Какие свойства у параболы

Какие свойства у параболы thumbnail

Пара́бола (греч. παραβολή — приложение) — геометрическое место точек, равноудалённых от данной прямой (называемой директрисой параболы) и данной точки (называемой фокусом параболы).

Наряду с эллипсом и гиперболой, парабола является коническим сечением. Она может быть определена как коническое сечение с единичным эксцентриситетом.

Изображение конического сечения, являющегося параболой

Построение параболы как конического сечения

Вершина[править | править код]

Точка параболы, ближайшая к её директрисе, называется вершиной этой параболы. Вершина является серединой перпендикуляра, опущенного из фокуса на директрису.

Уравнения[править | править код]

Каноническое уравнение параболы в прямоугольной системе координат:

(или , если поменять местами оси).

Число p называется фокальным параметром, оно равно расстоянию от фокуса до директрисы[1]. Поскольку каждая точка параболы равноудалена от фокуса и директрисы, то и вершина — тоже, поэтому она лежит между фокусом и директрисой на расстоянии от обоих.

Вывод

Уравнение директрисы PQ: , фокус F имеет координаты Таким образом, начало координат O — середина отрезка CF. По определению параболы, для любой точки M, лежащей на ней, выполняется равенство KM = FM. Далее, поскольку и , то равенство приобретает вид:

После возведения в квадрат и некоторых преобразований получается равносильное уравнение

Парабола, заданная квадратичной функцией[править | править код]

Квадратичная функция при также является уравнением параболы и графически изображается той же параболой, что и но в отличие от последней имеет вершину не в начале координат, а в некоторой точке A, координаты которой вычисляются по формулам:

где  — дискриминант квадратного трёхчлена.

Ось симметрии параболы, заданной квадратичной функцией, проходит через вершину параллельно оси ординат. При a > 0 (a < 0) фокус лежит на этой оси над (под) вершиной на расстоянии 1/4a, а директриса — под (над) вершиной на таком же расстоянии и параллельна оси абсцисс. Уравнение может быть представлено в виде а в случае переноса начала координат в точку A уравнение параболы превращается в каноническое. Таким образом, для каждой квадратичной функции можно найти систему координат такую, что в этой системе уравнение соответствующей параболы представляется каноническим. При этом

Общее уравнение параболы[править | править код]

В общем случае парабола не обязана иметь ось симметрии, параллельную одной из координатных осей. Однако, как и любое другое коническое сечение, парабола является кривой второго порядка и, следовательно, её уравнение на плоскости в декартовой системе координат может быть записано в виде квадратного многочлена:

Если кривая второго порядка, заданная в таком виде, является параболой, то составленный из коэффициентов при старших членах дискриминант равен нулю.

Уравнение в полярной системе[править | править код]

Парабола в полярной системе координат с центром в фокусе и нулевым направлением вдоль оси параболы (от фокуса к вершине) может быть представлена уравнением

где p — фокальный параметр (расстояние от фокуса до директрисы или удвоенное расстояние от фокуса до вершины)

Расчёт коэффициентов квадратичной функции[править | править код]

Если для уравнения параболы с осью, параллельной оси ординат, известны координаты трёх различных точек параболы то его коэффициенты могут быть найдены так:

Если же заданы вершина и старший коэффициент , то остальные коэффициенты и корни вычисляются по формулам:

Свойства[править | править код]

Отражательное свойство параболы (оптика)

Расстояние от Pn до фокуса F такое же, как и от Pn до Qn (на директрисе L)

Длина линий FPnQn одинакова. Можно сказать, что, в отличие от эллипса, второй фокус у параболы — в бесконечности (см. также Шары Данделена)

  • Парабола — кривая второго порядка.
  • Она имеет ось симметрии, называемой осью параболы. Ось проходит через фокус и вершину перпендикулярно директрисе.
  • Оптическое свойство. Пучок лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. И наоборот, свет от источника, находящегося в фокусе, отражается параболой в пучок параллельных её оси лучей. Сигнал также придет в одной фазе, что важно для антенн.
  • Если фокус параболы отразить относительно касательной, то его образ будет лежать на директрисе.
  • Отрезок, соединяющий середину произвольной хорды параболы и точку пересечения касательных к ней в концах этой хорды, перпендикулярен директрисе, а его середина лежит на параболе.
  • Парабола является антиподерой прямой.
  • Все параболы подобны. Расстояние между фокусом и директрисой определяет масштаб.
  • Траектория фокуса параболы, катящейся по прямой, есть Цепная линия[2].

Связанные определения[править | править код]

  • При вращении параболы вокруг оси симметрии получается эллиптический параболоид.

Обобщение[править | править код]

Парабола есть Синусоидальная спираль при ;

Параболы в физическом пространстве[править | править код]

Параболический компас Леонардо да Винчи

Траектории некоторых космических тел (комет, астероидов и других), проходящих вблизи звезды или другого массивного объекта (звезды или планеты) на достаточно большой скорости, имеют форму параболы (или гиперболы). Эти тела, вследствие своей большой скорости, не захватываются гравитационным полем звезды и продолжают свободный полёт. Это явление используется для гравитационных манёвров космических кораблей (в частности, аппаратов Вояджер).

Для создания невесомости в земных условиях проводятся полёты самолётов по параболической траектории, так называемой параболе Кеплера.

При отсутствии сопротивления воздуха траектория полёта тела в приближении однородного гравитационного поля представляет собой параболу.

Также параболические зеркала используются в любительских переносных телескопах систем Кассергена, Шмидта — Кассергена, Ньютона, а в фокусе параболы устанавливают вспомогательные зеркала, подающие изображение на окуляр.

Читайте также:  Какие свойства воды вода горячая

При вращении сосуда с жидкостью вокруг вертикальной оси поверхность жидкости в сосуде и вертикальная плоскость пересекаются по параболе.

Свойство параболы фокусировать пучок лучей, параллельных оси параболы, используется в конструкциях прожекторов, фонарей, фар, а также телескопов-рефлекторов (оптических, инфракрасных, радио- …), в конструкции узконаправленных (спутниковых и других) антенн, необходимых для передачи данных на большие расстояния, солнечных электростанций и в других областях.

Форма параболы иногда используется в архитектуре для строительства крыш и куполов.

  • Параболическая орбита и движение спутника по ней (анимация)

  • Параболические траектории струй воды

  • Вращающийся сосуд с жидкостью

См. также[править | править код]

Примечания[править | править код]

  1. Александров П.С. Парабола // Курс аналитической геометрии и линейной алгебры. — М.: Наука, 1979. — С. 69—72. — 512 с.
  2. ↑ Савелов А. А. Плоские кривые. Систематика, свойства, применения (Справочное руководство)/ Под ред. А. П. Нордена. М.: Физматлит, 1960. С. 250.

Литература[править | править код]

  • Бронштейн И. Парабола // Квант. — 1975. — № 4. — С. 9—16.
  • Математическая энциклопедия (в 5-и томах). — М.: Советская Энциклопедия, 1982.
  • Маркушевич А. И. Замечательные кривые. — Гостехиздат, 1952. — 32 с. — (Популярные лекции по математике, выпуск 4).
  • А. А. Акопян, А. В. Заславский. Геометрические свойства кривых второго порядка. — М.: МЦНМО, 2007. — 136 с.

Ссылки[править | править код]

  • Статья в справочнике «Прикладная математика».
  • Анимированные рисунки, иллюстрирующие некоторые свойства параболы.
  • Информация (англ.) о связи параболы с физикой.
  • Учебный фильм о параболе

Источник

График функции

Эта статья — о числовой функции одной переменной. О функции второй степени с несколькими переменными см. Квадратичная форма; о геометрическом месте точек см. Парабола.

Квадратичная функция — целая рациональная функция второй степени вида , где и . Уравнение квадратичной функции содержит квадратный трёхчлен. Графиком квадратичной функции является парабола. Многие свойства графика квадратичной функции так или иначе связаны с вершиной параболы, которая во многом определяет положение и внешний вид графика.

Обзор основных свойств[править | править код]

Многие свойства квадратичной функции зависят от значения коэффициента . В следующей таблице приводится обзор основных свойств квадратичной функции[1]. Их доказательство рассматривается в статье в соответствующих разделах.

Влияние коэффициентов на трансформацию графика[править | править код]

Стандартная запись уравнения квадратичной функции[править | править код]

Влияние коэффициентов , и на параболу

Действительные числа , и в общей записи квадратичной функции называются её коэффициентами. При этом коэффициент принято называть старшим, а коэффициент  — свободным. Изменение каждого из коэффициентов приводит к определённым трансформациям параболы.

По значению коэффициента можно судить о том, в какую сторону направлены её ветви (вверх или вниз) и оценить степень её растяжения или сжатия относительно оси ординат:

Влияние значения коэффициента наиболее просто позволяет проиллюстрировать квадратичная функция вида , то есть в случае и . В случае квадратичная функция превращается в линейную.

Изменение коэффициента повлечёт за собой сдвиг параболы как относительно оси абсцисс, так и относительно оси ординат. При увеличении значения на 1 произойдёт сдвиг параболы на влево и одновременно на вниз. При уменьшении на 1 произойдёт сдвиг параболы на вправо и одновременно на вверх. Такие трансформации объясняются тем, что коэффициент характеризует угловой коэффициент касательной к параболе в точке пересечения с осью ординат (то есть при ).

Коэффициент характеризует параллельный перенос параболы относительно оси ординат (то есть вверх или вниз). При увеличении значения этого коэффициента на 1, парабола переместится на 1 вверх. Соответственно, если уменьшить коэффициент на 1, то и парабола сместится на 1 вниз. Так как коэффициент также влияет на положение вершины параболы, то по одному лишь значению коэффициента нельзя судить о том, расположена ли вершина выше оси абсцисс или ниже неё.

Запись квадратичной функции через координаты вершины параболы[править | править код]

Любая квадратичная функция может быть получена с помощью растяжения/сжатия и параллельного переноса простейшей квадратичной функции . Так, график функции вида получается путём сжатия (при ) или растяжения (при ) графика функции в раз с последующем его параллельным переносом на единиц вправо и единиц вверх (если эти значения являются отрицательными числами тогда, соответственно, влево и вниз). Очевидно, что при проделанной трансформации вершина параболы функции переместится из точки в точку . Этот факт даёт ещё один способ вычисления координат вершины параболы произвольной квадратичной функции путём приведения её уравнения к виду , позволяющему сразу увидеть координаты вершины параболы — .

Влияние коэффициентов в записи вида на параболу

Преобразовать произвольную квадратичную функцию вида к форме позволяет метод выделения полного квадрата, использующий формулы сокращённого умножения биномов:

, где и

Сравнивая значения для и , вычисленные дифференциальным методом (см. соответствующий раздел статьи), можно также убедиться, что они являются координатами вершины параболы. В конкретных случаях вовсе не требуется запоминать приведённые громоздкие формулы, удобней всякий раз выполнять преобразования многочлена к желаему виду непосредственно. На конкретном примере этот метод выглядит так:

Недостатком данного метода является его громоздкость, особенно в случае, когда в результате вынесения за скобки приходится работать с дробями. Также он требует определённого навыка в обращении с формулами сокращённого умножения.

Однако, рассмотренное выше доказательство в общем виде приводит к более простому способу вычисления координат вершины параболы с помощью формул и . Например, для той же функции имеем:

Читайте также:  Какие лечебные свойства обладает кизил

.

Таким образом, .

Нули функции[править | править код]

Число нулей квадратичной функции[править | править код]

Число действительных нулей квадратичной функции в случае

Квадратичная функция является целой рациональной функцией второй степени, поэтому она может иметь не более двух нулей в действительной области. В случае расширения на комплексную область можно говорить о том, что квадратичная функция в любом случае имеет ровно два комплексных нуля, которые могут быть строго действительными числами или содержать мнимую единицу.

Определить число нулей квадратичной функции без решения соответствующего квадратного уравнения можно с помощью вычисления дискриминанта. При этом имеются различные вариации его вычисления: обычный (применим всегда), сокращённый (удобен в случае чётного коэффициента ) и приведённый (применим только для приведённого многочлена). При этом числовые значения в каждом случае будут отличаться, однако знак дискриминанта будет совпадать независимо от вариации.

Независимо от вычисления дискриминанта будут справедливы следующие утверждения:

Например, для функции с использованием стандартной формулы для дискриминанта получаем:

.

Это означает, что данная функция имеет два действительных нуля, то есть её парабола пересекает ось абсцисс в двух точках.

Методы вычисления нулей квадратичной функции[править | править код]

Нахождение нулей квадратичной функции сводится к решению квадратного уравнения , где . Конкретный метод, наиболее подходящий для конкретной квадратичной функции, во многом зависит от его коэффициентов. Во всех специальных случаях кроме специальных формул и методов всегда применима также и универсальная формула. Во всех перечисленных формулах, содержащих квадратный корень, следует учитывать, что если подкоренное выражение является отрицательным числом, то квадратичная функция не имеет нулей в действительной области, а обладает двумя комплексными нулями.

  • В наиболее общем случае применяется универсальная формула:

Получить приведённую форму из общей можно, поделив исходное уравнение на . При этом, очевидно, и .

Чётность и симметрия квадратичной функции[править | править код]

Симметрия относительно оси ординат[править | править код]

График функции ( и ) симметричен относительно оси ординат

Квадратичная функция является целой рациональной функцией второй степени, поэтому для неё справедливы все соответствующие свойства целой рациональной функции. В частности, она является чётной только тогда, когда в записи её многочлена присутствуют лишь чётные показатели степени, и нечётной — если она содержит только нечётные показатели. Из этого следует, что никакая квадратичная функция не может быть нечётной ввиду того, что на неё изначально накладывается условие , а следовательно она всегда будет содержать чётный показатель 2.

Кроме того, очевидно, что квадратичная функция является чётной только при отсутствии показателя 1, что означает . Этот факт легко доказывается и непосредственно. Так, очевидно, что функция является чётной, так как справедливо:

, то есть .

Таким образом, квадратичная функция является симметричной относительно оси ординат только тогда, когда . Конкретные значения коэффициентов и на этот факт абсолютно не влияют. В частности, может быть также равно нулю, то есть отсутствовать в записи формулы. В этом случае вершина параболы будет совпадать с началом системы координат.

Во всех других случаях квадратичная функция не будет ни чётной, ни нечётной, то есть является функцией общего вида. Это также легко можно показать с помощью определения чётности функции:

, то есть .
, то есть .

Осевая симметрия в общем случае[править | править код]

Осью симметрии любой параболы является прямая, проходящая через её вершину параллельно оси ординат

В то же время график любой квадратичной функции обладает осевой симметрией. Как известно, если для некоторой функции для некоторого числа справедливо равенство , то график этой функции обладает осевой симметрией по отношению к прямой . В отношении квадратичной функции таким числом является абсцисса вершины её параболы. Таким образом, график любой квадратичной функции симметричен по отношению к оси, параллельной оси ординат и проходящей через вершину параболы, а осью симметрии функции является прямая .

Доказательство этого факта также не является сложным:

К аналогичному результату приводит и преобразование:

Таким образом, , поэтому график функции симметричен относительно прямой .

Вычисление вершины параболы с помощью нулей функции[править | править код]

Нули функции расположены симметрично к оси, проходящей через вершину параболы параллельно оси ординат

Так как ось симметрии параболы всегда проходит через её вершину, то, очевидно, что нули квадратичной функции также всегда симметричны относительно абсциссы вершины параболы. Этот факт позволяет легко вычислить координаты вершины параболы с помощью известных нулей функции. В поле действительных чисел этот способ действует только тогда, когда парабола пересекает ось абсцисс или касается её, то есть имеет нули из действительной области.

В случае, когда квадратичная функция имеет лишь один нуль (кратности 2), то он, очевидно, сам и является вершиной параболы. Если же парабола имеет нули и , то абсцисса её вершины легко вычисляется как среднее арифметическое нулей функции. Ордината вершины вычисляется путём подстановки её абсциссы в исходное уравнение функции:

Особенно удобным этот способ будет в случае, когда квадратичная функция заданна в её факторизированном виде. Так, например, парабола функции будет иметь вершину со следующими координатами:

При этом даже не требуется преобразовывать уравнение функции к общему виду.

Читайте также:  Напиши какие свойства воздуха используются

Исследование методами дифференциального и интегрального анализа[править | править код]

Производная и первообразная[править | править код]

Квадратичная функция (красный график), её производная (синий) и первообразная (чёрный)

Угловой коэффициент касательной параболы в точке равен коэффициенту в записи уравнения квадратичной функции; в данном случае

Как и любая целая рациональная функция квадратичная функция дифференцируема во всей своей области определения. Её производная легко находится с помощью элементарных правил дифференцирования: . Таким образом, видим, что производной квадратичной функции является линейная функция, которая либо строго монотонно возрастает (если ), либо строго монотонно убывает (если ) на всей области определения. При этом также нетрудно заметить, что , что означает, что коэффициент в уравнении исходной функции равен угловому коэффициенту параболы в начале координат.

Квадратичная функция как и любая целая рациональная функция также и интегрируема во всей своей области определения. Её первообразная, очевидно, является кубической функцией:

, где .

Монотонность и точки экстремума[править | править код]

Очевидно, что вершина параболы является её наивысшей или наинизшей точкой, то есть абсолютным экстремумом квадратичной функции (минимумом при и максимумом при ). Поэтому абсцисса вершины параболы разбивает область определения функции на два монотонных интервала, на одном из которых функция возрастает, а на другом — убывает. Воспользовавшись методами дифференциального исчисления, с помощью этого факта можно легко вывести простую формулу для вычисления координат вершины параболы, заданной общим уравнением , через его коэффициенты.

Согласно необходимому и достаточному условию для существования экстремума, получаем: . При этом , если . Функция является константной функцией, при этом при и при . Таким образом, необходимый и достаточный критерий существования экстремума выполняется в точке . Следовательно, имеем координаты вершины:

Вершина параболы разбивает область определения квадратичной функции на два монотонных интервала: и . При функция на первом из них является строго монотонно убывающей, а на втором — строго монотонно возрастающей. В случае  — в точности наоборот.

При этом можно вовсе не запоминать данные формулы, а просто каждый раз пользоваться критериями существования экстремума для каждой конкретной квадратичной функции. Или же рекомендуется запоминать только формулу для вычисления абсциссы вершины параболы. Её ордината легко вычисляется в результате подстановки вычисленной абсциссы в конкретное уравнение функции.

Например, для функции получаем:

.

Таким образом, вершина параболы данной функции имеет координаты . При этом функция строго монотонно убывает на интервале и строго монотонно возрастает на интервале

Выпуклость и точки перегиба[править | править код]

Так как вторая производная квадратичной функции является константной линейной функцией , то она не имеет точек перегиба, так как её значение постоянно, а соответственно достаточный критерий не будет выполняться ни для какой её точки. Более того, очевидно, что при исходная квадратичная функция будет всюду выпуклой вниз (ввиду того, что её вторая производная всюду положительна), а при  — всюду выпуклой вверх (её вторая производная будет всюду отрицательной).

Обратимость квадратичной функции[править | править код]

Функция и обратная ей на интервале

Так как квадратичная функция не является строго монотонной функцией, то она является необратимой. Так как любую непрерывную функцию, однако, можно обратить на её интервалах строгой монотонности, то для любой квадратичной функции существуют две обратные функции, соответствующие двум её интервалам монотонности. Обратными для квадратичной функции на каждом из её интервалов монотонности являются функции арифметического квадратного корня[2].

Так, функция арифметического квадратного корня является обратной к квадратной функции на интервале . Соответственно, функция является обратной к функции на интервале . Графики функций и будут симметричными друг другу относительно прямой .

Функция и обратная к ней на интервале функция

Для нахождения обратных функций для произвольной квадратичной функции удобнее представить её в форме , где  — вершина её параболы. Далее воспользуемся известным методом для нахождения обратных функций — поменяем местами переменные и и снова выразим через :

Таким образом, обратной к на интервале является функция .

На интервале обратной к является функция .

Например, для функции с вершиной получаем:

на интервале .
на интервале .

Примеры появления на практике[править | править код]

  • Зависимость высоты свободно падающего тела от времени.
  • Зависимость площади круга от её линейных размеров (например, радиуса).
  • Зависимость расстояния от времени при равноускоренном движении.
  • Зависимость напора от расхода (напорная характеристика центробежного насоса).

Обобщение[править | править код]

Обобщение на случай многих переменных служат поверхности второго порядка, в общем виде такое уравнение можно записать, как:

.

Здесь:  — матрица квадратичной формы,  — постоянный вектор,  — константа.
Свойства функции, так же как и в одномерном случае, определяются главным коэффициентом — матрицей .

См. также[править | править код]

  • Аффинно-квадратичная функция

Примечания[править | править код]

  1. ↑ Квадратичная функция // Большая школьная энциклопедия. — М. : «Русское энциклопедическое товарищество», 2004. — С. 118—119.
  2. Rolf Baumann. Quadratwutzelfunktion // Algebra: Potenzfunktionen, Exponential- und Logarithmusgleichungen, Stochastik : [нем.]. — München : Mentor, 1999. — Т. 9. — С. 17—19. — 167 с. — ISBN 3-580-63631-6.

Литература[править | править код]

  • Сканави М.И. График квадратного трёхчлена // Элементарная математика. — 2-е изд., перераб. и доп. — М., 1974. — С. 130—133. — 592 с.
  • Каплан И.А. Тридцать третье практическое занятие (экстремум квадратичной функции) // Практические занятия по высшей математике. — 3-е изд. — Харьков, 1974. — С. 449—451.

Источник