Какие свойства у треугольника
Определение. Треугольник – фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки – его сторонами.
Типы треугольников
По величине углов
Остроугольный треугольник – все углы треугольника острые.
Тупоугольный треугольник – один из углов треугольника тупой (больше 90°).
Прямоугольный треугольник – один из углов треугольника прямой (равен 90°).
По числу равных сторон
Разносторонний треугольник – все три стороны не равны.
Равнобедренный треугольник – две стороны равны.
Равносторонним треугольник или правильный треугольник – все три стороны равны.
Вершины углы и стороны треугольника
Свойства углов и сторон треугольника
Сумма углов треугольника равна 180°:
α + β + γ = 180°
В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:
если α > β, тогда a > b
если α = β, тогда a = b
Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:
a + b > c
b + c > a
c + a > b
Теорема синусов
Стороны треугольника пропорциональны синусам противолежащих углов.
a | = | b | = | c | = 2R |
sin α | sin β | sin γ |
Теорема косинусов
Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.
a2 = b2 + c2 – 2bc·cos α
b2 = a2 + c2 – 2ac·cos β
c2 = a2 + b2 – 2ab·cos γ
Теорема о проекциях
Для остроугольного треугольника:
a = b cos γ + c cos β
b = a cos γ + c cos α
c = a cos β + b cos α
Формулы для вычисления длин сторон треугольника
Формулы сторон через медианы
a = 23√2(mb2 + mc2) – ma2
b = 23√2(ma2 + mc2) – mb2
c = 23√2(ma2 + mb2) – mc2
Медианы треугольника
Определение. Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.
Свойства медиан треугольника:
Медианы треугольника пересекаются в одной точке. (Точка пересечения медиан называется центроидом)
В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)
Медиана треугольника делит треугольник на две равновеликие части
S∆ABD = S∆ACD
S∆BEA = S∆BEC
S∆CBF = S∆CAF
Треугольник делится тремя медианами на шесть равновеликих треугольников.
S∆AOF = S∆AOE = S∆BOF = S∆BOD = S∆COD = S∆COE
Из векторов, образующих медианы, можно составить треугольник.
Формулы медиан треугольника
Формулы медиан треугольника через стороны
ma = 12√2b2+2c2-a2
mb = 12√2a2+2c2-b2
mc = 12√2a2+2b2-c2
Биссектрисы треугольника
Определение. Биссектриса угла — луч с началом в вершине угла, делящий угол на два равных угла.
Свойства биссектрис треугольника:
Биссектрисы треугольника пересекаются в одной точке, равноудаленной от трех сторон треугольника, – центре вписанной окружности.
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника
Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.
Угол между lc и lc’ = 90°
Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный.
Формулы биссектрис треугольника
Формулы биссектрис треугольника через стороны:
la = 2√bcp(p – a)b + c
lb = 2√acp(p – b)a + c
lc = 2√abp(p – c)a + b
где p = a + b + c2 – полупериметр треугольника
Формулы биссектрис треугольника через две стороны и угол:
la = 2bc cos α2b + c
lb = 2ac cos β2a + c
lc = 2ab cos γ2a + b
Высоты треугольника
Определение. Высотой треугольника называется перпендикуляр, опущенный из вершины треугольника на прямую содержащую противоположную сторону.
В зависимости от типа треугольника высота может содержаться
- внутри треугольника – для остроугольного треугольника;
- совпадать с его стороной – для катета прямоугольного треугольника;
- проходить вне треугольника – для острых углов тупоугольного треугольника.
Свойства высот треугольника
Высоты треугольника пересекаются в одной точке, называемой ортоцентром треугольника.
Если в треугольнике две высоты равны, то треугольник — равнобедренный.
ha:hb:hc =
1a
:
1b
:
1c
= (bc):(ac):(ab)
Формулы высот треугольника
Формулы высот треугольника через сторону и угол:
ha = b sin γ = c sin β
hb = c sin α = a sin γ
hc = a sin β = b sin α
Формулы высот треугольника через сторону и площадь:
ha = 2Sa
hb = 2Sb
hc = 2Sc
Формулы высот треугольника через две стороны и радиус описанной окружности:
ha = bc2R
hb = ac2R
hc = ab2R
Окружность вписанная в треугольник
Определение. Окружность называется вписанной в треугольник, если она касается всех трех его сторон.
Свойства окружности вписанной в треугольник
Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
В любой треугольник можно вписать окружность, и только одну.
Формулы радиуса окружности вписанной в треугольник
Радиус вписанной в треугольник окружности равен отношению площади треугольника к его полупериметру:
r = Sp
Радиус вписанной в треугольник окружности через три стороны:
r = (a + b – c)(b + c – a)(c + a – b)4(a + b + c)
Радиус вписанной в треугольник окружности через три высоты:
1r = 1ha + 1hb + 1hc
Окружность описанная вокруг треугольника
Определение. Окружность называется описанной вокруг треугольника, если она содержит все вершины треугльника.
Свойства окружности описанной вокруг треугольника
Центр описанной вокруг треугольника окружности лежит на пересечении серединных перпендикуляров к его сторонам.
Вокруг любого треугольника можно описать окружность, и только одну.
Свойства углов
Центр описанной окружности лежит внутри остроугольного треугольника, снаружи тупоугольнго треугольника, на середине гипотенузы прямоугольного треугольника.
Формулы радиуса окружности описанной вокруг треугольника
Радиус описанной окружности через три стороны и площадь:
R = abc4S
Радиус описанной окружности через площадь и три угла:
R = S2 sin α sin β sin γ
Радиус описанной окружности через сторону и противоположный угол (теорема синусов):
R = a2 sin α = b2 sin β = c2 sin γ
Связь между вписанной и описанной окружностями треугольника
Если d — расстояние между центрами вписанной и описанной окружностей, то.
d2 = R2 – 2Rr
= 4 sin
α2
sin
β2
sin
γ2
= cos α + cos β + cos γ – 1
Средняя линия треугольника
Определение. Средняя линия треугольника — отрезок, соединяющий середины двух сторон треугольника.
Свойства средней линии треугольника
1. Любой треугольник имеет три средних линии
2.
Средняя линия треугольника параллельна основанию и равна его половине.
MN = 12AC KN = 12AB KM = 12BC
MN || AC KN || AB KM || BC
3. Средняя линия отсекает треугольник, подобный данному, площадь которого равна четвёрти площади исходного треугольника
S∆MBN = 14 S∆ABC
S∆MAK = 14 S∆ABC
S∆NCK = 14 S∆ABC
4. При пересечении всех трёх средних линий образуются 4 равных треугольника, подобных (даже гомотетичных) исходному с коэффициентом 1/2.
∆MBN ∼ ∆ABC
∆AMK ∼ ∆ABC
∆KNC ∼ ∆ABC
∆NKM ∼ ∆ABC
Признаки. Если отрезок параллелен одной из сторон треугольника и соединяет середину стороны треугольника с точкой, лежащей на другой стороне треугольника, то этот отрезок – средняя линия.
Периметр треугольника
Периметр треугольника ∆ABC равен сумме длин его сторон
P = a + b + c
Формулы площади треугольника
Формула площади треугольника по стороне и высоте
Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высотыS =
12
a · ha
S =12
b · hb
S =12
c · hc
Формула площади треугольника по трем сторонам
Формула Герона
S = √p(p – a)(p – b)(p – c)
где p =
a + b + c2
– полупериметр треугльника.
Формула площади треугольника по двум сторонам и углу между ними
Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.S =
12
a · b · sin γ
S =12
b · c · sin α
S =12
a · c · sin β
Формула площади треугольника по трем сторонам и радиусу описанной окружности
Формула площади треугольника по трем сторонам и радиусу вписанной окружности
Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
Равенство треугольников
Определение. Если два треугольника АВС и А1В1С1 можно совместить наложением, то они равны.
Свойства. У равных треугольников равны и их
соответствующие элементы. (В равных треугольниках против равных сторон лежат равные углы, против равных углов лежат равные стороны)
Признаки равенства треугольников
Теорема 1.
Первый признак равенства треугольников — по двум сторонам и углу между ними
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Теорема 2.
Второй признак равенства треугольников — по стороне и двум прилежащим углам
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Теорема 3.
Третий признак равенства треугольников — по трем сторонам
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Подобие треугольников
Определение. Подобные треугольники – треугольники соответствующие углы которых равны, а сходственные стороны пропорциональны.
∆АВС ~ ∆MNK => α = α1, β = β1, γ = γ1 и ABMN = BCNK = ACMK = k,
где k – коэффициент подобия
Признаки подобия треугольников
Первый признак подобия треугольников
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
Второй признак подобия треугольников
Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
Третий признак подобия треугольников
Если две стороны одного треугольника пропорциональны двум сторонам другого, а углы, между этими сторонами, равны, то такие треугольники подобны.
Свойства. Площади подобных треугольников относятся как квадрат коэффициента подобия:
S∆АВСS∆MNK = k2
Источник
Свойства треугольников.
Треугольник -это фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки – его сторонами.
Для инженера это еще и единственная “жесткая” плоская фигура на свете.
Раздел математики, посвященный изучению закономерностей треугольников — тригонометрия.
Сумма всех углов в треугольнике равна 180°.
Обозначения в треугольнике..
Вершины треугольника обычно обозначаются заглавными латинскими буквами (A, B, C), величины углов при соответственных вершинах — греческими буквами (α, β, γ), а длины противоположных сторон — прописными латинскими буквами (a, b, c).
Виды треугольников:
(по величине углов)
Прямоугольный треугольник – это треугольник, содержащий прямой угол.
Две стороны, образующие прямой угол, называются катетами (АС и АВ), а сторона, противолежащая прямому углу, называется гипотенузой (ВС).
Тупоугольный треугольник – это треугольник, содержащий тупой угол, т.е. один из его углов лежит в пределах между 90° и 180°.
(по числу равных сторон)
Равносторонний (правильный) треугольник – это треугольник, у которого все стороны и все углы равны (каждый угол равен 60°).
Равнобедренный тругольник – это треугольник, у которого два угла и две стороны равны.
Разносторонний треугольник – это треугольник, в котором все углы, а значит и все стороны попарно различны.
(Разносторонний треугольник может быть остроугольным, прямоугольным и тупоугольным).
Рассмотрим рис. ниже.
Углы α, β, γ нызываются внутренними углами треугольника.
Угол Θ – называется внешним углом треугольника, он равен сумме двух противолежащих ему внутренних углов, т.е. Θ= β+γ
(а+с+b) – периметр треугольника.
Угол α, называется смежным по отношению к углу Θ. ( α+ Θ)=180° (развернутый угол)
Основные свойства треугольников. В любом треугольнике:
Против большей стороны лежит больший угол, и наоборот.
Против равных сторон лежат равные углы, и наоборот. (В частности, все углы в равностороннем треугольнике равны.)
Сумма углов треугольника равна 180 ° (Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60 °).
Продолжая одну из сторон треугольника (AВ), получаем внешний угол Θ.
Любая сторона треугольника меньше суммы двух других сторон и больше их разности:
- a < b + c,
- a > b – c;
- b < a + c,
- b > a – c;
- c < a + b,
- c > a – b.
Конгруэнтные треугольники = равные треугольники.
Два треугольника называются конгруэнтными (равными), если они равны по всем параметрам, т.е. три угла и три стороны одного треугольника равны трем углам и трем сторонам другого треугольника.
Признаки равенства треугольников:
1. Три стороны одного треугольника равны трем сторонам другого треугольника (по трем сторонам).
2. Две стороны одного треугольника равны двум сторонам другого треугольника и углы между этими сторонами также равны (по двум сторонам и углу между ними).
3. Три угла одного треугольника равны трем углам другого треугольника (по трем углам).
4. Два угла одного треугольника равны двум углам другого треугольника, и любая сторона первого треугольника равна соответствующей стороне другого треугольника.
Признаки равенства прямоугольных треугольников:
Два прямоугольных треугольника равны, если у них соответственно равны:
1. Гипотенуза и острый угол.
2. Катет и противолежащий угол.
3. Катет и прилежащий угол.
4. Два катета.
5. Гипотенуза и катет.
Подобные треугольники.
Два треугольника являются подобными, если углы одного треугольника равны, углам тругого треугольника, а стороны подобны, т.е.
(р/а)=(q/b)=(r/c).
Признаки подобия треугольников:
- Два угла одного треугольника равны двум углам другого треугольника.
- Две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами, равны.
- Три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника.
Свойства подобных треугольников.
- Отношение площадей подобных треугольников равно квадрату коэффициента подобия [(р/а)=(q/b)=(r/c)=коэффициент подобия].
- Отношение периметров и длин либо биссектрис, либо медиан, либо высот, либо серединных перпендикуляров равно коэффициенту подобия. т.е. в подобных треугольниках соответствующие линии (высоты, медианы, биссектрисы и т. п.) пропорциональны.
Подобие в прямоугольных треугольниках.
Треугольники, на которые высота, опущенная из прямого угла, делит прямоугольный треугольник, подобны всему треугольнику по первому признаку, а значит:
1. Высота прямоугольного треугольника, опущенная на гипотенузу, равна среднему геометрическому (Средним геометрическим нескольких положительных вещественных чисел называется такое число, которым можно заменить каждое из этих чисел так, чтобы их произведение не изменилось.) проекций катетов на гипотенузу.
2. Катет равен среднему геометрическому гипотенузы и проекции этого катета на гипотенузу.
Теорема Пифагора.
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. , т.е. BC2=AB2+AC2 см. рис. выше.
Теоремы синусов и косинусов.
Теорема синусов.
Стороны треугольника пропорциональны синусам противолежащих углов, причем коэффициент пропорциональности равен диаметру описанной около треугольника окружности:
Теорема косинусов.
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
Основные линии треугольника.
Медиана.
Медиана – это отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника AD, CF, BE пересекаются в одной точке O, всегда лежащей внутри треугольника и являющейся центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.
Свойства медиан треугольника.
- Медиана разбивает треугольник на два треугольника одинаковой площади.
- Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.
- Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.
- Из двух медиан треугольника большая медиана проведена к его меньшей стороне.
Биссектриса
Биссектриса угла треугольника— это луч, который исходит из вершины треугольника, проходит между его сторонами и делит данный угол пополам. Три биссектрисы треугольника всегда пересекаются в одной точке, называемой ортоцентром треугольника. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.
Свойства биссектрисы угла треугольника
- Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам например, на рис. выше AE:CE = AB:BC
- Точка пересечения биссектрис треугольника является центром окружности, вписанной в этот треугольник.
- Биссектриса угла — это геометрическое место точек, равноудаленных от сторон этого угла.
Высота треугольника
Высота треугольника – это перпендикуляр, опущенный из любой вершины на противоположную сторону (или её продолжение). Эта сторона называется основанием треугольника. Три высоты треугольника всегда пересекаются в одной точке, называемой ортоцентром треугольника.Ортоцентр остроугольного треугольника (точка O на рис. выше) расположен внутри треугольника, а ортоцентр тупоугольного треугольника – снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.
Свойства высот треугольника
- Прямые, содержащие высоты треугольника пересекаются в одной точке (ортоцентре треугольника).
- Отрезок, соединяющий основания высот остроугольного треугольника, отсекает от данного треугольника подобный ему с коэффициентом подобия, равным косинусу общего угла этих треугольников.
- Из двух высот треугольника большая высота проведена к его меньшей стороне.
- В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.
- В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
Срединный перпендикуляр
Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка(стороны). Три срединных перпендикуляра треугольника АВС(KO, MO, NO, рис.выше) пересекаются в одной точке О, являющейся центром описанного круга( точки K, M, N – середины сторон треугольника ABC).
В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном – снаружи; в прямоугольном в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.
Свойства срединных перпендикуляров треугольника.
1. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.
2. Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
Средняя линия
Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
Свойство средней линии треугольника
Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.
Формулы площади треугольника
1.Произвольный треугольник – формулы площади
a, b, c — стороны; α — угол между сторонами a и b; p=(a+b+c) / 2— полупериметр; R — радиус описанной окружности; r — радиус вписанной окружности; S — площадь; ha — высота, проведенная к стороне a.
- S=(1/2)*(a* ha) – по стороне и высоте.
- S=(1/2) *(a*b*sinα) по двум сторонам и синусу угла между ними
- – по длинам сторон – формула площади Герона
- S=p*r – через периметр и радиус вписанной окружности
- S=(a*b*c) / (4R) – через длины сторон и радиус описанной оружности
Прямоугольный треугольник – площадь
a, b — катеты; c — гипотенуза; hc — высота, проведенная к стороне c.
1. S=(1/2)*a*b
2. S=(1/2)*c*hc
Равносторонний (правильный) треугольник – площадь
S=(a2*√3)/4
Примечание – в прямоугольном треугольнике:
– Синус α – это отношение AB/OB (отношение противолежащего катета к гипотенузе)
– Косинус α – это отношение ОА/OB (отношение прилежащего катета к гипотенузе)
– Тангенс α – это отношение AB/OA (отношение противолежащего катета к прилежащему)
– Котангенс α – это отношение ОА/AB (отношение прилежащего катета к противолежащему)
Источник