Какие свойства трапеции являются существенными
Привет!
Перед тобой лучший гид по трапеции! Только то, что нужно. Без воды.
Основные определения, формулы и свойства.
Помни о своей цели!
Тебе нужно подготовиться к ЕГЭ по математике так, чтобы поступить в ВУЗ мечты! Будь уверен!
Приступим!
НАЧАЛЬНЫЙ УРОВЕНЬ
Что такое трапеция?
Трапеция – такой четырехугольник, у которого две стороны параллельны, а две другие – нет.
Параллельные стороны называются – основания, а непараллельные стороны называются боковые стороны.
Вот, смотри:
Оказывается, трапеция (как и треугольник) бывает равнобедренная.
Если боковые стороны трапеции равны, то она называется равнобедренной (или равнобокой).
И тут возникает вопрос: а могут ли у трапеции быть равными ОСНОВАНИЯ?
А вот и нет. Тогда это получится не трапеция, а параллелограмм, потому что две стороны окажутся параллельны и равны (вспоминаем признаки параллелограмма)
Свойства трапеции
Итак, что ты должен знать о свойствах трапеции…
Сумма углов при каждой боковой стороне трапеции равна 180°.
(у нас на рисунке ( displaystyle angle 1+angle 2=180{}^circ ) и ( displaystyle angle 3+angle 4=180{}^circ ))
Почему так? Ну, конечно, просто потому, что основания – параллельны, а боковая сторона – секущая. Вот и получается, что ( displaystyle angle 1) и ( displaystyle angle 2) – внутренние односторонние углы при параллельных ( displaystyle AD) и ( displaystyle BC) и секущей ( displaystyle AB). Поэтому ( displaystyle angle 1+angle 2=180{}^circ ). И точно так же ( displaystyle angle 3) и ( displaystyle angle 4) – внутренние односторонние углы при тех же параллельных ( displaystyle AD) и ( displaystyle BC), но секущая теперь – ( displaystyle CD).
Видишь: главное, что играет роль – это параллельность оснований. Давай разберем еще некоторые свойства трапеции.
Как у всякого четырехугольника, у трапеции есть диагонали. Их две – посмотри на рисунки:
Снова порассуждаем об углах:
Опять ( displaystyle AD) и ( displaystyle BC) – параллельные, а диагональ ( displaystyle AC) – секущая. Поэтому ( displaystyle angle 1=angle 2).
А теперь рассмотрим сразу 2 диагонали и 4 угла:
( displaystyle angle 1=angle 2)
( displaystyle angle 3=angle 4)
Что из этого может следовать?
Очень важный факт:
Треугольники ( displaystyle BOC) и ( displaystyle AOD) – подобны по двум углам.
Их коэффициент подобия равен отношению оснований: ( displaystyle K=frac{a}{b}).
Средняя линия трапеции
Для начала – что же такое средняя линия трапеции?
Средняя линия трапеции – это отрезок, который соединяет середины боковых сторон трапеции.
Оказывается, длину этой средней линии можно выразить через длины оснований трапеции. А именно, имеет место такая формула:
( displaystyle m=frac{a+b}{2}), то есть:
Длина средней линии трапеции равна полусумме (то есть половине суммы) длин оснований.
А ещё:
Средняя линия трапеции параллельна ее основаниям.
Трапеция, вписанная в окружность
Даже если ты ещё не изучал темы «Окружность. Вписанный угол» и «Вписанный четырехугольник», тебе будет полезно (и, надеюсь, интересно) узнать следующий удивительный факт:
Если трапецию можно вписать в окружность, то она – равнобокая.
Доказывать это мы не будем (здесь, во всяком случае), а вот запомнить хорошо бы – пригодится!
Подведём итог – он короткий.
Самое важное, что есть в трапеции – две параллельные стороны и BCE свойства трапеции именно этим и определяются.
Так что, если у тебя в задаче трапеция, – используй параллельность и всё получится!
Трапеция – такой четырехугольник, у которого две стороны параллельны, а две другие – нет.
Параллельные стороны называются основаниями, а непараллельные – боковыми сторонами.
Если боковые стороны трапеции равны, то она называется равнобедренной (или равнобокой).
Сумма углов при каждой боковой стороне трапеции равна 180°.
(у нас на рисунке ( displaystyle angle 1+angle 2=180{}^circ ) и ( displaystyle angle 3+angle 4=180{}^circ ))
Почему? ( displaystyle AD) и ( displaystyle BC) – параллельны, а ( displaystyle AB) и ( displaystyle CD) – секущие, поэтому:
- ( angle 1+angle 2=180{}^circ );
- ( angle 3+angle 4=180{}^circ ).
Треугольники ( displaystyle BOC) и ( displaystyle AOD) подобны по двум углам.
(( displaystyle angle 1=angle 2) и ( displaystyle angle 3=angle 4) – как накрест лежащие)
Коэффициент подобия треугольников ( displaystyle BOC) и ( displaystyle AOD) равен отношению оснований:
( K=frac{a}{b})
Сначала сформулируем основное определение, которое тебе нужно знать для понимания этого свойства трапеции:
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.
А теперь формула:
А вот и само третье свойство трапеции:
Средняя линия трапеции равна полусумме оснований и параллельна им.
А это почему? Ту чуть – чуть сложнее – потребуется провести аж одну лишнюю линию!
Итак, проведём ( displaystyle CEparallel AB). Тогда четырехугольник ( displaystyle ABCE) – параллелограмм.
Возьмём середину ( displaystyle M) стороны ( displaystyle AB) и середину ( displaystyle K) стороны ( displaystyle CE).
Оба: ( displaystyle MBCK) и ( displaystyle AMKE) – снова параллелограммы (( displaystyle MBparallel CK) и ( displaystyle MB=CK); ( displaystyle AMparallel KE) и ( displaystyle AM=KE)).
Ну вот, значит ( displaystyle MKparallel AD), да ещё ( displaystyle MK=BC=a).
Поедем дальше.
Проведём ( displaystyle KN) – среднюю линию в ( displaystyle Delta ECD).
Знаем, что ( displaystyle KNparallel ED) и ( KN=frac{1}{2}ED)
Что же из всего этого следует?
- ( displaystyle MNparallel AD) (так как через точку ( displaystyle K) можно провести лишь одну прямую параллельную ( displaystyle AD), поэтому ( displaystyle MK) и ( displaystyle KN) – одна прямая ( displaystyle MN))
- ( displaystyle MN=MK+KN=a+frac{b-a}{2})
( displaystyle MN=frac{a+b}{2})
Вот и доказали!
Если трапеция вписана в окружность, то она равнобокая.
Почему? Подробнее смотри в теме «Вписанный четырехугольник», а тут – двумя строчками:
( angle 1+angle 2=180{}^circ ) (трапеция же!)
( angle 3+angle 2=180{}^circ ) (вписанный четырехугольник)
( Rightarrow angle 1=angle 3). Ну, и так же ( angle 2=angle 4).
Это закрытый контент
Оставьте E-mail и получите доступ к нему
В любой трапеции следующие четыре точки лежат на одной прямой:
- ( displaystyle E) – точка пересечения продолжений боковых сторон;
- ( displaystyle F) и ( displaystyle H) – середины оснований;
- ( displaystyle G) – точка пересечения диагоналей.
Эту теорему доказывать не будем – не пугайся.
Заметим только, что ВЕРНО и ОБРАТНОЕ:
Если в каком-нибудь четырехугольнике какие-нибудь три из перечисленных четырёх точек окажутся на одной прямой, то четырёхугольник этот – ТРАПЕЦИЯ.
Биссектрисы углов при боковой стороне трапеции перпендикулярны.
( left{ begin{array}{l}angle 1+angle 2+angle 3+angle 4=180{}^circ -так, как, трапеция\angle 1=angle 2\angle 3=angle 4 -так, как, биссектрисаend{array} right.Rightarrow 2cdot angle 2+2cdot angle 3=180{}^circ Rightarrow )
( angle 2+angle 3=90{}^circ Rightarrow angle AEB =90{}^circ )
Здесь мы ещё раз увидим, как полезно в трапеции бывает провести линию, параллельную или боковой стороне, или диагонали – сразу появляется новый взгляд. Один раз мы уже так делали – в пункте про среднюю линию. А теперь ты узнал новый факт, который относительно часто встречается в задачах.
В трапеции с перпендикулярными диагоналями ( FH=frac{AD+BC}{2})
Давай докажем! Это уже целая задача, которая вполне может попасться прямо на экзамене!
Чтобы получить полный доступ к этой и другим статьям учебника YouClever, Вам необходимо оплатить курс.
На курсе Вы научитесь решать любые задачи так, чтобы получить
90+ баллов на ЕГЭ
Ну вот, и ты теперь старайся с помощью новых знаний и методов решать задачки про трапецию – они обычно не слишком сложные. Главное, твёрдо помнить все свойства трапеции и не забывать о параллельности оснований и иногда (в задачах посложнее) бывает полезно провести что-то параллельное или соединить боковые стороны.
Проведём ( displaystyle BKparallel AC) и ( displaystyle BLparallel FH).
Обозначим ( displaystyle BC=text{ }a); ( displaystyle AD=b).
Тогда:
- ( displaystyle Delta KBD) – прямоугольный
- ( begin{array}{l}left{ begin{array}{l}LD=frac{b}{2}+frac{a}{2}=frac{a+b}{2}\LK=a+frac{b}{2}-frac{a}{2}=frac{a+b}{2}end{array} right.Rightarrow BL-медиана~в~ Delta KBD.\end{array})
Значит, ( BL=frac{KD}{2}) (медиана, проведенная к гипотенузе, равна её половине).
То есть ( BL=frac{a+b}{2}).
Но ведь ( displaystyle FH=BL) (так как ( displaystyle BFHL) – параллелограмм)( Rightarrow ) ( FH=frac{a+b}{2}).
Трапеция – четырёхугольник, у которого две стороны параллельны (они называются основания), а две другие – нет (это боковые стороны).
- Сумма углов при каждой боковой стороне трапеции равна 180°
- ( displaystyle angle 1+angle 2=180{}^circ ) и ( displaystyle angle 3+angle 4=180{}^circ )
Средняя линия трапеции (( displaystyle MN)) – отрезок, соединяющий середины боковых сторон:
( displaystyle AM=MB, CN=ND).
- Средняя линия параллельна основаниям: ( displaystyle MNparallel BCparallel AD).
- Длина средней линии трапеции равна полусумме длин оснований: ( displaystyle MN=frac{BC+AD}{2}).
- Диагонали любой трапеции пересекаются в точке О.
- Треугольники, образованные основаниями трапеции и отрезками диагоналей
(( displaystyle BOC) и ( displaystyle AOD)) подобны по двум углам с коэффициентом подобия равным отношению оснований: ( displaystyle k=frac{BC}{AD}). - Площади треугольников, образованных боковыми сторонами и отрезками диагоналей трапеции, равны: ( displaystyle {{S}_{Delta AOB}}={{S}_{Delta COD}}).
Равнобедренная (равнобокая) трапеция – это трапеция, у которой боковые стороны равны:
( displaystyle AB=CD).
Свойства равнобедренной трапеции:
- диагонали равны: ( displaystyle AC=BD);
- углы при основании равны: ( displaystyle angle A=angle D,text{ }angle B=angle C);
- сумма противолежащих углов равна ( displaystyle 180{}^circ ): ( displaystyle angle A+angle C=angle B+angle D=180{}^circ ).
- Если трапецию можно вписать в окружность, то она – равнобокая.
- Стороны и диагональ равнобокой трапеции связаны соотношением: ( displaystyle A{{C}^{2}}=B{{D}^{2}}=ADcdot BC+A{{B}^{2}}).
Площадь трапеции равна полусумме оснований, умноженной на высоту: ( displaystyle {{S}_{ABCD}}=frac{BC+AD}{2}cdot h).
P.S. Последний бесценный совет ????
Ну вот, тема закончена. Если ты читаешь эти строки, значит, ты очень крут.
Почему?
Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, ты попал в эти 5%!
Теперь самое главное.
Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.
Проблема в том, что этого может не хватить…
Для чего?
Для успешной сдачи ОГЭ или ЕГЭ, для поступления в 10 класс или в институт на бюджет и, самое главное, для жизни.
Я не буду тебя ни в чем убеждать, просто скажу одну вещь…
Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.
Но и это не главное.
Главное то, что они более счастливы (есть такие исследования). Возможно, потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…
Но думай сам…
Что нужно, чтобы быть наверняка лучше других на ОГЭ или ЕГЭ и быть в конечном итоге… более счастливым?
Набить руку, решая задачи.
На экзамене у тебя не будут спрашивать теорию.
Тебе нужно будет решать задачи на время. И, если ты не решал их (много!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь. Это как в спорте: нужно много раз повторить, чтобы выиграть наверняка.
Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!
Можешь воспользоваться нашим сборником задач с подробным разбором, и мы их всячески рекомендуем, потому что они разбиты по темам, по типам и даже собраны в целую программу подготовки.
Если решишь набить руку с помощью наших задач, зайди на сайт 100gia и приобрети одну из программ.
А еще можешь зарегистрироваться и получить доступ к огромному количеству бесплатных материалов, видеоуроков, тестов.
После регистрации ты сможешь:
- проверить свою готовность к каждому типу задач на ЕГЭ (пройдя тест);
- подтянуть слабые места с помощью видеоуроков, вебинаров;
- понять тему с помощью статей учебника YouClever;
- набить руку, решая задачи и получая проверку и решения;
- сдать пробный ЕГЭ и получить сразу оценку и разбор ошибок.
Бонус: информатика и физика.
И в заключение…
Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.
“Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.
Найди задачи и решай!
Скажи погромче!
Если умеешь решать задачи по свойствам трапеции об окружности и о сумме сторон, поздравляю, ты сделал шаг в олимпиадный уровень!
А еще задачи по этой теме встречаются особенно часто во второй части ОГЭ.
Понравилась ли тебе статья? Все ли было понятно?
Если есть вопросы или предложения, пиши нам внизу в комментариях! А еще пиши, что думаешь о статье в целом ????
Мы читаем все и будем очень рады узнать.
Удачи!
Источник
В материалах различных контрольных работ и экзаменов очень часто встречаются задачи на трапецию, решение которых требует знания ее свойств.
Выясним, какими же интересными и полезными для решения задач свойствами обладает трапеция.
После изучения свойства средней линии трапеции можно сформулировать и доказать свойство отрезка, соединяющего середины диагоналей трапеции. Отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований.
MO – средняя линия треугольника ABC и равна 1/2ВС (рис. 1).
MQ – средняя линия треугольника ABD и равна 1/2АD.
Тогда OQ = MQ – MO, следовательно, OQ = 1/2AD – 1/2BC = 1/2(AD – BC).
При решении многих задач на трапецию одним из основных приемов является проведение в ней двух высот.
Рассмотрим следующую задачу.
Пусть BT – высота равнобедренной трапеции ABCD с основаниями BC и AD, причем BC = a, AD = b. Найти длины отрезков AT и TD.
Решение.
Решение задачи не вызывает затруднения (рис. 2), но оно позволяет получить свойство высоты равнобедренной трапеции, проведенной из вершины тупого угла: высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на два отрезка, меньший из которых равен полуразности оснований, а больший – полусумме оснований.
При изучении свойств трапеции нужно обратить внимание на такое свойство, как подобие. Так, например, диагонали трапеции разбивают ее на четыре треугольника, причем треугольники, прилежащие к основаниям, подобны, а треугольники, прилежащие к боковым сторонам, равновелики. Это утверждение можно назвать свойством треугольников, на которые разбивается трапеция ее диагоналями. Причем первая часть утверждения доказывается очень легко через признак подобия треугольников по двум углам. Докажем вторую часть утверждения.
Треугольники BOC и COD имеют общую высоту (рис. 3), если принять за их основания отрезки BO и OD. Тогда SBOC/SCOD = BO/OD = k. Следовательно, SCOD = 1/k · SBOC.
Аналогично, треугольники BOC и АОВ имеют общую высоту, если принять за их основания отрезки CO и OA. Тогда SBOC/SAOB = CO/OA = k и SАOВ = 1/k · SBOC.
Из этих двух предложений следует, что SCOD = SАOВ.
Не будем останавливаться на сформулированном утверждении, а найдем связь между площадями треугольников, на которые разбивается трапеция ее диагоналями. Для этого решим следующую задачу.
Пусть точка O – точка пересечения диагоналей трапеции АBCD с основаниями BC и AD. Известно, что площади треугольников BOC и AOD равны соответственно S1 и S2. Найти площадь трапеции.
Так как SCOD = SАOВ, то SАВСD = S1+ S2 + 2SCOD.
Из подобия треугольников BОC и AOD следует, что ВО/OD = √(S₁/S2).
Следовательно, S₁/SCOD= BO/OD = √(S₁/S2), а значит SCOD= √(S1 · S2).
Тогда SАВСD = S1 + S2 + 2√(S1 · S2) = (√S1 + √S2)2.
С использованием подобия доказывается и свойство отрезка, проходящего через точку пересечения диагоналей трапеции параллельно основаниям.
Рассмотрим задачу:
Пусть точка O – точка пересечения диагоналей трапеции ABCD с основаниями BC и AD. BC = a, AD = b. Найти длину отрезка PK, проходящего через точку пересечения диагоналей трапеции параллельно основаниям. На какие отрезки делится PK точкой О (рис. 4)?
Из подобия треугольников AOD и BOC следует, что АO/OС = AD/BC = b/a.
Из подобия треугольников AOР и ACB следует, что АO/AС = PO/BC = b/(a + b).
Отсюда PO = BC · b / (a + b) = ab/(a + b).
Аналогично, из подобия треугольников DOK и DBC, следует, что OK = ab/(a + b).
Отсюда PO = OK и PK = 2ab/(a + b).
Итак, доказанное свойство можно сформулировать так: отрезок, параллельный основаниям трапеции, проходящий через точку пересечения диагоналей и соединяющий две точки на боковых сторонах, делится точкой пересечения диагоналей пополам. Его длина есть среднее гармоническое оснований трапеции.
Следующее свойство четырех точек: в трапеции точка пересечения диагоналей, точка пересечения продолжения боковых сторон, середины оснований трапеции лежат на одной линии.
Треугольники BSC и ASD подобны (рис. 5) и в каждом из них медианы ST и SG делят угол при вершине S на одинаковые части. Следовательно, точки S, T и G лежат на одной прямой.
Точно так же на одной прямой расположены точки T, O и G. Это следует из подобия треугольников BOC и AOD.
Значит, все четыре точки S, T, O и G лежат на одной прямой.
Так же можно найти длину отрезка разбивающего трапецию на две подобных.
Если трапеции ALFD и LBCF подобны (рис. 6), то a/LF = LF/b.
Отсюда LF = √(ab).
Таким образом, отрезок разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому длин оснований.
Докажем свойство отрезка, делящего трапецию на две равновеликие.
Пусть площадь трапеции равна S (рис. 7). h1 и h2 – части высоты, а х – длина искомого отрезка.
Тогда S/2 = h1 · (a + x)/2 = h2 · (b + x)/2 и
S = (h1 + h2) · (a + b)/2.
Составим систему
{h1 · (a + x) = h2 · (b + x)
{h1 · (a + x) = (h1 + h2) · (a + b)/2.
Решая данную систему, получим х = √(1/2(а2 + b2)).
Таким образом, длина отрезка, делящего трапецию на две равновеликие, равна√((а2 + b2)/2) (среднему квадратичному длин оснований).
Итак, для трапеции ABCD с основаниями AD и BC (BC = a, AD = b) доказали, что отрезок:
1) MN, соединяющий середины боковых сторон трапеции, параллелен основаниям и равен их полусумме (среднему арифметическому чисел a и b);
2) PK, проходящий через точку пересечения диагоналей трапеции параллельно основаниям, равен
2ab/(a + b) (среднему гармоническому чисел a и b);
3) LF, разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому чисел a и b, √(ab);
4) EH, делящий трапецию на две равновеликие, имеет длину √((а2 + b2)/2) (среднее квадратичное чисел a и b).
Признак и свойство вписанной и описанной трапеции.
Свойство вписанной трапеции: трапеция может быть вписана в окружность в том и только в том случае, когда она равнобедренная.
Свойства описанной трапеции. Около окружности можно описать трапецию тогда и только тогда, когда сумма длин оснований равна сумме длин боковых сторон.
Полезные следствия того, что в трапецию вписана окружность:
1. Высота описанной трапеции равна двум радиусам вписанной окружности.
2. Боковая сторона описанной трапеции видна из центра вписанной окружности под прямым углом.
Первое очевидно. Для доказательства второго следствия необходимо установить, что угол COD прямой, что так же не составляет большого труда. Зато знание этого следствия позволяет при решении задач использовать прямоугольный треугольник.
Конкретизируем следствия для равнобедренной описанной трапеции:
Высота равнобедренной описанной трапеции есть среднее геометрическое оснований трапеции
h = 2r = √(ab).
Рассмотренные свойства позволят более глубоко познать трапецию и обеспечат успешность в решении задач на применение ее свойств.
Остались вопросы? Не знаете, как решать задачи на трапецию?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!
Зарегистрироваться
© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.
Источник
В этой статье мы постараемся насколько возможно полно отразить свойства трапеции. В частности, речь пойдет про общие признаки и свойства трапеции, а также про свойства вписанной трапеции и про окружность, вписанную в трапецию. Затронем мы и свойства равнобедренной и прямоугольной трапеции.
Пример решения задачи с использованием рассмотренных свойств поможет вам разложить по местам в голове и лучше запомнить материал.
Трапеция и все-все-все
Для начала коротко вспомним, что такое трапеция и какие еще понятия с ней связаны.
Итак, трапеция – фигура-четырехугольник, две из сторон которой параллельны друг другу (это основания). И две не параллельны – это боковые стороны.
В трапеции может быть опущена высота – перпендикуляр к основаниям. Проведены средняя линия и диагонали. А также из любого угла трапеции возможно провести биссектрису.
Про различные свойства, связанные со всеми эти элементами и их комбинациями, мы сейчас и поговорим.
Свойства диагоналей трапеции
Чтобы было понятнее, пока читаете, набросайте себе на листке трапецию АКМЕ и проведите в ней диагонали.
- Если вы найдете середины каждой из диагоналей (обозначим эти точки Х и Т) и соедините их, получится отрезок. Одно из свойств диагоналей трапеции заключается в том, что отрезок ХТ лежит на средней линии. А его длину можно получив, разделив разность оснований на два: ХТ = (a – b)/2.
- Перед нам?