратное, кубическое уравнения и уравнение четвёртой степени. Алгебраические уравнения высших степеней в общем случае аналитического решения не имеют, хотя некоторые из них можно свести к уравнениям низших степеней.

Уравнения, в которые входят трансцендентные функции, называются трансцендентными. Среди них аналитические решения известны для некоторых тригонометрических уравнений, поскольку нули тригонометрических функций хорошо известны.

В общем случае, когда аналитического решения найти не удаётся, применяют вычислительные (численные) методы. Численные методы не дают точного решения, а только позволяют сузить интервал, в котором лежит корень, до определённого заранее заданного значения.

Алгебраические уравнения[править | править код]

Алгебраическим уравнением называется уравнение вида

где  — многочлен от переменных , которые называются неизвестными.

Коэффициенты многочлена обычно берутся из некоторого поля , и тогда уравнение называется алгебраическим уравнением над полем . Степенью алгебраического уравнения называют степень многочлена .

Например, уравнение

является алгебраическим уравнением седьмой степени от трёх переменных (с тремя неизвестными) над полем вещественных чисел.

Линейные уравнения[править | править код]

Квадратные уравнения[править | править код]

где  — свободная переменная, , ,  — коэффициенты, причём .

Выражение называют квадратным трёхчленом. Корень такого уравнения (корень квадратного трёхчлена) — это значение переменной , обращающее квадратный трёхчлен в нуль, то есть значение, обращающее квадратное уравнение в тождество. Коэффициенты квадратного уравнения имеют собственные названия: коэффициент называют первым или старшим, коэффициент называют вторым или коэффициентом при , называется свободным членом этого уравнения. Приведённым называют квадратное уравнение, в котором старший коэффициент равен единице. Такое уравнение может быть получено делением всего выражения на старший коэффициент : , где , а . Полным квадратным уравнением называют такое, все коэффициенты которого отличны от нуля. Неполным квадратным уравнением называется такое, в котором хотя бы один из коэффициентов кроме старшего (либо второй коэффициент, либо свободный член) равен нулю.

Для нахождения корней квадратного уравнения в общем случае следует пользоваться приводимым ниже алгоритмом:

Графиком квадратичной функции в прямоугольных координатах является парабола. Она пересекает ось абсцисс в точках, соответствующих корням квадратного уравнения .

Кубические уравнения[править | править код]

График кубической функции

Для графического анализа кубического уравнения в прямоугольных координатах используется кубическая парабола.

Любое кубическое уравнение канонического вида можно привести к более простому виду

,

поделив его на и подставив в него замену . При этом коэффициенты будут равны:

,
.

Уравнение четвёртой степени[править | править код]

Четвёртая степень для алгебраических уравнений является наивысшей, при которой существует аналитическое решение в радикалах в общем виде (то есть при любых значениях коэффициентов).

Так как является многочленом чётной степени, она имеет один и тот же предел при стремлении к плюс и к минус бесконечности. Если , то функция возрастает до плюс бесконечности с обеих сторон, и следовательно, имеет глобальный минимум. Аналогично, если , то функция убывает до минус бесконечности с обеих сторон, и следовательно, имеет глобальный максимум.

Иррациональные и рациональные уравнения[править | править код]

  • Рациональное уравнение – это такой вид уравнения в которой левая и правая части рациональные выражения. В записи уравнения имеются только сложение, вычитание, умножение , деление , а также возведение в степень целого числа.
  • Иррациональное уравнение — это уравнение, содержащее неизвестное под знаком корня. или возведённое в степень, которую нельзя свести к целому числу.

Системы линейных алгебраических уравнений[править | править код]

Система уравнений вида:

(1)

Здесь  — количество уравнений, а  — количество неизвестных. x1, x2, …, xn — неизвестные, которые надо определить. a11, a12, …, amn — коэффициенты системы — и b1, b2, … bm — свободные члены — предполагаются известными. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно[1].

Система называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной. Система называется квадратной, если число m уравнений равно числу n неизвестных. Решение системы — совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему обращает все её уравнения в тождества. Система называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет ни одного решения. Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы называются различными, если нарушается хотя бы одно из равенств:

c1(1) = c1(2), c2(1) = c2(2), …, cn(1) = cn(2).

Совместная система называется определённой, если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называется неопределённой. Если уравнений больше, чем неизвестных, она называется переопределённой.

Уравнения с параметрами[править | править код]

Уравнением с параметрами называется математическое уравнение, внешний вид и решение которого зависит от значений одного или нескольких параметров. Решить уравнение с параметром означает:

  1. Найти все системы значений параметров, при которых данное уравнение имеет решение.
  2. Найти все решения для каждой найденной системы значений параметров, то есть для неизвестного и параметра должны быть указаны свои области допустимых значений.

Уравнения с параметром могут быть как линейными, так и нелинейными.

Пример линейного уравнения с параметром:

Пример нелинейного уравнения с параметром:

где  — независимая переменная,  — параметр.

Трансцендентные уравнения[править | править код]

Трансцендентным уравнением называется уравнение, не являющееся алгебраическим. Обычно это уравнения, содержащие показательные, логарифмические, тригонометрические, обратные тригонометрические функции, например:

Более строгое определение таково: трансцендентное уравнение — это уравнение вида , где функции и являются аналитическими функциями, и по крайней мере одна из них не является алгебраической.

Функциональные уравнения[править | править код]

Функциональным уравнением называется уравнение, выражающее связь между значением функции (или функций) в одной точке с её значениями в других точках. Многие свойства функций можно определить, исследуя функциональные уравнения, которым эти функции удовлетворяют. Термин «функциональное уравнение» обычно используется для уравнений, несводимых простыми способами к алгебраическим уравнениям. Эта несводимость чаще всего обусловлена тем, что аргументами неизвестной функции в уравнении являются не сами независимые переменные, а некоторые данные функции от них. Например:

  • функциональному уравнению

где  — гамма-функция Эйлера, удовлетворяет дзета-функция Римана ζ.

  • Следующим трём уравнениям удовлетворяет гамма-функция; она является единственным решением этой системы трёх уравнений:

(формула дополнения Эйлера).

  • Функциональное уравнение

где , , , являются целыми числами, удовлетворяющими равенству , то есть , определяет как модулярную форму порядка k.

Дифференциальные уравнения[править | править код]

Дифференциальным уравнением называется уравнение, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи неизвестную функцию, её производные и независимые переменные. Порядок дифференциального уравнения — наибольший порядок производных, входящих в него. Решением дифференциального уравнения порядка n называется функция , имеющая на некотором интервале (a, b) производные до порядка n включительно и удовлетворяющая этому уравнению. Процесс решения дифференциального уравнения называется интегрированием.

Все дифференциальные уравнения можно разделить на

  • обыкновенные дифференциальные уравнения (ОДУ), в которые входят только функции (и их производные) от одного аргумента:

или ,
где  — неизвестная функция (возможно, вектор-функция; в таком случае часто говорят о системе дифференциальных уравнений), зависящая от независимой переменной ; штрих означает дифференцирование по .

  • и дифференциальные уравнения в частных производных, в которых входящие функции зависят от многих переменных:

,
где  — независимые переменные, а  — функция этих переменных.

Первоначально дифференциальные уравнения возникли из задач механики, в которых участвовали координаты тел, их скорости и ускорения, рассматриваемые как функции времени.

Примеры уравнений[править | править код]

См. также[править | править код]

  • Диофантово уравнение
  • Линейное уравнение
  • Квадратное уравнение
  • Решение какого-либо уравнения построением
  • Система уравнений
  • Переменная

Примечания[править | править код]

  1. Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов. — 6-е изд., стер. — М.: ФИЗМАТЛИТ, 2004. — 280 с.

Литература[править | править код]

  • Бекаревич А. Б. Уравнения в школьном курсе математики. — Минск: Нар. асвета, 1968. — 152 с.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.

    • Переиздание: Изд. АСТ, 2003, ISBN 5-17-009554-6.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
  • Маркушевич, Л. А. Уравнения и неравенства в заключительном повторении курса алгебры средней школы / Л. А. Маркушевич, Р. С. Черкасов. / Математика в школе. — 2004. — № 1.

Ссылки[править | править код]

  • Уравнение — статья из Большой советской энциклопедии. 
  • Уравнения // Энциклопедия Кольера. — Открытое общество. 2000.
  • Уравнение // Энциклопедия Кругосвет
  • Уравнение // Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.
  • EqWorld — Мир математических уравнений — содержит обширную информацию о математических уравнениях и системах уравнений.

Источник

Понятие уравнения

Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.

В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Приходите решать увлекательные задачки по математике в детскую школу Skysmart. Поможем разобраться в сложной теме, подтянем оценки и покажем, что математика может быть захватывающим приключением.

Запишите ребенка на бесплатный вводный урок: познакомим с форматом, выявим пробелы и наметим индивидуальную программу обучения.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

  • кубические
  • уравнение четвёртой степени
  • иррациональные и рациональные
  • системы линейных алгебраических уравнений

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Как решаем:

  1. Перенесем 6x из левой части в правую. Знак меняем на противоположный, то есть минус.

    6x −5x = 10

  2. Приведем подобные и завершим решение.

    x = 10

Ответ: x = 10.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

Как решаем:

  1. Сократим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

    −4x = 12 | :(−4)
    x = −3

Ответ: x = −3.

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе.

А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

Решаем так:

  1. Перенести 1 из левой части в правую со знаком минус.

    6х = 19 — 1

  2. Выполнить вычитание.

    6х = 18

  3. Разделить обе части на общий множитель, то есть 6.

    х = 2

Ответ: х = 2.

Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1.

Решаем так:

  1. Раскрыть скобки

    5х — 15 + 2 = 3х — 2 + 2х — 1

  2. Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены.

    5х — 3х — 2х = – 12 — 1 + 15 — 2

  3. Приведем подобные члены.

    0х = 0

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

Решаем так:

  1. Найти неизвестную переменную.

    х = 1/8 : 4

    х = 1/12

Ответ: 1/12 или 0,83. О десятичных дробях можно почитать здесь.

Пример 4. Решить: 4(х + 2) = 6 — 7х.

Решаем так:

  1. 4х + 8 = 6 — 7х
  2. 4х + 7х = 6 — 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = – 0, 18

Ответ: — 0,18.

Пример 5. Решить:

Решаем так:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = – 36/19

Ответ: 1 17/19.

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

Решаем так:

  1. Раскрыть скобки

    5х — 15 + 2 = 3х — 2 + 2х — 1

  2. Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

    х — х = 4 — 7

  3. Приведем подобные члены.

    0 * х = – 3

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 — 7х..

Решаем так:

  1. 2х + 6 = 5 — 7х
  2. 2х + 6х = 5 — 7
  3. 8х = −2
  4. х = −2 : 8
  5. х = – 0,25

Ответ: — 0,25.

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики в современную онлайн-школу Skysmart. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом. А еще помогут догнать сверстников и справиться со сложной контрольной.

Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем. А еще развивающие игры, квесты и головоломки на любой возраст и уровень.

Источник