Какие свойства ультразвука в

Какие свойства ультразвука в thumbnail

Ультразвук представляет волны продольного вида, которые имеют частоту колебаний более 20 КГц. Это больше частоты колебаний, воспринимаемых человеческим слуховым аппаратом. Человек же может воспринимать частоты, находящиеся в пределах 16-20 КГц, они называются звуковыми. Ультразвуковые волны выглядят как череда сгущений и разряжений вещества или среды. Благодаря их свойствам они находят широкое применение во многих областях.

Ultrazvuk volny

Что это

В ультразвуковой диапазон попадают частоты, начиная от 20 тысяч и до нескольких миллиардов герц. Это колебания высокой частоты, которые находятся за областью слышимости ухом человека. Однако ультразвуковые волны вполне воспринимают некоторые виды животных. Это дельфины, киты, крысы и другие млекопитающие.

По физическим свойствам ультразвуковые волны являются упругими, поэтому они не имеют отличий от звуковых. В результате разница между звуковыми и ультразвуковыми колебаниями весьма условна, ведь она зависит от субъективного восприятия слуха человека и равняется верхнему уровню слышимого звука.

Но наличие более высоких частот, а значит и небольшой длины волны, придает ультразвуковым колебаниям определенные особенности:
  • Ультразвуковые частоты имеют разную скорость перемещения через различные вещества, благодаря чему можно с высокой точностью определять свойство протекающих процессов, удельную тепловую емкость газов, а также характеристики твердого тела.
  • Волны значительной интенсивности обладают определенными эффектами, которые подчиняются нелинейной акустике.
  • При движении ультразвуковых волн со значительной мощностью в жидкостной среде возникает явление акустической кавитации. Данное явление очень важно, ведь в результате создается поле пузырьков, которые образуются из субмикроскопических частиц газа или пара в водной или иной среде. Они пульсируют с некоторой частотой и захлопываются с огромным локальным давлением. Это создает сферические ударные волны, что ведет к появлению акустических микроскопических потоков. Благодаря использованию этого явления ученые научились очищать загрязненные детали, а также создавать торпеды, которые движутся в воде быстрее скорости звука.
  • Ультразвук может быть сфокусирован и сконцентрирован, что позволяет создавать звуковые рисунки. Это свойство с успехом применяется в голографии и звуковом видении.
  • Ультразвуковая волна вполне может выступать в качестве дифракционной решетки.
Свойства
Ультразвуковые волны по своим свойствам схожи со звуковыми волнами, однако у них есть и специфические особенности:
  • Малая длина волны. Даже для низкой границы длина равняется менее нескольких сантиметров. Такой небольшой размер длины приводит к лучевому характеру перемещения ультразвуковых колебаний. Непосредственно рядом с излучателем волна идет в виде пучка, которая приближается к параметрам излучателя. Однако, оказываясь в условиях неоднородной среды, пучок перемещается как луч света. Он также может отражаться, рассеиваться, преломляться.
  • Малый период колебаний, благодаря чему появляется возможность использования ультразвуковых колебаний в виде импульсов.
  • Ультразвук нельзя услышать и он не создает раздражающего эффекта.
  • При воздействии ультразвуковых колебаний на определенные среды можно добиться получения специфических эффектов. К примеру, можно создать локальный нагрев, дегазацию, обеззаразить среду, кавитацию и многие иные эффекты.
Принцип действия
Для создания ультразвуковых колебаний используются различные устройства:
  • Механические, где в качества источника выступает энергия жидкости или газа.
  • Электромеханические, где ультразвуковая энергия создается из электрической.

В качестве механических излучателей могут выступать свистки и сирены, работающие с помощью воздуха или жидкости. Они удобны и просты, однако у них есть свои минусы. Так коэффициент полезного действия у них находится в пределах 10-20 процентов. Они создают обширный спектр частот с нестабильной амплитудой и частотой. Это ведет к тому, что такие устройства невозможно использовать в условиях, когда требуется точность. Чаще всего их применяют в качестве средств сигнализации.

Электромеханические устройства используют принцип пьезоэлектрического эффекта. Его особенность в том, что при образовании электрозарядов на гранях кристалла происходит его сжимание и растягивание. В результате создаются колебания с частотой, зависящей от периода смены потенциала на поверхностях кристалла.

Кроме преобразователей, которые базируются на пьезоэлектрическом эффекте, могут применяться и магнитострикционные преобразователи. Они используются для создания мощного ультразвукового пучка. Сердечник, который выполнен из магнитострикционного материала, размещенный в проводящей обмотке, изменяет собственную длину согласно форме электрического сигнала, поступающего на обмотку.

Применение

Ультразвук находит широкое применение в самых разнообразных областях.

Чаще всего его используют в следующих направлениях:
  • Получение данных о конкретном веществе.
  • Обработка и передача сигналов.
  • Воздействие на вещество.
Так при помощи ультразвуковых волн изучают:
  • Молекулярные процессы в различных структурах.
  • Определение концентрации веществ в растворах.
  • Определение, состава, прочностных характеристик материалов и так далее.
В ультразвуковой обработке часто используется метод кавитации:
  • Металлизация.
  • Ультразвуковая очистка.
  • Дегазация жидкостей.
  • Диспергирование.
  • Получение аэрозолей.
  • Ультразвуковая стерилизация.
  • Уничтожения микроорганизмов.
  • Интенсификация электрохимических процессов.
Воздействием ультразвуковых волн в промышленности производят следующие технологические операции:
  • Коагуляция.
  • Горение в ультразвуковой среде.
  • Сушка.
  • Сварка.

В медицине ультразвуковые волны используются в терапии и диагностике. В диагностике задействуют локационные методы с применением импульсного излучения. К ним относятся ультразвуковая кардиография, эхоэнцефалография и ряд иных методов. В терапии ультразвуковые волны применяются в качестве методов, основанных на тепловом и механическом воздействии на ткани. К примеру, довольно часто во время операций используют ультразвуковой скальпель.

Также ультразвуковыми колебаниями проводится:

Ultrazvuk massazh

  • Микромассаж структур ткани при помощи вибрации.
  • Стимуляция регенерации клеток, а также межклеточного обмена.
  • Увеличение проницаемости оболочек тканей.

Ультразвук может действовать на ткани угнетением, стимулированием или разрушением. Все это зависит от применяемой дозы ультразвуковых колебаний и их мощности. Однако не на все области тела человека разрешается использовать такие волны. Так с определенной осторожностью воздействуют на сердечную мышцу и ряд эндокринных органов. На мозг, шейные позвонки, мошонку и ряд иных органов воздействие вовсе не используется.

Читайте также:  Какой угол называется вертикальным и его свойства

Ultrazvuk UZI

Ультразвуковые колебания применяются в случаях, когда невозможно использовать рентген в:
  • Травматологии используется метод эхографии, который с легкостью обнаруживает внутреннее кровотечение.
  • Акушерстве волны применяются для оценки развития плода, а также его параметров.
  • Кардиологии они позволяют обследовать сердечнососудистую систему.
Ультразвук в будущем

На текущий момент ультразвук широко применяется в различных областях, но в будущем он найдет еще большее применение. Уже сегодня планируется создание фантастических для сегодняшнего дня устройств.

  • В медицинских целях разрабатывается технология ультразвуковой акустической голограммы. Данная технология предполагает расположение микрочастиц в пространстве для создания необходимого изображения.
  • Ученые работают над созданием технологии бесконтактных устройств, которые должны будут заменить сенсорные приборы. К примеру, уже сегодня созданы игровые устройства, которые распознают перемещения человека без непосредственного контакта. Прорабатываются технологии, которые предполагают создание невидимых кнопок, которые вполне можно ощутить руками и управлять ими. Развитие подобных технологий позволит создать бесконтактные смартфоны или планшеты. К тому же данная технология расширит возможности виртуальной реальности.
  • При помощи ультразвуковых волн уже сегодня можно заставить левитировать небольшие объекты. В будущем могут появиться машины, которые будут за счет волн парить над землей и в отсутствии трения перемещаться с огромной скоростью.
  • Ученые предполагают, что в будущем ультразвук позволит научить слепых людей видеть. Такая уверенность базируется на том, что летучие мыши распознают объекты с помощью отраженных ультразвуковых волн. Уже создан шлем, который преобразует отражаемые волны в слышимый звук.
  • Уже сегодня люди предполагают добывать полезные ископаемые в космосе, ведь там есть все. Так астрономы нашли алмазную планету, на которой полно драгоценных камней. Но как добывать такие твердые материалы в космосе. Именно ультразвук должен будет помочь в бурении плотных материалов. Такие процессы вполне возможны даже в отсутствии атмосферы. Такие технологии бурения позволят собирать образцы, проводить исследования и добывать полезные ископаемые там, где это сегодня считается невозможным.
Похожие темы:
  • Инфразвук. Работа и применение. Особенности и влияние
  • Ультразвуковые датчики часть 1. Устройство и работа
  • Ультразвуковые датчики часть 2. Типы и работа. Применение
  • Магнитное поле. Источники и свойства. Правила
  • Электромагнитные волны. Опыты Герца. Излучения

Источник

характеристики ультразвуковых колебанийУльтразвук (широко применяется в косметологии и физиотерапии) представляет собой высокочастотные механические колебания частиц среды, которые распространяются в ней в виде попеременных сжатий и разрежений вещества. Частота ультразвуковых колебаний лежит в неслышном акустическом диапазоне (выше 16 кГц).

В физиотерапии и косметологии используют ультразвук частотой 24-42 кГц, 800-900 кГц или около 3000 кГц.

Основными физическими параметрами и величинами, которые используются для оценки свойств ультразвука, являются частота и интенсивность ультразвуковых колебаний.

Частота ультразвука

Частота колебаний – это число чередований сжатий и разряжений в единицу времени. Единица измерения в СИ – герц (Гц). 1 Гц – одно колебание в секунду. В терапевтической практике ультразвук используют в диапазоне частот 800-3000 кГц (1 кГц=1000 Гц). Выбор частоты ультразвука зависит от глубины расположения органов и тканей, подлежащих воздействию. При поверхностном их расположении применяют ультразвук высокой частоты (3 МГц), при более глубоком – более низкие частоты.

Глубина проникновения ультразвука

Глубина проникновения УЗ-колебаний зависит от их частоты. Чем больше частота колебаний, тем меньше глубина проникновения и наоборот.

  • При частоте 1600-3000 кГц ультразвук проникает на глубину 1-1,5 см (поглощается кожей).
  • При частоте 800-900 кГц – на 4-5 см.
  • При частоте 20-45 кГц проникает на глубину 8-14 см.

При этом следует иметь ввиду, что глубина проникновения веществ при фонофорезе значительно меньше, чем глубина проникновения ультразвуковых волн (колебаний).

Товары, которые упоминаются в статье

Интенсивность ультразвука

Интенсивность ультразвуковых колебаний – это количество энергии, проходящее через 1 см² площади излучателя аппарата в течение 1 секунды. Единица измерения в системе СИ – Вт/см². Применяемую в физиотерапевтической и косметологической практике интенсивность ультразвуковых колебаний условно подразделяют на:

  • малую (0,05-0,4 Вт/см²) – оказывает стимулирующее действие;
  • среднюю (0,5-0,8 Вт/см²) – коррегирующее (противовоспалительное, обезболивающее) действие;
  • большую (0,9-1,2 Вт/см²) – рассасывающее действие.

Из новых методик интересна так называемая «ультразвуковая липосакция» – применение низкочастотного (20-45 кГц) ультразвука со сверхбольшой интенсивностью – до 3 Вт/см².

Скорость распространения ультразвука в различных средах

Скорость распространения ультразвуковых колебаний в тканях зависит от плотности среды и величины акустического сопротивления. Чем плотнее ткань, тем больше скорость распространения ультразвука. В воздухе она равна 330 м/с, в воде – 1500 м/с, в сыворотке крови – 1060-1540 м/с, в костной ткани – 3350 м/с. Поэтому в неоднородных средах, какими являются ткани организма, распространение ультразвука происходит неравномерно. Таким образом, максимум поглощения ультразвуковой энергии наблюдается в костной ткани, на границе разных тканей, а также на внутренних мембранах клеток.

Товары, которые упоминаются в статье

Наталия Баховец

Автор статьи: кандидат медицинских наук, физиотерапевт, косметолог, аспирант кафедры физиотерапии СПбГМА им. И.М. Мечникова, автор многочисленных книг и методических пособий по аппаратной косметологии,
руководитель и методолог учебного центра АЮНА.

Читайте также:  В каких свойствах языка проявляется его сущность

Источник

Физические параметры ультразвука. Диагностический ультразвук

Именно эта частота и указывается в характеристике датчика. Для двухмерной визуализации используются короткие широкополосные сигналы, а для допплеровских исследований длинные узкополосные.

Вследствие зависимого от частоты затухания колебаний по мере увеличения глубины проникновения ультразвука высокочастотные составляющие импульсного сигнала затухают сильнее, чем низкочастотные. В результате на глубине основная частота излучения смещается в сторону низких частот. Центральная частота излучения в 3,5 МГц на глубине 12 см изменяется до 2,8 МГц (Осипов Л.В., 1999). Этот факт учитывается сканером путем подстройки частоты приемника эхосигналов в зависимости от глубины.

Длина волны связана со скоростью распространения ультразвука в среде (С) и частотой (f) или периодом колебания ультразвука (Т) следующей зависимостью: h = СТ = С/f.

Отсюда следует, что с увеличением частоты ультразвуковых колебаний длина волны должна снижаться и наоборот. Так, длина волны, генерируемая датчиком с частотой 3,5 МГц, составляет 0,44 мм, а с частотой 10 МГц- 0,15 мм (Осипов Л.В., 1999). Это имеет непосредственное значение для обеспечения хорошего разрешения мелких структур. Понятно, что разрешающая способность датчика с частотой 10 МГц больше, чем датчика с частотой 3,5 МГц. Фактически длина волны предопределяет физический предел разрешающей способности ультразвуковой системы.

ультразвук

Амплитуда колебаний ультразвуковой волны (А) характеризует максимальное отклонение колебаний от положения равновесия. Этот показатель отражает энергию или мощность ультразвука. Количество энергии, проходящей через определенную область в единицу времени, обозначается как интенсивность ультразвука (И): И = мощность (Вт)/область (м2).

Интенсивность диагностического ультразвука ограничивается таким образом, чтобы обеспечить максимальную информативность исследования при минимизации его повреждающего воздействия.

Скорость распространения ультразвука (С) в идеальной среде прямо пропорциональна длине волны и частоте излучаемого ультразвука. Однако в биологических тканях, в диапазоне частот и длин волн диагностического ультразвука (как правило, 2-10 МГц), основное влияние на скорость распространения ультразвука оказывают свойства самой среды.

Именно эта величина заложена в ультразвуковых сканерах для расчета глубины отражения ультразвуковых волн по времени задержки между их излучением и приемом.

Скорость распространения ультразвука в тканях зависит от их строения, химического состава, вязкости, плотности, температуры и т.д. Естественно, что она различна в нормальных и патологически измененных тканях и у пациентов разного возраста. В настоящее время сканеры не измеряют скорость распространения ультразвука в тканях обследуемых пациентов. В перспективе измерение скорости может существенно увеличить ценность получаемой диагностической информации за счет учета отклонений скорости в патологически измененных тканях.

– Вернуться в оглавление раздела “Кардиология.”

Оглавление темы “Норма и патология сосудов”:

1. Сосудистый тонус. Контроль тонуса сосудов

2. Гуморально-гормональная регуляция тонуса сосудов. Нейрогенная регуляция сосудов

3. Признаки изменения сосудистой резистентности. Упругость и эластичность сосудов

4. Пульсативность артерий. Винтовое движение крови

5. Доказательство винтового движения крови. Импульсно-волновая допплерография кровотока

6. Типовые нарушения регионального кровообращения. Артериальная гиперемия

7. Коллатеральный кровоток. Местные нарушения кровообращения

8. Гемодинамическая значимость сосудистых поражений. Факторы влияющие на значимость нарушений кровотока

9. Ультразвук. Характеристика и параметры ультразвука

10. Физические параметры ультразвука. Диагностический ультразвук

Источник

Если речь идет о техническом обслуживании, ремонте или работе на ультразвуковом оборудовании, в первую очередь необходимо понимать физические основы процессов, с которыми придется иметь дело. Конечно, как и в каждом деле, здесь есть очень много нюансов и тонкостей, но мы предлагаем Вам в первую очередь рассмотреть самую суть процесса. В данной статье мы коснемся следующих вопросов:

  1. Что такое ультразвук, каковы его характеристики и параметры
  2. Формирование ультразвука в современной технике на основе пьезокерамики
  3. Принципы работы УЗИ: цепь преобразований электрической энергии в энергию ультразвука и обратно.
  4. Основы формирования изображения на дисплее УЗИ-аппарата.

Обязательно посмотрите наше видео о том, как работает УЗИ

Наша основная задача – разобраться в том, что такое ультразвук, и какие его свойства помогают нам в современных медицинских исследованиях.

О звуке.

Мы знаем, что частоты от 16 Гц до 18 000 Гц, которые способен воспринимать слуховой аппарат человека, принято называть звуковыми.  Но в мире также много звуков, которые мы услышать не можем, поскольку они ниже или выше диапазона доступных нам частот: это инфра- и ультра звук соответственно.

 диапазон частоты ультразвука

Звук имеет волновую природу, то есть все существующие в нашей вселенной звуки – волны, как, в прочем, и многие другие природные явления.

С физической точки зрения волна – это возбуждение среды, которое распространяется с переносом энергии, но без переноса массы. Другими словами, волны – это пространственное чередование максимумов и минимумов любой физической величины, например – плотности вещества или его температуры.

Охарактеризовать параметры волны (в том числе и звуковой) можно через ее длину, частоту, амплитуду и период колебания.

Рассмотрим параметры волны более подробно:

Максимумы и минимумы физической величины можно условно представить в виде гребней и впадин волны.

 звуковая волна ультразвука

Длиной волны называют расстояние между этими гребнями или между впадинами. Поэтому, чем ближе находятся друг к другу гребни – тем меньше длина волны и тем выше ее частота, чем гребни дальше друг от друга – тем длина волны выше и наоборот – тем ниже ее частота.

Читайте также:  Какой физической величиной характеризуют инертные свойства тел

Еще один важный параметр – амплитуда колебания, или степень отклонения физической величины от ее среднего значения.

длина волны ультразвука

Все эти параметры связаны друг с другом (для каждой взаимосвязи есть точное математическое описание в виде формул, но приводить их здесь мы не будем, поскольку наша задача – понять основной принцип, а описать его с физической точки зрения можно всегда). Важна каждая из характеристик, но чаще всего Вам придется слышать именно о частоте ультразвука.

Ваш УЗИ аппарат предоставляет плохое качество визуализации? Оставьте заявку на вызов инженера прямо на сайте и он проведет бесплатную диагностику и настроит Ваш УЗИ сканер

Звук высокой частоты: Как вызвать несколько тысяч колебаний в секунду

Существует несколько способов получить ультразвук, но чаще всего в технике используются кристаллы пьезоэлектрических элементов и основанный на их применении пьезоэлектрический эффект: природа пьезоэлектриков позволяет генерировать звук высокой частоты под воздействием электрического напряжения, чем выше частота напряжения, тем быстрее (чаще) начинает вибрировать кристалл, возбуждая высокочастотные колебания в окружающей среде.

пьезоэлектрическиий кристал 

Оказавшись в поле высокочастотных звуковых колебаний, пьезокристалл напротив начинает генерировать электроэнергию. Включив такой кристалл в электрическую цепь и определенным образом обрабатываю получаемые с него сигналы мы можем формировать изображение на дисплее УЗИ-аппарата.

колебания пьезоэлектрического кристалапьезоэлектрическиий кристал

Но чтобы этот процесс стал возможным, необходимо дорогое и сложно организованное оборудование.

Несмотря на десятки и даже сотни взаимосвязанных компонентов УЗИ сканер можно условно разделить на несколько основных блоков, участвующих в преобразовании и передаче различных видов энергии.

Все начинается с источника питания, способного поддерживать высокое напряжение заранее заданных значений. Затем, через множество вспомогательных блоков и под постоянным контролем специального программного обеспечения сигнал передается на датчик, основным элементов которого является пьезокристаллическая головка. Она преобразует электрическую энергию в энергию ультразвуковых колебаний.

Через акустическую линзу, сделанную из особых материалов и согласующий гель ультразвуковая волна попадает в тело пациента.

физика ультразвуковой волны

Как и любая волна, ультразвук имеет свойство отражаться от встречающейся на его пути поверхности.

Далее волна проходит обратных путь через различные ткани человеческого тела, акустический гель и линзу она попадает на пьезокристаллическую решетку датчика, которая преобразует энергию акустической волны в электрическую энергию.

как отражается ультразвуковая волна

Принимая и правильным образом интерпретируя сигналы с датчика мы можем моделировать объекты, находящиеся на различной глубине и недоступные человеческому глазу.

Принцип построения изображения на основе данных ультразвукового сканирования

Рассмотрим как именно полученная информация помогает нам в построении изображения на УЗИ сканере. В основе этого принципа лежит различный акустический импеданс или сопротивление газообразных, жидких и твердых сред.  

Другими словами, кости, мягкие ткани и жидкости нашего тела пропускают и отражают ультразвук в различной степени, частично поглощая и рассеивая его.

На самом деле весь процесс исследования можно разбить на микропериоды, и лишь малую часть каждого периода датчик испускает звук. Остальное время уходит на ожидание ответа. При этом время межу передачей и получением сигнала напрямую переводится в расстояние от датчика до “увиденного” объекта.   

Информация о расстоянии до каждой точки  помогает нам построить модель изучаемого объекта, а также используется для измерений, необходимых при ультразвуковой диагностике. Данные кодируются цветом  – в результате мы получаем на экране УЗИ необходимое нам изображение.

черно-белое узи изображение

Чаще всего это Черно-белый формат, поскольку считается, что к оттенкам серого наш глаз более восприимчив и с большей точностью. увидит разницу в показаниях, хотя в современных аппаратах используется и цветное представление, например, для исследования скорости кровотока, и даже звуковое представление данных. Последнее вместе с видеорядом в допплеровских режимах помогает поставить диагноз более точно и служит дополнительным источником информации.

 цветное ультразвуковое изображение

Но Вернемся обратно к построению простейшего изображения и рассмотрим подробнее три случая:

Примеры простейших изображений будем изучать на основе B-режима. Визуализация костной ткани и других  твердых  образований представляет из себя светлые  участки (в основном – именно белого цвета), поскольку от твердых поверхностей звук отражается лучше всего и почти в полном объеме возвращается к датчику.

В качестве примера мы можем отчетливо видеть белые области – камни в почках пациента.

 камни в почках на УЗИ

Визуализация жидкости или пустот напротив представлена черными участками на снимке, поскольку не встречая преград звук проходит дальше в тело пациента и мы не получаем никакого ответа

 жидкости на УЗИ 

Мягкие ткани, как например, структура самой почки будут представлены областями с различной градацией серого цвета. Именно от качества визуализации таких объектов и будет во многом зависеть точность диагноза и здоровье пациента.

мягкие ткани на УЗИ

Итак сегодня мы с Вами узнали о том, что такое ультразвук и как он используется в УЗИ-сканерах для исследования органов человеческого тела.

Если на Вашем УЗИ аппарате плохое качество изображения, обращайтесь в наш сервисный центр. Инженеры ERSPlus с большим опытом и высокой квалификацией всегда готовы Вам помочь

Распечатать

Источник