Какие свойства у сероводорода

Сероводород

Строение молекулы и физические свойства

Сероводород H2S – это бинарное соединение водорода с серой, относится к летучим водородным соединениям. Следовательно, сероводород бесцветный ядовитый газ, с запахом тухлых яиц. Образуется при гниении. В твердом состоянии имеет молекулярную кристаллическую решетку.

Геометрическая форма молекулы сероводорода похожа на структуру воды — уголковая молекула. Но валентный угол H-S-H меньше, чем угол H-O-H в воде и составляет 92,1о.

Какие свойства у сероводорода

Способы получения сероводорода

1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например, при действии соляной кислоты на сульфид железа (II):

FeS   +   2HCl   →   FeCl2   +   H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

S  +  H2  →  H2S

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми  сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.

Например: хлорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

2CrCl3  +  3Na2S  +  6H2O  →   2Cr(OH)3  +  3H2S↑  +  6NaCl

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например, сероводород реагирует с гидроксидом натрия:

H2S  +  2NaOH  →   Na2S   +  2H2O
H2S  +  NaOH → NaНS   +  H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

2H2S   +   O2    →   2S    +   2H2O

В избытке кислорода:

2H2S   +   3O2  →   2SO2  +   2H2O           

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S  +  Br2   →  2HBr  +   S↓

H2S  +  Cl2   →  2HCl  +   S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

H2S   +  4Cl2   +   4H2O →  H2SO4  +  8HCl

Например, азотная кислота окисляет сероводород до молекулярной серы:

H2S  +  2HNO3(конц.)  →  S  +  2NO2  +  2H2O

При кипячении сера окисляется до серной кислоты:

H2S   +  8HNO3(конц.)  →  H2SO4  +  8NO2   +   4H2O

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например, оксид серы (IV) окисляет сероводород:

2H2S  +  SO2  →  3S   +  2H2O

Соединения железа (III) также окисляют сероводород:

H2S  +  2FeCl3  →  2FeCl2  +  S  +  2HCl

Бихроматы, хроматы и прочие окислители также  окисляют сероводород до молекулярной серы:

3H2S   +   K2Cr2O7   +    4H2SO4    →   3S    +   Cr2(SO4)3   +   K2SO4   +   7H2O

2H2S   +   4Ag  +  O2  →  2Ag2S  +  2H2O

Серная кислота окисляет сероводород либо до молекулярной серы:

H2S   +   H2SO4(конц.)  →  S   +   SO2   +   2H2O

Либо до оксида серы (IV):

H2S   +   3H2SO4(конц.)  →  4SO2   +  4H2O

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов: меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например, сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

H2S   +   Pb(NO3)2   →  PbS   +   2HNO3

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Источник

Свойства, опасность для человека, ПДК, токсикология, как образуется.

Сероводород H2S — наиболее активное из серосодержащих соединений. В нормальных условиях бесцветный газ с неприятным запахом тухлых яиц. Очень ядовит: острое отравление человека наступает уже при концентрациях 0,2–0,3 мг/л, концентрация выше 1 мг/л — смертельна. Сероводород хорошо растворим в воде. Диапазон взрывоопасных концентраций его смеси с воздухом достаточно широк и составляет от 4 до 45% об. При контакте с металлами (особенно если в газе содержится влага) вызывает сильную коррозию. Самый нежелательный компонент в газах нефтепереработки. 

Опасность сероводорода для человека.

Сероводород – очень токсичный газ, действующий непосредственно на нервную систему. По шкале опасности он отнесён к 3 классу. Обязательно учитывайте этот факт всякий раз, когда чувствуете его отчётливый запах. Но что особенно опасно – так это свойство сероводорода притуплять обонятельный нерв, из-за чего человек просто перестаёт различать окружающие его ядовитые пары, и интоксикация может произойти внезапно.

      Смертельная концентрация этого газа в воздухе очень мала – всего 0,1%. Такое количество сероводорода может привести человека к летальному исходу за 10 минут. Стоит лишь немного увеличить концентрацию – и смерть наступает мгновенно, после первого же вдоха. Для примера: в канализационной системе концентрация сероводорода иногда достигает 16%.

      Наиболее заметные признаки сильного отравления сероводородом: отёк лёгких, судороги, паралич нервов, последующая кома. Если в атмосфере сероводород содержится в меньших количествах (от 0,02%), симптомы не столь фатальны, но очень неприятны:  головокружение и головная боль, тошнота и быстрое привыкание к запаху «тухлых яиц».

      Люди, работающие или живущие в непосредственной близости от заводов с сероводородными выбросами, испытывают так называемое хроническое отравление H2S. При этом они начинают хуже себя чувствовать, испытывают головные боли, стремительно теряют вес, учащаются случаи обмороков, а во рту появляется привкус металла. Сероводород также отрицательно действует на зрение, поражая слизистую оболочку глаза и вызывая конъюнктивит, светобоязнь.

      Отравление сероводородом вылечить можно, если быстро принять необходимые меры: вывести пострадавшего на свежий воздух, обогатить его лёгкие кислородом, ввести сердечные и дыхательные аналептики, препараты железа, глюкозу, витамины.

ПДК (Предельно-допустимая концентрация)

ПДК сероводорода (H2S) в воздухе в рабочей зоне—10 мг/м3 (ГН 2.2.5.1313-03 Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны), в смеси с углеводородами —3 мг/м3.

ПДК сероводорода (H2S) в воздухе населенных мест—0,008 мг/м3(ГН 2.1.6.1338-03 Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест).

Ощутимый запах сероводорода отмечается при концентрации  сероводорода 1,4—2,3 мг/м3, значительный запах —при 4 мг/м3, тяжелый запах при 7—11 мг/м3

Токсикология.

Очень токсичен. Вдыхание воздуха с небольшим содержанием сероводорода вызывает головокружение, головную боль, тошноту, а со значительной концентрацией приводит к коме, судорогам, отёку лёгких и даже к летальному исходу. При высокой концентрации однократное вдыхание может вызвать мгновенную смерть. При вдыхании воздуха с небольшими концентрациями у человека довольно быстро возникает адаптация к неприятному запаху «тухлых яиц», и он перестаёт ощущаться. Во рту возникает сладковатый металлический привкус.

При вдыхании воздуха с большой концентрацией, из-за паралича обонятельного нерва, запах сероводорода почти сразу перестаёт ощущаться.

Как образуется.

В природе встречается довольно редко в составе попутных нефтяных газов, природного газа, вулканических газах, в растворённом виде в природных водах (например, в Чёрном море слои воды, расположенные глубже 150—200 м содержат растворённый сероводород). Образуется при гниении белков, только тех, которые содержат в составе серосодержащие аминокислоты метионин и/или цистеин. Небольшое количество сероводорода содержится в кишечных газах человека и животных. Также содержится в сырой нефти.

Источник

СЕРОВОДОРОД

 Физические свойства

Газ, бесцветный, с запахом тухлых яиц, ядовит,
растворим в воде (в 1V
H2O растворяется 3V H2S при н.у.); t°пл. = -86°C; t°кип. = -60°С.

Влияние сероводорода на организм:

Сероводород не толькоскверно
пахнет, он еще и чрезвычайно ядовит. При вдыхании этого газа в большом
количестве быстро наступает паралич дыхательных нервов, и тогда человек
перестает ощущать запах – в этом и заключается смертельная опасность
сероводорода.

Насчитывается
множество случаев отравления вредным газом, когда пострадавшими были
рабочие, на ремонте трубопроводов. Этот газ тяжелее, поэтому он
накапливается в ямах, колодцах, откуда быстро выбраться не так-то
просто.

Получение

1)    
 H2
+ S 
→ H2S↑ (при t) 

2)    
 FeS
+ 2HCl
→  FeCl2
+ H2S↑­ 

Химические свойства

1)     Раствор H2S в воде – слабая двухосновная кислота.

 Диссоциация происходит в две ступени:

H2S → H+
+ HS-
(первая ступень, образуется гидросульфид – ион)

 HS-  → 2H+ + S2-
(вторая ступень) 

Сероводородная
кислота образует два ряда солей – средние (сульфиды) и кислые (гидросульфиды):

Na2S – сульфид натрия;

CaS
– сульфид кальция;

NaHS
– гидросульфид натрия;

Ca(HS)2 – гидросульфид
кальция.

2)    
Взаимодействует с основаниями: 

H2S + 2NaOH(избыток) → Na2S + 2H2O

H2S (избыток) + NaOH → NaНS + H2O

3)     H2S проявляет очень сильные
восстановительные свойства: 

H2S-2
+ Br2 → S0 + 2HBr

H2S-2
+ 2FeCl3 → 2FeCl2 + S0 + 2HCl

H2S-2
+ 4Cl2 + 4H2O → 
H2S+6O4 + 8HCl

3H2S-2
+ 8HNO3(конц) →  3H2S+6O4
+ 8NO + 4H2O

H2S-2
+ H2S+6O4(конц) →  S0 + S+4O2 +
2H2O 

(при нагревании реакция идет по – иному:

H2S-2 + 3H2S+6O4(конц) 
→ 4S+4O2 + 4H2O

4)     Сероводород
окисляется:

при
недостатке
O2

2H2S-2 +
O2
→ 2S0
+
2H2O

при избытке O2

2H2S-2
+ 3O2 → 2S+4O2 + 2H2O 

5)     Серебро при контакте с сероводородом
чернеет:
 

4Ag
+ 2H2S + O2
→ 2Ag2S↓ + 2H2O 

Потемневшим
предметам можно вернуть блеск. Для этого в эмалированной посуде их кипятят с
раствором соды и алюминиевой фольгой. Алюминий восстанавливает серебро до
металла, а раствор соды удерживает ионы серы.

6)     Качественная реакция на сероводород и
растворимые сульфиды –
образование темно-коричневого (почти черного) осадка PbS: 

H2S +
Pb(NO3)2 → PbS↓ + 2HNO3

Na2S
+ Pb(NO3)2 → PbS↓ + 2NaNO3

Pb2+
+
S2-

PbS↓ 

Загрязнение атмосферы вызывает почернение
поверхности картин, написанных масляными красками, в состав которых входят
свинцовые белила.
Одной
из основных причин потемнения художественных картин старых мастеров было
использование свинцовых белил, которые за несколько веков, взаимодействуя со
следами сероводорода в воздухе (образуются в небольших количествах при гниении
белков; в атмосфере промышленных регионов и др.) превращаются в
PbS. Свинцовые белила – это пигмент, представляющий
собой карбонат свинца (
II).
Он реагирует с сероводородом, содержащимся в загрязнённой атмосфере, образуя
сульфид свинца (
II),
соединение чёрного цвета:

PbCO3 + H2S = PbS + CO2 + H2O

При обработке сульфида свинца (II) пероксидом водорода происходит реакция:

PbS +
4
H2O2 = PbSO4 + 4H2O,

при этом образуется сульфат свинца (II), соединение белого цвета.

Таким образом реставрируют почерневшие
масляные картины.

Какие свойства у сероводорода

7)     Реставрация:
 

PbS
+ 4H2O2
→ PbSO4(белый)
+ 4H2O 

Сульфиды

Получение сульфидов

1)     Многие сульфиды получают нагреванием
металла с серой:
 

Hg
+ S

HgS

2)     Растворимые
сульфиды получают действием сероводорода  на щелочи: 

H2S + 2KOH →
K2S + 2H2O 

3)     Нерастворимые
сульфиды получают обменными реакциями: 

CdCl2
+ Na2S → 2NaCl + CdS↓

Pb(NO3)2
+ Na2S → 2NaNO3 + PbS↓

ZnSO4
+ Na2S → Na2SO4 + ZnS↓

MnSO4
+ Na2S → Na2SO4 + MnS↓

2SbCl3
+ 3Na2S → 6NaCl + Sb2S3↓

SnCl2
+ Na2S → 2NaCl + SnS↓

Химические свойства сульфидов

1)     Растворимые
сульфиды сильно гидролизованы, вследствие чего их водные растворы имеют
щелочную реакцию: 

K2S +
H2O → KHS + KOH

S2- +
H2O → HS- + OH- 

2)     Сульфиды
металлов, стоящих в ряду напряжений левее железа (включительно), растворимы в
сильных кислотах: 

ZnS + H2SO4
→ ZnSO4 + H2S­

3)    
Нерастворимые сульфиды можно перевести в растворимое состояние действием
концентрированной
HNO3

FeS2
+ 8HNO3 → Fe(NO3)3 + 2H2SO4
+ 5NO + 2H2O 

 ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

Задание №1
Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:
Cu →CuS →H2S →SO2

Задание №2
Составьте
уравнения окислительно-восстановительных реакций полного и неполного
сгорания сероводорода. Расставьте коэффициенты методом электронного
баланса, укажите окислитель и восстановитель для каждой реакции, а так
же процессы окисления и восстановления.

Задание №3
Запишите
уравнение химической реакции сероводорода с раствором нитрата свинца
(II) в молекулярном, полном и кратком ионном виде. Отметьте признаки
этой реакции, является ли реакция обратимой?

Задание №4

Сероводород пропустили через 18%-ый раствор сульфата меди (II) массой
200 г. Вычислите массу осадка, выпавшего в результате этой реакции.

Задание №5
Определите объём сероводорода (н.у.), образовавшегося при взаимодействии
соляной кислоты с 25% – ым раствором сульфида железа (II) массой 2 кг?

Источник

Сероводород – бинарное химическое соединение водорода и серы, имеющее формулу H2S.

Сероводород, формула, молекула, строение, состав, вещество:

Сероводород (сернистый водород, сульфид водорода, дигидросульфид) – бесцветный газ со сладковатым вкусом с характерным неприятным тяжёлым запахом тухлых яиц (тухлого мяса).

Сероводород – бинарное химическое соединение водорода и серы, имеющее формулу H2S.

Химическая формула сероводорода H2S.

Строение молекулы сероводорода, структурная формула сероводорода:

Сероводород – наиболее активное из серосодержащих соединений.

Сероводород тяжелее воздуха. Его плотность составляет 1,539 кг/м3, по отношении к воздуху – 1,19. Поэтому скапливается в низких непроветриваемых местах.

Сероводород плохо растворяется в воде. Раствор сероводорода в воде – очень слабая сероводородная кислота. Хорошо растворим в бензоле и этаноле.

Термически устойчив при температурах менее 400 °C. При температурах более 400 °C разлагается на составляющие – простые вещества: водород и серу.

В отличие от воды, в сероводороде не образуются водородные связи, поэтому сероводород в обычных условиях не сжижается.

Сероводород является сверхпроводником при температуре 203 К (-70 °C) и давлении 150 ГПа.

Сероводород коррозионно активен, поэтому предъявляются дополнительные требования при разработке нефтяных, газовых и газоконденсатных месторождений, содержащий сероводород.

Чрезвычайно огнеопасен. Смеси сероводорода и воздуха взрывоопасны. Возможно возгорание на расстоянии. Горит синим пламенем.

Соли сероводородной кислоты (раствор сероводорода в воде) называют сульфидами. В воде хорошо растворимы только сульфиды щелочных металлов, аммония. Сульфиды остальных металлов практически не растворимы в воде, они выпадают в осадок в ходе химических реакций. Многие сульфиды ярко окрашены. Многие природные сульфиды в виде минералов являются ценными рудами (пирит, халькопирит, киноварь, молибденит).

Сероводород в природе встречается редко, в незначительных количествах в составе природного газа, попутного нефтяного газа, сланцевого газа, а также в вулканических газах, в растворённом виде – в нефти, сланцевой нефти и в природных водах. Например, в Чёрном море слои воды, расположенные глубже 150-200 м, содержат растворённый сероводород (концентрация 14 мл/л).

Образуется при гниении белков, которые содержат в составе серосодержащие аминокислоты метионин и (или) цистеин. Небольшое количество сероводорода содержится в кишечных газах человека и животных.

Сероводород высокотоксичен и ядовит. Предельно допустимая концентрация (ПДК) сероводорода в воздухе населенных пунктов в России – 0,008 мг/м3, в России – 0,007 мг/м3.

Порог ощутимости запаха составляет 0,012-0,03 мг/м3. При вдыхании воздуха с небольшими концентрациями у человека довольно быстро возникает адаптация к неприятному запаху «тухлых яиц» и он перестаёт ощущаться. Во рту возникает сладковатый металлический привкус. При вдыхании воздуха с большой концентрацией из-за паралича обонятельного нерва запах сероводорода почти сразу перестаёт ощущаться.

При острых отравлениях возникает жжение и боль в горле при глотании, конъюнктивит, одышка, головная боль, головокружение, слабость, рвота, тахикардия, возможны судороги. Смертельная концентрация составляет 830 мг/м3 в течение 30 минут или 1100 мг/м3 в течение 5 минут.

При высокой концентрации сероводорода однократное вдыхание может вызвать мгновенную смерть.

Физические свойства сероводорода:

Наименование параметра:Значение:
Химическая формулаH2S
Синонимы и названия иностранном языкеhydrogen sulfide (англ.)

водород сернистый (рус.)

водорода сульфид (рус.)

сероводородная кислота (рус.)

Тип веществанеорганическое
Внешний видбесцветный газ
Цветбесцветный
Вкуссладковатый
Запахнеприятный тяжёлый запах тухлых яиц (тухлого мяса)
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.)газ
Плотность (состояние вещества – твердое вещество, при -86 °C), кг/м31120
Плотность (состояние вещества – твердое вещество, при -86 °C), г/см31,12
Плотность (состояние вещества – жидкость, при -81 °C), кг/м3938
Плотность (состояние вещества – жидкость, при -81 °C), г/см30,938
Плотность (состояние вещества – газ, при 0 °C), кг/м31,539
Плотность (состояние вещества – газ, при 0 °C), г/см30,001539
Температура кипения, °C-60,28
Температура плавления, °C-85,6
Температура самовоспламенения, °C260
Критическая температура*, °C100,4
Критическое давление, МПа9,01
Критический удельный объём,  м3/кг349
Взрывоопасные концентрации смеси газа с воздухом, % объёмных4,3 – 46
Молярная масса, г/моль34,082
Растворимость в воде (20 oС), г/100 г0,379
Сверхпроводимость-70 °C, давление 150 ГПа

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Получение сероводорода:

Сероводород в лаборатории получают в результате следующих химических реакций:

  1. взаимодействия разбавленных кислот с сульфидами, например, с сульфидом железа.
  2. взаимодействия сульфида алюминия и воды:

Al2S3 + 6H2O → 2Al(OH)3 + 3H2S.

Данная реакция отличается чистотой полученного сероводорода

Химические свойства сероводорода. Химические реакции (уравнения) сероводорода:

Основные химические реакции сероводорода следующие:

1. реакция взаимодействия сероводорода и брома:

H2S + Br2 → 2HBr + S.

В результате реакции образуются бромоводород и сера. В ходе реакции используется насыщенный раствор сероводорода.

2. реакция взаимодействия сероводорода и йода:

H2S + I2 → 2HI + S.

В результате реакции образуются йодоводород и сера. В ходе реакции используется насыщенный раствор сероводорода.

3. реакция взаимодействия сероводорода и кислорода:

2H2S + O2 → 2S + 2H2O.

В результате реакции образуются сера и вода. Реакция протекает медленно на свету, в растворе или в газовой фазе. Сероводород в ходе реакции используется в виде насыщенного раствора.  На данной реакции основан промышленный способ получения серы.

4. реакция горения сероводорода:

2H2S + 3O2  2SO2 + 2H2O (t = 250-300 °C).

В результате реакции образуются оксид серы и вода. Реакция горения сероводорода на воздухе.

5. реакция взаимодействия сероводорода и озона:

H2S + O3 → SO2 + H2O.

В результате реакции образуются оксид серы и вода. Сероводород в ходе реакции используется в виде газа.

6. реакция взаимодействия сероводорода и кремния:

Si + 2H2S  SiS2 + 2H2 (t = 1200-1300 °C).

В результате реакции образуются сульфид кремния и водород.

7. реакция взаимодействия сероводорода и цинка:

H2S + Zn  ZnS + H2 (t = 400-800 °C).

В результате реакции образуются сульфид цинка и водород.

8. реакция взаимодействия сероводорода и алюминия:

2Al + 3H2S  Al2S3 + 3H2 (t = 600-1000 °C).

В результате реакции образуются сульфид алюминия и водород.

9. реакция взаимодействия сероводорода и галлия:

2Ga + H2S → Ga2S + H2.

В результате реакции образуются сульфид галлия и водород.

10. реакция взаимодействия сероводорода и молибдена:

Mo + 2H2S  MoS2 + 2H2 (t > 800 °C).

В результате реакции образуются сульфид молибдена и водород.

11. реакция взаимодействия сероводорода и бария:

Ba + H2S  BaS + H2 (t > 350 °C).

В результате реакции образуются сульфид бария и водород.

12. реакция взаимодействия сероводорода и магния:

Mg + H2S  MgS + H2 (t = 500 °C).

В результате реакции образуются сульфид магния и водород.

13. реакция взаимодействия сероводорода и германия:

Ge + H2S  GeS + H2 (t = 600-800 °C).

В результате реакции образуются сульфид германия и водород.

14. реакция взаимодействия сероводорода и кобальта:

Co + H2S  CoS + H2 (t = 700 °C).

В результате реакции образуются сульфид кобальта и водород.

15. реакция взаимодействия сероводорода и серебра:

2Ag + H2S → Ag2S + H2.

В результате реакции образуются сульфид серебра и водород.

16. реакция взаимодействия сероводорода и оксида лития:

Li2O + H2S  Li2S + H2O (t = 900-1000 °C).

В результате реакции образуются сульфид лития и вода.

17. реакция взаимодействия сероводорода и оксида цинка:

ZnO + H2S  ZnS + H2O (t = 450-550 °C).

В результате реакции образуются сульфид цинка и вода.

18. реакция взаимодействия сероводорода и оксида железа:

FeO + H2S  FeS + H2O (t = 500 °C).

В результате реакции образуются сульфид железа и вода.

19. реакция взаимодействия сероводорода и оксида молибдена:

MoO2 + 2H2S  MoS2 + 2H2O (t = 400 °C).

В результате реакции образуются сульфид молибдена и вода.

20. реакция взаимодействия сероводорода и гидроксида натрия:

H2S + 2NaOH → Na2S + 2H2O.

В результате реакции образуются сульфид натрия и вода. В ходе реакции используется концентрированный раствор гидроксида натрия.

21. реакция взаимодействия сероводорода и гидроксида бария:

Ba(OH)2 + H2S → BaS + 2H2O.

В результате реакции образуются сульфид бария и вода. В ходе реакции используется разбавленный раствор сероводорода.

22. реакция взаимодействия сероводорода и гидроксида меди:

Cu(OH)2 + H2S → CuS + 2H2O.

В результате реакции образуются сульфид меди и вода. В ходе реакции используется насыщенный раствор сероводорода и гидроксид меди в виде суспензии.

23. реакция взаимодействия сероводорода и азотной кислоты:

H2S + 2HNO3 → S + 2NO2 + 2H2O.

В результате реакции образуются сера, оксид азота и вода. В ходе реакции используется насыщенный раствор сероводорода и концентрированный холодный раствор азотной кислоты.

Аналогичные реакции протекают и с другими минеральными кислотами.  

24. реакция взаимодействия сероводорода и карбоната кальция:

CaCO3 + H2S  CaS + H2O + CO2 (t = 900 °C).

В результате реакции образуются сульфид кальция, оксид углерода и вода.

25. реакция взаимодействия сероводорода и карбоната бария:

BaCO3 + H2S  BaS + CO2 + H2O (t = 1000 °C, kat = H2).

В результате реакции образуются сульфид бария, оксид углерода и вода.

26. реакция взаимодействия сероводорода и карбоната натрия:

H2S + Na2CO3 → NaHS + NaHCO3 (t = 1000 °C, kat = H2).

В результате реакции образуются гидросульфид натрия и гидрокарбонат натрия. В ходе реакции используется насыщенный раствор сероводорода.

27. реакция взаимодействия сероводорода и нитрата серебра:

2AgNO3 + H2S → Ag2S + 2HNO3.

В результате реакции образуются сульфид серебра и азотная кислота. В ходе реакции используется насыщенный раствор сероводорода.

28. реакция взаимодействия сероводорода и нитрата висмута:

2Bi(NO3)3 + 3H2S → Bi2S3 + 6HNO3.

В результате реакции образуются сульфид висмута и азотная кислота. В ходе реакции используется насыщенный раствор сероводорода.

29. реакция взаимодействия сероводорода и нитрата свинца:

Pb(NO3)2 + H2S → PbS + HNO3.

В результате реакции образуются сульфид свинца и азотная кислота. Данная реакция является качественной реакцией на сероводород. В результате реакции образуются соль свинца – сульфид свинца черного цвета, который выпадает в осадок.

30. реакция термического разложения сероводорода:

H2S  H2 + S (t = 400-1700 °C).

В результате реакции образуются водород и сера. В ходе реакции используется насыщенный раствор сероводорода.

Применение сероводорода:

Из-за своей токсичности сероводород находит ограниченное применение:

  • в аналитической химии сероводород и сероводородная вода используются как реагенты для осаждения тяжёлых металлов, сульфиды которых очень слабо растворимы;
  • в медицине в составе природных и искусственных сероводородных ванн, а также в составе некоторых минеральных вод;
  • в химической промышленности для получения серной кислоты, элементной серы, сульфидов;
  • в органическом синтезе для получения тиофена и меркаптанов.

В последние годы рассматривается возможность использования сероводорода, накопленного в глубинах Чёрного моря, в качестве энергетического (сероводородная энергетика) и химического сырья.

Ссылка на источник

Источник