Какие свойства у кванта
У этого термина существуют и другие значения, см. Квант (значения).
Квант (от лат. quantum — «сколько») — неделимая часть какой-либо величины в физике; общее название определённых порций энергии (квант энергии), момента количества движения (углового момента), его проекции и других величин, которыми характеризуют физические свойства микро- (квантовых) систем. В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения (говорят, что физическая величина квантуется). В некоторых важных частных случаях эта величина или шаг её изменения могут быть только целыми кратными некоторого фундаментального значения[1] — и последнее называют квантом. Например, энергия монохроматического электромагнитного излучения угловой частоты может принимать значения , где — редуцированная постоянная Планка, а — целое число. В этом случае имеет смысл энергии кванта излучения (иными словами, фотона), а — смысл числа́ этих квантов (фотонов). В смысле, близком к этому, термин квант был впервые введен Максом Планком в его классической работе 1900 года — первой работе по квантовой теории, заложившей её основу.
Вокруг идеи квантования с начала 1900-х годов развилась полностью новая физическая концепция, обычно называемая квантовой физикой.
Ныне прилагательное «квантовый» используется в названии ряда областей физики (квантовая механика, квантовая теория поля, квантовая оптика и т. д.). Широко применяется термин квантование, означающий построение квантовой теории некоторой системы или переход от её классического описания к квантовому. Тот же термин употребляется для обозначения ситуации, в которой физическая величина может принимать только дискретные значения — например, говорят, что энергия электрона в атоме «квантуется».
Сам же термин «квант» в настоящее время имеет в физике довольно ограниченное применение. Иногда его употребляют для обозначения частиц или квазичастиц, соответствующих бозонным полям взаимодействия (фотон — квант электромагнитного поля, фонон — квант поля звуковых волн в кристалле, гравитон — гипотетический квант гравитационного поля и т. д.), также о таких частицах говорят как о «квантах возбуждения» или просто «возбуждениях» соответствующих полей.
Кроме того, по традиции «квантом действия» иногда называют постоянную Планка. В современном понимании это название может иметь тот смысл, что постоянная Планка является естественной единицей измерения действия и других физических величин такой же размерности (например, момента импульса).
Некоторые кванты[править | править код]
Кванты некоторых полей имеют специальные названия:
- фотон — квант электромагнитного поля;
- глюон — квант векторного (глюонного) поля в квантовой хромодинамике (обеспечивает сильное взаимодействие);
- гравитон — гипотетический квант гравитационного поля;
- бозон Хиггса — квант поля Хиггса;
- фонон — квант колебательного движения кристалла.
- хронон — гипотетический квант времени
Примечания[править | править код]
Литература[править | править код]
- Ландау, Л. Д., Лифшиц, Е. М. Квантовая механика (нерелятивистская теория). — Издание 6-е, исправленное. — М.: Физматлит, 2004. — 800 с. — («Теоретическая физика», том III). — ISBN 5-9221-0530-2.
Источник
Задумывались ли вы о том, что собой представляют на самом деле многие световые явления? Для примера возьмем фотоэффект, тепловые волны, фотохимические процессы и тому подобное – все это квантовые свойства света. Если бы они не были открыты, труды ученых не двинулись бы с мертвой точки, собственно, как и научно-технический прогресс. Изучают их в разделе квантовой оптики, который неразрывно связан с одноименным разделом физики.
Квантовые свойства света: определение термина
До недавнего времени четкую и понятную трактовку данному оптическому явлению дать не могли. Им успешно пользовались в науке и повседневной жизни, на его основе строили не только формулы, но и целые задачи по физике. Сформулировать окончательное определение получилось лишь у современных ученых, которые подводили итоги деятельности своих предшественников. Итак, волновые и квантовые свойства света – это следствие особенностей его излучателей, которыми являются электроны атомов. Квант (или фотон) образуется за счет того, что электрон переходит на пониженный энергетический уровень, тем самым генерируя электро-магнитные импульсы.
Первые оптические наблюдения
Предположение о наличии у света квантовых свойств появилось в XIX столетии. Ученые открыли и усердно изучали такие явления, как дифракция, интерференция и поляризация. С их помощью была выведена электромагнитная волновая теория света. Она базировалась на ускорении движения электронов во время колебания тела. За счет этого происходило нагревание, а следом за ним появлялись световые волны. Первую авторскую гипотезу на сей счет сформировал англичанин Д. Рэлей. Он расценивал излучение как систему одинаковых и постоянных волн, причем в замкнутом пространстве. Согласно его выводам, при уменьшении длины волн мощность их должна была непрерывно возрастать, более того, требовалось наличие ультрафиолетовых и рентгеновских волн. На практике же все это не подтвердилось, и за дело взялся другой теоретик.
Формула Планка
В самом начале XX века Макс Планк – физик немецкого происхождения – выдвинул интересную гипотезу. Согласно ей, излучение и поглощения света происходит не непрерывно, как думали ранее, а порционно – квантами, или, как их еще называют, фотонами. Была введена постоянная Планка – коэффициент пропорциональности, обозначаемый буквой h, и он был равен 6,63·10-34Дж·с. Дабы высчитать энергию каждого фотона, требовалась еще одна величина – v– частота света. Постоянная Планка умножалась на частоту, и в результате получали энергию отдельно взятого фотона. Так немецкий ученый точно и грамотно закрепил в одной простой формуле квантовые свойства света, которые ранее были обнаружены Г. Герцем и обозначены им как фотоэффект.
Открытие фотоэффекта
Как мы уже сказали, ученый Генрих Герц был первым, кто обратил внимание на незамечаемые ранее квантовые свойства света. Фотоэффект был открыт в 1887 году, когда ученый соединил освещенную цинковую пластину и стержень электрометра. В случае если до пластины доходит положительный заряд, электрометр не разряжается. Если излучается заряд отрицательный, то прибор начинает разряжаться, как только на пластину попадает луч ультрафиолета. В ходе данного практического опыта было доказано, что пластина под воздействием света может излучать отрицательные электрические заряды, которые впоследствии получили соответствующее название – электроны.
Практические опыты Столетова
Практические эксперименты с электронами проводил русский исследователь Александр Столетов. Для своих опытов он использовал вакуумный стеклянный баллон и два электрода. Один электрод использовался для передачи энергии, а второй был освещаемым, и к нему подводился отрицательный полюс батареи. В ходе данной операции начинала возрастать сила тока, но через некоторое время она становилась постоянной и прямо пропорциональной излучению светового потока. В результате было выявлено, что кинетическая энергия, а также задерживающие напряжения электронов не зависят от мощности светового излучения. Но увеличение частоты света заставляет расти данный показатель.
Новые квантовые свойства света: фотоэффект и его законы
В ходе развития теории Герца и практики Столетова были выведены три основные закономерности, по которым, как оказалась, функционируют фотоны:
1. Мощность светового излучения, которое падает на поверхность тела, прямо пропорциональна силе тока насыщения.
2. Мощность светового излучения никак не влияет кинетическую энергию фотоэлектронов, а вот частота света является причиной линейного роста последней.
3. Существует некая «красная граница фотоэффекта». Суть заключается в том, что если частота меньше минимального показателя частоты света для данного вещества, то фотоэффекта не наблюдается.
Трудности столкновения двух теорий
После формулы, выведенной Максом Планком, наука столкнулась с дилеммой. Ранее выведенные волновые и квантовые свойства света, которые были открыты чуть позже, не могли существовать в рамках общепринятых физических законов. В соответствии с электромагнитной, старой теорией, все электроны тела, на которое попадает свет, должны приходить в вынужденное колебание на равных частотах. Это порождало бы бесконечно большую кинетическую энергию, что никак невозможно. Более того, для накопления необходимого количества энергии электронам нужно было пребывать в состоянии покоя десятки минут, в то время как явление фотоэффекта на практике наблюдается без малейшей задержки. Дополнительная путаница возникала также из-за того, что энергия фотоэлектронов не зависела от мощности светового излучения. Кроме того, еще не была открыта красная граница фотоэффекта, а также не была высчитана пропорциональность частоты света кинетической энергии электронов. Старая теория не смогла четко объяснить видимые глазу физические явления, а новая была еще не до конца отработанной.
Рационализм Альберта Эйнштейна
Лишь в 1905 году гениальный физик А. Эйнштейн выявил на практике и четко сформулировал в теории, какова она – истинная природа света. Волновые и квантовые свойства, открытые с помощью двух противоположных друг другу гипотез, в равных частях присущи фотонам. Для полноты картины не хватало лишь принципа дискретности, то есть точного местонахождения квантов в пространстве. Каждый квант – это частица, которая может поглощаться или излучаться как единое целое. Электрон, «проглатывая» внутрь себя фотон, увеличивает свой заряд на значение энергии поглощаемой частицы. Далее, внутри фотокатода электрон движется к его поверхности, сохраняя при этом «двойную порцию» энергии, которая на выходе превращается в кинетическую. Таким простым образом и осуществляется фотоэффект, в котором отсутствует запоздалая реакция. У самого финиша электрон выпускает из себя квант, который и падает на поверхность тела, излучая при этом еще больше энергии. Чем больше количество выпущенных фотонов – тем мощнее излучение, соответственно, и колебание световой волны растет.
Простейшие приборы, в основе которых лежит принцип фотоэффекта
После открытий, сделанных немецкими учеными на заре ХХ столетия, началось активное применение квантовых свойств света для изготовления различных приборов. Изобретения, принцип действия которых заключается в фотоэффекте, называют фотоэлементами, простейший представитель которых – вакуумный. В числе его недостатков можно назвать слабую проводимость тока, низкую чувствительность к излучению длинных волн, из-за чего он не может быть использован в цепях переменного тока. Вакуумный прибор широко используется в фотометрии, им измеряют силу яркости и качества света. Также он играет важную роль в фототелефонах и в процессе воспроизведения звука.
Фотоэлементы с проводниковыми функциями
Это уже совсем иной тип приборов, в основе которых лежат квантовые свойства света. Их назначение – изменение концентрации носителей тока. Данное явление иногда называют внутренним фотоэффектом, и он составляет основу работы фоторезисторов. Данные полупроводники играют очень важную роль в нашей повседневной жизни. Впервые их начали использовать в ретро-автомобилях. Тогда они обеспечивали работу электроники и аккумуляторов. В середине ХХ века подобные фотоэлементы стали применять для строительства космических кораблей. До сих пор за счет внутреннего фотоэффекта работают турникеты в метро, портативные калькуляторы и солнечные батареи.
Фотохимические реакции
Свет, природа которого стала лишь частично доступна науке в ХХ веке, на самом деле влияет на химические и биологические процессы. Под воздействием квантовых потоков начинается процесс диссоциации молекул и их слияние с атомами. В науке такое явление называется фотохимией, а в природе одним из его проявлений является фотосинтез. Именно за счет световых волн в клетках производятся процессы по выбросу определенных веществ в межклеточное пространство, за счет чего растение приобретает зеленый оттенок.
Влияют квантовые свойства света и на человеческое зрение. Попадая на сетчатку глаза, фотон провоцирует процесс разложение молекулы белка. Данная информация транспортируется по нейронам в мозг, и после ее обработки мы можем видеть все при свете. С наступлением темноты молекула белка восстанавливается, и зрение аккомодируется к новым условиям.
Итоги
В ходе данной статьи мы выяснили, что главным образом квантовые свойства света проявляются в явлении, называемом фотоэффектом. Каждый фотон имеет свой заряд и массу, и при столкновении с электроном попадает внутрь него. Квант и электрон становятся одним целым, и их совместная энергия превращается в кинетическую, что, собственного говоря, и требуется для осуществления фотоэффекта. Волновые колебания при этом могут увеличить производимую фотоном энергию, но лишь до определенного показателя.
Фотоэффект в наши дни является незаменимой составляющей большинства видов техники. На его основе строят космические лайнеры и спутники, разрабатывают солнечные батареи, используют как источник вспомогательной энергии. Кроме того, световые волны оказывают огромное влияние на химико-биологические процессы на Земле. За счет простых солнечных лучей растения становятся зелеными, земная атмосфера окрашивается во всю палитру синего цвета, и мы видим мир таким, каков он есть.
Источник
Фотон. Строение фотона. Принцип перемещения.
Часть 1. Исходные данные.
Часть 2. Основные принципы строения фотона.
Часть 3. Квант энергии и квант массы.
Часть 4. Основные принципы перемещения фотона.
Часть 1. Исходные данные.
1.1. Фотон – это элементарная частица, квант электромагнитного излучения.
1.2. Фотон не может быть разделен на несколько частей и не распадается спонтанно в вакууме.
1.3. Фотон является истинно электронейтральной частицей. Скорость перемещения (движения) фотона в вакууме равна «с».
1.4. Свет представляет собой поток локализованных частиц – фотонов.
1.5. Фотоны излучаются во многих природных процессах, например: при движении заряженных частиц с ускорением (тормозное, синхротронное, циклотронное излучения) или при переходе электрона из возбуждённого состояния в состояние с меньшей энергией. Это происходит в результате основного фундаментального превращения в Природе – превращения кинетической энергии заряженной частицы в электромагнитную (и наоборот).
1.6. Фотону свойственен корпускулярно-волновой дуализм:
– с одной стороны фотоны демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной волны фотона;
– с другой стороны фотон ведет себя как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами) или считаются точечными (электрон).
1.7. Учитывая тот факт, что одиночные фотоны демонстрирует свойства волны, вполне достоверно можно утверждать, что фотон представляет собой «миниволну» (отдельный, компактный «кусочек» волны). При этом должны учитываться следующие свойства волн:
а) электромагнитные волны (и фотон) – это поперечные волны, в которых векторы напряженности электрических (E) и магнитных (H) полей колеблются перпендикулярно направлению распространения волны. Электромагнитные волны (фотон) можно передать от источника к приёмнику, в том числе и через вакуум. Им не требуется среда для своего распространения.
б) половина энергии электромагнитных волн (и фотона) является магнитной.
в) для характеристики интенсивности волнового процесса используют три параметра: амплитуда волнового процесса, плотность энергии волнового процесса и плотность потока энергии.
1.8. Кроме того, при рассмотрении схемы строения фотона и принципа его перемещения были учтены следующие данные:
а) излучение фотона практически проходит за период времени порядка 10-7 сек – 10-15 сек. За этот период электромагнитное поле фотона возрастает от нуля до максимума и вновь падает до нуля. См. рис.1.
б) график изменения поля фотона никак не может быть куском обрезанной синусоиды, т.к. в местах обрезки возникали бы бесконечные силы;
в) поскольку частота электромагнитной волны – это величина, которая наблюдается в опытах, то эту же частоту (и длину волны) можно приписать и отдельному фотону. Поэтому параметры фотона, как и волны, описываются формулой E = h*f , где h – постоянная Планка, которая связывает величину энергии фотона с его частотой (f).
Рис. 1. Фотон является материальной частицей и представляет собой компактный (имеющий начало и конец), неделимый «кусочек» волны, у которой электромагнитные поля возрастает от нуля до некоторого максимума и вновь падают до нуля. Магнитные поля условно не показаны.
Часть 2. Основные принципы строения фотона.
2.1. Практически во всех статьях по электромагнитным волнам (фотонам) на рисунках описывается и графически показывается волна, состоящая из двух полей – электрического и магнитного, например, цитата: «Электромагнитное поле представляет собой совокупность электрического магнитного полей…». Однако существование «двухкомпонентной» электромагнитной волны (и фотона) невозможно по одной простой причине: однокомпонентного электрического и однокомпонентного магнитного поля в электромагнитной волне (фотоне) не существует и существовать не может. Объяснение:
а) существуют теоретические модели-формулы-законы, которые используются для расчетов или определения параметров в идеальных условиях (например – теоретическая модель идеального газа). Это вполне допустимо. Однако для расчетов в реальных условиях в эти формулы вводятся поправочные коэффициенты, которые отражают реальные параметры среды.
б) также существует теоретическая модель под названием «электрическое поле». Для решения теоретических задач это допустимо. Однако реально существуют только два электрических поля: электрическое поле-плюс (№1) и электрическое поле-минус (№2). Субстанции под названием «беззарядовое? электронейтральное? электрическое поле №3» в реальности не существует, и существовать не может. Поэтому, при моделировании реальных условий в теоретической модели под названием «электрическое поле» всегда необходимо учитывать два «поправочных коэффициента» – реальное электрическое поле-плюс и реальное электрическое поле-минус.
в) существует теоретическая модель под названием «магнитное поле». Это вполне допустимо для решения некоторых задач. Однако реально у магнитного поля всегда существуют два магнитных полюса: полюс №1 (N) и полюс №2 (S). Субстанции под названием «бесполюсное? магнитное поле №3» в реальности не существует и существовать не может. Поэтому, при моделировании реальных условий в теоретической модели под названием «магнитное поле» всегда необходимо учитывать два «поправочных коэффициента» – полюс-N и полюс-S.
2.2. Таким образом, учитывая вышесказанное можно сделать вполне однозначный вывод: фотон является компактной (имеющий начало и конец), материальной частицей, у которой материя представляет собой совокупность двух электрических (плюс-минус) и двух магнитных (N-S) полей, способных распространяться от своих источников без затуханий (в вакууме) на сколь угодно большие расстояния. См. рис.2.
Рис.2. Фотон представляет собой совокупность двух электрических полей (плюс и минус) и двух магнитных полей (N и S). При этом полностью соблюдается общая электронейтральность фотона. В данной работе принимается, что электрическое поле-минус стыкуется с магнитным полем-N, а электрическое поле-плюс стыкуется с магнитным полем-S.
Часть 3. Квант энергии и квант массы.
3.1. С одной стороны фотон представляет собой компактную, неделимую частицу, у которой электромагнитные поля возрастает от нуля до некоторого максимума и вновь падают до нуля. То есть фотон имеет вполне реальный линейный размер (начало и конец).
3.2. Однако с другой стороны параметры фотона, как и волны, описываются формулой E = h*f , где h – постоянная Планка (эВ*сек), элементарный квант действия (фундаментальная мировая константа), которая связывает величину энергии фотона с его частотой ( f ).
3.3. Это позволяет полагать, что все фотоны состоят из вполне определенного количества (n) «самостоятельных» электронейтральных «усреднённых» элементарных квантов энергии (эВ) с абсолютно одинаковой длиной волны ( L ). В этом случае энергия любого фотона равна: Е = е1*n, где (е1) – энергия элементарного кванта, (n) – их количество в фотоне. См. рис.3.
Рис.3.
а) «нормальный» фотон (электромагнитные поля возрастает от нуля до некоторого максимума и вновь падают до нуля);
б) тот же фотон из «усреднённых» квантов. Можно допустить, что любой фотон состоит из вполне определенного количества абсолютно одинаковых «усреднённых» элементарных квантов энергии;
в) элементарный «усреднённый» квант энергии фотона. Элементарный квант энергии (размерность – эВ) абсолютно одинаков для всех электромагнитных волн всех диапазонов и аналогичен элементарному кванту действия Планка, (размерность – эВ*сек). В этом случае: Е (эВ) = h*f = е1*n.
3.4. Материя фотона. Фотоны излучаются в результате основного фундаментального превращения в Природе – превращение кинетической энергии заряженной частицы в электромагнитную и наоборот – превращение электромагнитной энергии фотонов в кинетическую энергию заряженной частицы. Однако кинетическая энергия нематериальна, а электромагнитная энергия фотона обладает всеми свойствами материи. Таким образом: в результате основного фундаментального превращения в Природе нематериальная кинетическая энергия заряженной частицы преобразуется в энергию электрических и магнитных полей фотона, который обладает вполне реальными свойствами материи: импульсом, скоростью, массой и др. характеристиками. Поскольку фотон материален, то материальны и все составляющие его части. То есть: элементарный квант энергии автоматически является элементарным квантом массы.
3.5. Любой фотон состоит из вполне определенного количества «самостоятельных» электронейтральных элементарных квантов энергии. И рассмотрение схемыстроения элементарного кванта показывает, что:
а) элементарный квант невозможно разделить на две равные части, поскольку это автоматически будет являться нарушением закона сохранения заряда;
б) от элементарного кванта также невозможно «отрезать» более мелкую часть, поскольку это автоматически приведет к изменению значения постоянной Планка (фундаментальной константы) для этого кванта.
3.6. Следовательно:
Первое. Превращение электромагнитной энергии фотонов в кинетическую энергию заряженной частицы не может быть непрерывной функцией – электромагнитная энергия может превращаться в кинетическую энергию частиц (и наоборот) только при значениях энергии кратных одному элементарному кванту энергии.
Второе. Поскольку оболочки кварков, протонов, нейтронов и др. частиц представляют собой уплотнённую электронейтральную материю фотонов, то массы этих оболочек также имеет значения, кратные элементарному кванту массы.
3.7. Примечание: тем не менее, разделение элементарных квантов на две абсолютно равные части (положительную и отрицательную) вполне возможно (и происходит) при образовании электрон-позитронных пар. В этом случае масса электрона и позитрона имеет значения, кратные половине элементарного кванта массы (см. «Электрон. Образование и строение электрона. Магнитный монополь электрона»).
Часть 4. Основные принципы перемещения фотона.
4.1. Перемещение материального фотона-частицы может осуществляться только двумя способами:
Вариант-1: фотон перемещается по инерции;
Вариант-2: фотон является самодвижущейся частицей.
4.2. По неизвестным причинам, именно инерционное движение электромагнитных волн (и фотонов) либо подразумевается, либо упоминается и графически показывается практически во всех статьях по электромагнитным волнам, например: Wikipedia. Electromagnetic radiation. English. См. рис.4.
Рис.4. Пример инерционного перемещения фотона (Wikipedia. Electromagnetic radiation). Фотон перемещается мимо наблюдателя слева направо со скоростью V = «с». При этом все лепестки синусоиды не меняют своих параметров, то есть: в системе отсчёта фотона они абсолютно неподвижны.
4.3. Однако инерционное движение фотона невозможно, например, по следующей причине: при прохождении фотона сквозь препятствие (стекло) его скорость уменьшается, но после прохождения препятствия (одного или нескольких) фотон вновь «мгновенно» и восстанавливает свою скорость до «с» = const. При инерциальном движении такое самостоятельное восстановление скорости невозможно.
4.4. «Мгновенный» набор скорости фотоном (до «с» = const) после прохождения препятствия возможен только при условии, если сам фотон является самодвижущейся частицей. При этом механизмом самопередвижения фотона может являться только переполюсовка имеющихся в наличии электрических (плюс и минус) и магнитных (N и S) полей с одновременным смещением фотона на полпериода, то есть с удвоенной частотой (2*f). См. рис.5.
Рис.5. Схема перемещения фотона за счёт переполюсовки полей. «Фрагмент» – последовательность переполюсовки поля-плюс.
4.5. Объяснение механизма перемещения фотона основывалось на следующих данных:
а) электромагнитное поле фотона представляет собой совокупность переменных электрических (плюс-минус) и магнитных (N и S) полей;
б) электрические и магнитные поля фотона не могут исчезнуть – они могут только превращаться друг в друга. Порождение магнитного поля переменным электрическим полем является фундаментальным явлением природы;
в) магнитное поле появляется только при наличии изменяющегося во времени электрического поля и наоборот (всякое изменение электрического поля возбуждает магнитное поле и, в свою очередь, изменение магнитного поля возбуждает поле электрическое). Поэтому магнитные поля фотона могут возникнуть только при наличии у фотона переменных по знаку и изменяющихся во времени электрических полей (в системе отсчёта фотона).
4.6. При объяснении механизма переполюсовки фотона рассматривались следующие варианты:
а) наличие свободного пространства впереди фотона. Фотон представляет собой компактный, неделимый «кусочек» волны в виде синусоиды, у которой электромагнитные поля возрастает от нуля до некоторого максимума и вновь падают до нуля. То есть: «тело» фотона имеет вполне реальную геометрическую длину (начало и конец). Движение фотона происходит за счёт перемещения фотона на расстояние одного полупериода (1/2L) за каждый акт переполюсовки. И это перемещение всегда может происходить только в одну сторону (вперед), где перед фотоном имеется в наличии свободное пространство;
б) «Борьба противоположностей». Электромагнитное поле фотона представляет собой совокупность переменных электрических (плюс-минус) и магнитных (N и S) полей. В данной работе принимается, что электрическое поле-минус стыкуется с магнитным полем-N, а электрическое поле-плюс стыкуется с магнитным полем-S. Но в этом случае возникает постоянное (и законное) стремление магнитных полей N и S состыковаться друг с другом, то есть создать полноценный «двухполюсной магнит». Для этого одно из магнитных полей обязано сдвинуться на полпериода. Однако магнитные и электрическими поля «намертво» связаны между собой, и всякая попытка магнитного поля «освободится» от электрического поля «мгновенно» приводит к ответной реакции противодействия – вызывает переполюсовку (переброску) всех полей и их автоматическое смещение на полпериода.
4.7. Поскольку других вариантов объяснения механизма самопередвижения фотона не просматривается, то перемещение фотона за счёт переполюсовки полей, по-видимому, является единственным решением проблемы. Ибо только режим переполюсовки позволяет поддерживать режим самодвижения фотона и одновременно обеспечить соблюдение фундаментального закона Природы – порождение магнитного поля при наличии переменного по знаку и меняющегося во времени электрического поля (и наоборот). Предложенные варианты механизма переполюсовки (причин и последовательности) требуют дополнительных проработок, которые в данной работе не могут быть представлены. Тем не менее, приведенные объяснения являются приемлемым выходом из создавшейся ситуации в решении проблемы постоянства скорости света, поскольку позволяют с той или иной степенью достоверности объяснить механизм самопередвижения фотона.
4.8. Скорость фотона. Скорость (с) электромагнитных волн (фотонов) в вакууме, их частота (f ) и длина волны (L) жестко связаны формулой: с = f*L. Однако при этом следует иметь в виду, что перемещение фотона происходит за счёт одновременной переполюсовки его электрических и магнитных полей, во время которой фотон смещается на расстояние одного полупериода ( L/2) за каждый акт переполюсовки, то есть с удвоенной частотой. С учётом этого формула скорости будет иметь вид с =2f*L/2, что абсолютно идентично основной формуле: с = f*L.
5. Таким образом:
5.1. Фотон является локализованной (компактной) материальной частицей, у которой материя представляет собой совокупность двух электрических (плюс и минус) и двух магнитных (N и S) полей, значения которых возрастают от нуля до некоторого максимума и вновь падают до нуля. При этом полностью соблюдается общая электронейтральность фотона.
5.2. В результате основного фундаментального превращения в Природе нематериальная кинетическая энергия заряженной частицы преобразуется в материальную энергию электрических и магнитных полей фотона. Фотон материален и состоит из вполне определенного количества абсолютно одинаковых «усреднённых» элементарных квантов энергии, которые автоматически являются элементарными квантами массы.
5.3. Фотон является самодвижущейся частицей способной перемещаться от своего источник на сколь угодно большие расстояния (в вакууме). Ему не требуется среда для своего перемещения. Движение фотона происходит за счёт переполюсовки переменных электрических (плюс-минус) и магнитных (N и S) полей, во время которой фотон смещается на расстояние одного полупериода за каждый акт переполюсовки.
5.4. В данной работе принимается, что в каждом элементарном кванте электрическое поле-минус стыкуется с магнитным полем-N, а электрическое поле-плюс стыкуется с магнитным полем-S. Другие варианты стыковки полей требуют дополнительных проработок и в данной работе не рассматривались.
Источник