Какие свойства света подтверждает явление интерференции

Какие свойства света подтверждает явление интерференции thumbnail

У этого термина существуют и другие значения, см. Интерференция.

Интерфере́нция све́та (лат. interferens, от inter — между + -ferens — несущий, переносящий) — интерференция электромагнитных волн (в узком смысле – прежде всего, видимого света) — перераспределение интенсивности света в результате наложения (суперпозиции) нескольких световых волн. Это явление обычно характеризуется чередующимися в пространстве максимумами и минимумами интенсивности света. Конкретный вид такого распределения интенсивности света в пространстве или на экране, куда падает свет, называется интерференционной картиной.

Поскольку явление интерференции прямо зависит от длины волны, то при интерференции света, содержащего различные спектральные составляющие (цвета), например, белого света, происходит разделение этих спектральных составляющих, глазом видимые в случае белого света как радужные полосы.

История открытия[править | править код]

Впервые явление интерференции было независимо обнаружено Гримальди (для луча, прошедшего через два близких отверстия), Робертом Бойлем и Робертом Гуком (для интерференции в тонких слоях прозрачных сред, таких как мыльные плёнки, тонкие стенки стеклянных шаров, тонкие листки слюды; они наблюдали при этом возникновение разноцветной окраски; при этом Гук заметил и периодическую зависимость цвета от толщины слоя). Гримальди впервые и связал явление интерференции с идеей волновых свойств света, хотя ещё в довольно туманном и неразвитом виде.

В 1801 году Томас Юнг (1773—1829 гг.), введя «принцип суперпозиции», первым дал достаточно детальное и, по сути, не отличающееся от современного объяснение этого явления и ввёл в научный обиход термин «интерференция» (1803). Он также выполнил демонстрационный эксперимент по наблюдению интерференции света, получив интерференцию от двух щелевых источников света (1802); позднее этот опыт Юнга стал классическим.

Интерференция света в тонких плёнках[править | править код]

основная статья:Интерференция в тонких плёнках

Интерференция в тонкой плёнке. Альфа — угол падения, бета — угол преломления, жёлтый луч отстанет от оранжевого, они сводятся глазом в один и интерферируют.

Получить устойчивую интерференционную картину для света от двух разделённых в пространстве и независящих друг от друга источников света не так легко, как для источников волн на воде. Атомы испускают свет цугами очень малой продолжительности, и когерентность нарушается. Сравнительно просто такую картину можно получить, сделав так, чтобы интерферировали волны одного и того же цуга[1]. Так, интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз у просветлённых объективов. Луч света длиной волны , падая перпендикулярно к поверхности плёнки толщиной , отразится дважды — от внутренней и наружной её поверхностей. Если плёнка достаточно тонка, так что её толщина не превышает длину цуга волн падающего света, то на верхней границе раздела сред отражённые лучи будут когерентны и поэтому смогут интерферировать.

Изменение фазы проходящего через плёнку луча, в общем случае, зависит от показателя преломления плёнки и окружающих её сред. Кроме того, надо учитывать, что свет при отражении от оптически более плотной среды меняет свою фазу на половину периода. Так, например, в случае для воздуха ( ≈ ), окружающего тонкую масляную плёнку ( ≈ ), луч, отражённый от внешней поверхности будет иметь сдвиг фазы , а от внутренней — не будет. Интерференция будет конструктивной, если итоговая разница между пройденными этими лучами путями на поверхности плёнки будет составлять полуцелое число длин волн в плёнке .

То есть

Для деструктивной интерференции в данном примере необходимо, чтобы разность фаз между лучами была кратна .

То есть

Полное гашение лучей произойдет для толщин плёнки:

Если  нм, то длина этой волны в масляной плёнке нм.

Интерференция света на мыльном пузыре

При формула даёт результат нм — и это минимальная толщина плёнки для данных условий для образования деструктивной интерференции.

Лучи соседних участков спектра по обе стороны от  нм интерферируют не полностью и только ослабляются. Результирующее усиление одних частей спектра и ослабление других меняет окраску плёнки. Причем малейшие изменения толщины плёнки сразу же выражаются в смещении спектра наблюдаемого цвета — этот эффект легко продемонстрировать на примере с мыльным пузырём.

Явление интерференции наблюдается в тонком слое несмешивающихся жидкостей (керосина или масла на поверхности воды), в мыльных пузырях, бензине, на крыльях бабочек, в цветах побежалости, и т. д.

Кольца Ньютона[править | править код]

Другим методом получения устойчивой интерференционной картины для света служит использование воздушных прослоек, основанное на одинаковой разности хода двух частей волны: одной — сразу отраженной от внутренней поверхности линзы и другой — прошедшей воздушную прослойку под ней и лишь затем отразившейся. Её можно получить, если положить плосковыпуклую линзу на стеклянную пластину выпуклостью вниз. При освещении линзы сверху монохроматическим светом образуется тёмное пятно в месте достаточно плотного соприкосновения линзы и пластинки, окружённое чередующимися тёмными и светлыми концентрическими кольцами разной интенсивности. Тёмные кольца соответствуют интерференционным минимумам, а светлые — максимумам, одновременно тёмные и светлые кольца являются изолиниями равной толщины воздушной прослойки. Измерив радиус светлого или тёмного кольца и определив его порядковый номер от центра, можно определить длину волны монохроматического света. Чем круче поверхность линзы, особенно ближе к краям, тем меньше расстояние между соседними светлыми или тёмными кольцами[2].

Математическое описание[править | править код]

Интерференция двух плоских волн[править | править код]

Пусть имеются две плоские волны:
  и  

По принципу суперпозиции результирующее поле в области пересечения этих волн будет определяться суммой:

Интенсивность задается соотношением:

Откуда с учётом:
 :

Для простоты рассмотрим одномерный случай   и сонаправленность поляризаций волн,
тогда выражение для интенсивности можно переписать в более простом виде:

Интерференционная картина представляет собой чередование светлых и темных полос, шаг которых равен:

Примером этого случая является интерференционная картина в отраженном от поверхностей плоскопараллельной пластинки свете.

Случай неравных частот[править | править код]

В некоторых учебниках и пособиях говорится о том, что интерференция света возможна только для волн, образованных от одного источника света путём амплитудного либо полевого деления волновых фронтов. Это утверждение является неверным. С точки зрения принципа суперпозиции интерференция существует всегда, даже когда интерферируют волны от двух разных источников света. Правильно было бы говорить о наблюдении или возможности наблюдения интерференционной картины. Последняя может быть нестационарна во времени, что приводит к замазыванию и исчезновению интерференционных полос.
Рассмотрим две плоские волны с разными частотами:

  и  

По принципу суперпозиции результирующее поле в области пересечения этих волн будет определяться суммой:

Пусть некоторый прибор, обладающий некоторым характерным временем регистрации (экспозиции), фотографирует интерференционную картину. В физической оптике интенсивностью называют усредненный по времени поток световой энергии через единичную площадку ортогональную направлению распространения волны. Время усреднения определяется временем интегрирования фотоприемника, а для устройств, работающих в режиме накопления сигнала (фотокамеры, фотоплёнка и т. п.), временем экспозиции. Поэтому приемники излучения оптического диапазона реагируют на среднее значение потока энергии. То есть сигнал с фотоприемника пропорционален:

где под <> подразумевается усреднение. Во многих научно технических приложениях данное понятие обобщается на любые, в том числе и не плоские волны. Так как в большинстве случаев, например в задачах связанных с интерференцией и дифракцией света, исследуется в основном пространственное положение максимумов и минимумов и их относительная интенсивность, постоянные множители, не зависящие от пространственных координат, часто не учитываются. По этой причине часто полагают:

Квадрат модуля амплитуды задается соотношением:

Откуда, подставляя напряженность электрического поля, получим:

,   где ,   ,  

С учётом определения интенсивности можно перейти к следующему выражению:

[1] ,   где   — интенсивности волн

Взятие интеграла по времени и применение формулы разности синусов даёт следующие выражения для распределения интенсивности:

В итоговом соотношении слагаемое, содержащее тригонометрические множители, называется интерференционным членом. Оно отвечает за модуляцию интенсивности интерференционными полосами. Степень различимости полос на фоне средней интенсивности называется видностью или контрастом интерференционных полос:

Условия наблюдения интерференции[править | править код]

Рассмотрим несколько характерных случаев:

1. Ортогональность поляризаций волн.

При этом  и  . Интерференционные полосы отсутствуют, а контраст равен 0.
Далее, без потери общности, можно положить, что поляризации волн одинаковы.

2. В случае равенства частот волн и контраст полос не зависит от времени экспозиции .

3. В случае   (радиан) значение функции    и интерференционная картина не наблюдается.
Контраст полос, как и в случае ортогональных поляризаций, равен 0

4. В случае   контраст полос существенным образом зависит от разности частот и времени экспозиции.

Общий случай интерференции[править | править код]

При взятии интеграла в соотношении [1] полагалось, что разность фаз не зависит от времени. Реальные же источники света излучают с постоянной фазой лишь в течение некоторого характерного времени, называемого временем когерентности. По этой причине, при рассмотрении вопросов интерференции оперируют понятием когерентности волн. Волны называют когерентными, если разность фаз этих волн не зависит от времени. В общем случае говорят, что волны частично когерентны. При этом поскольку существует некоторая зависимость от времени, интерференционная картина изменяется во времени, что приводит к ухудшению контраста либо к исчезновению полос вовсе. При этом в рассмотрении задачи интерференции, вообще говоря и не монохроматического (полихроматического) излучения, вводят понятие комплексной степени когерентности . Интерференционное соотношение принимает вид

Оно называется общим законом интерференции стационарных оптических полей.

Интерференция отдельных фотонов[править | править код]

Интерференция света происходит не в результате сложения разных фотонов, а в результате интерференции фотона самого с собой.[3] При этом временная когерентность не требуется для формирования статистической интерференционной картины — фотоны могут проходить один за одним с неограниченным периодом следования.[3][4]
В 1909 году английский учёный Джеффри Тейлор провёл опыт с использованием чрезвычайно слабого источника света и установил, что волновое поведение присуще отдельным фотонам.

См. также[править | править код]

  • Дисперсия света
  • Дифракция света
  • Интерференция волн — общее описание интерференции как волнового процесса.
  • Каустика
  • Поляризация волн
  • Цуг волн

Примечания[править | править код]

Литература[править | править код]

  • Яштолд-Говорко В. А. Фотосъёмка и обработка. Съёмка, формулы, термины, рецепты, — Изд. 4-е, сокр. — М.: «Искусство», 1977.
  • Сивухин Д. В. Общий курс физики. — М.. — Т. IV. Оптика.

Ссылки[править | править код]

  • Интерференция света // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  • Интерференция света — статья из Физической энциклопедии
  • Flex приложение, демонстрирующее принципы работы интерферометра Фабри-Перо
  • Энергия электромагнитных волн. Интенсивность света
  • Свойства источника света и материала. Типы источников света. Суммарное освещение

Источник

Интерференция и дифракция

В физике интерференция – это явление, при котором две волны накладываются друг на друга, образуя волну большей или меньшей амплитуды.

Конструктивные помехи возникают, когда разность фаз между волнами кратна 2π, тогда как деструктивные помехи возникают, когда разность π, 3π, 5π и т. Д.

Дифракция относится к различным явлениям, которые возникают, когда волна сталкивается с препятствием. В классической физике явление дифракции описывается как видимое изгибание волн вокруг небольших препятствий и распространение волн мимо небольших отверстий.

условия

· Помехи. Эффект, вызванный суперпозицией двух систем волн, например, искажение сигнала вещания из-за атмосферных или других воздействий.

· амплитуда – максимальное абсолютное значение некоторой величины, которая изменяется.

· дифракция: разрушение электромагнитной волны при прохождении геометрической структуры (например, щели) с последующим восстановлением волны по интерференции.

Интерференция обычно относится к взаимодействию волн, которые коррелированы или когерентны друг с другом, либо потому, что они приходят от одного и того же источника, либо потому, что они имеют одинаковую (или почти одинаковую) частоту. Эффекты помех могут наблюдаться со всеми типами волн, включая световые, радио, акустические и поверхностные волны воды. В химии применение интерференции к свету наиболее актуально для изучения материи.

Механизм вмешательства

Принцип суперпозиции волн гласит, что, когда две или более волн падают на одну и ту же точку, полное смещение в этой точке равно векторной сумме смещений отдельных волн. Если гребень волны встречает гребень другой волны той же частоты в той же точке, то величина смещения является суммой отдельных величин; это известно, как конструктивное вмешательство. Если гребень одной волны встречает впадину другой волны, то величина смещений равна разнице в отдельных величинах; это известно, как разрушительное вмешательство.

Интерференция двух волн – эти два примера представляют собой конструктивное и деструктивное вмешательство в волновых явлениях.

Конструктивные помехи возникают, когда разность фаз между волнами кратна 2π, тогда как деструктивные помехи возникают, когда разность составляет π, 3π, 5π и т. Д. Если разность фаз является промежуточной между этими двумя крайностями, то величина смещение суммированных волн лежит между минимальным и максимальным значениями.

Рассмотрим, например, что происходит, когда два одинаковых камня сбрасывают в неподвижную лужу воды в разных местах. Каждый камень генерирует круговую волну, распространяющуюся наружу от точки падения камня. Когда две волны перекрываются, суммарное смещение в конкретной точке является суммой смещений отдельных волн. В некоторых точках они будут в фазе и приведут к максимальному смещению. В других местах волны будут в противофазе, и в этих точках не будет никакого чистого смещения. Таким образом, части поверхности будут стационарными.

Два источника помех Эффект двух волн, мешающих друг другу, например, два камня, брошенные в лужу воды.

дифракция

Дифракция относится к различным явлениям, которые возникают, когда волна сталкивается с препятствием. В классической физике явление дифракции описывается как видимое изгибание волн вокруг небольших препятствий и распространение волн мимо небольших отверстий. Подобные эффекты возникают, когда световые волны проходят через среду с переменным показателем преломления или звуковую волну через среду с переменным акустическим сопротивлением. Дифракция происходит со всеми волнами, включая звуковые волны, волны воды и электромагнитные волны, такие как видимый свет, рентгеновские лучи и радиоволны. Поскольку физические объекты обладают волнообразными свойствами (на атомном уровне), дифракция также происходит с веществом и может быть изучена в соответствии с принципами квантовой механики. Итальянский ученый Франческо Мария Гримальди придумал слово дифракция, чтобы записать точные наблюдения этого явления в 1665 году.

пример дифракции

Эффекты дифракции часто наблюдаются в повседневной жизни. Наиболее яркими примерами дифракции являются те, которые включают свет; например, близко расположенные дорожки на CD или DVD действуют как дифракционная решетка, образуя знакомый узор радуги, наблюдаемый при взгляде на диск. Этот принцип может быть расширен, чтобы создать решетку со структурой, которая будет производить любую желаемую дифракционную картину; Голограмма на кредитной карте является примером. Дифракция в атмосфере от мелких частиц может привести к тому, что яркое кольцо будет видно вокруг источника яркого света, такого как солнце или луна. Тень твердого объекта, используя свет от компактного источника, показывает небольшие полосы около его краев. Все эти эффекты происходят потому, что свет распространяется как волна.

Ричард Фейнман сказал: «Никто никогда не мог удовлетворительно определить разницу между интерференцией и дифракцией. Это просто вопрос использования, и между ними нет особой, важной физической разницы».

Источник

Явление интерференции в природе

Иногда при наблюдении областей пересечения двух или более световых пучков можно наблюдать чередующиеся светлые и темные полосы. Можно также видеть, что на некоторых поверхностях, таких, как мыльные пленки, взаимодействующие световые волны белого цвета формируют радужные изображения. Такие же явления можно наблюдать на масляных пятнах, появляющихся на лужах вследствие утечек топлива или масла из двигателей автомобилей, на морозных узорах, появляющихся зимой на стеклах, на крыльях насекомых. Это физическое явление связано с тем, что электромагнитные волны, несущие свет, взаимодействуют пересекаясь, усиливают и ослабляют друг друга с определенной периодичностью. В максимумах таких пересечений, где волны действуют синфазно, интенсивность света выше, в минимумах, соответственно, ниже. Это явление и есть интерференция.

Определение 1

Интерференция световых волн — это их соединение при совпадающих частотах, но различающихся фазах (когерентных волн), порождающее повышение и понижение интенсивности совместных волновых колебаний.

Готовые работы на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Открытие интерференции. Опыт Юнга

Ученые конца XVII в. Роберт Бойль и Роберт Гук открыли интерференцию независимо друг от друга при наблюдениях за разноцветными тонкими масляными плёнками на воде. Томас Юнг в начале 1800-х гг. теоретически обобщил эти наблюдения и ввел в научный оборот само понятие интерференции света. Он также впервые продемонстрировал это явление в ходе опыта с использованием щелевых источников.

Для наблюдения интерференции нужны световые волны, колеблющиеся с одинаковой частотой, но не в одинаковой фазе. Из источников света только лазеры обладают свойством когерентности, однако получить ее можно разбив единый световой пучок на два или более, что и проделал Юнг во время своего знаменитого опыта.

Рисунок 1. Опыт Юнга. Автор24 — интернет-биржа студенческих работ

Щели $S_1$ и $S_2$ в опыте Юнга являются источниками вторичных волн, происходящих от источника $S$. Если щели расположены симметрично, то световые пучки от $S_1$ и $S_2$ порождают волны, колеблющиеся синфазно, но для наблюдателя, рассматривающего, например, точку $P$ под углом, они не будут выглядеть таковыми, поскольку свет от каждой из щелей проходит до этой точки разные расстояния $r_1$ и $r_2$, т.е. волны колеблются со сдвигом по фазе.

Замечание 1

Опыт Юнга экспериментальным путем доказывает, что волны от щелевых источников распространяются независимо друг от друга и складываются в точке наблюдения. Это явление известно как принцип суперпозиции.

Выразим разность между расстояниями, которое проходит свет как

$Delta = r_2 – r_1$

Это расстояние называется разностью хода.

Для определения интенсивности свечения интерференционных полос на экране выразим каждую из световых волн как

$E = a cdot cos{(ω cdot t – k cdot r)}$, где:

  • $a$ – амплитуда,
  • $k$ – волновое число,
  • $ω$ – круговая частота,
  • $E$ – модуль вектора напряженности электромагнитного поля световой волны.

При сложении волн результирующее колебание можно выразить как

$E = a_1 cdot cos{(ωt – kr_1)} + a_2 cdot cos{(ωt – kr_2)} = A cdot cos{(ωt – φ)}$ ,

где $A$ – амплитуда результирующего колебания, а $φ$ – его фаза.

Интенсивность света, от которой зависит темная или светлая “окраска” интерференционных полос, принято выражать как квадрат амплитуды электрического поля волны:

$I = A^2$

Выразив амплитуду из предыдущих формул и подставив в уравнение интенсивности, получим, после тригонометрических преобразований:

$I = A^2 = a_1^2 + a_2^2 + 2 cdot a_1 cdot a_2 cdot cos{k cdot Delta} = I_1 cdot I_2 + 2 cdot sqrt{I_1 cdot I_2} cdot cos{k cdot Delta}$ ,

где $Delta$ – разность хода.

По этой формуле можно вычислить интенсивность освещенности любой точки экрана, на который падает свет от взаимодействующих в процессе интерференции волн.

Условия максимума и минимума

Как определить точки с наибольшей и наименьшей освещенностями при наблюдении интерференции? Для ответа на этот вопрос выразим разность хода через длину волны $lambda$ и количество волн, укладывающихся в это расстояние $m$:

$Delta = m cdot lambda ($m = 0, ±1, ±2, …)$

Минимальная интенсивность результирующей волны (т.е. интенсивность в точках экрана, где полосы темные) описывается формулой:

$Delta = (2m + 1) cdot frac{lambda}{2}$

Это означает, что разность хода должна быть в точках минимума кратна нечетному числу волн. Для точек максимума, напротив, число волн, укладывающихся в разность хода, должно быть четным:

$Delta = 2m cdot frac{lambda}{2}$

Замечание 2

Интерференция подтверждает волновую природу света. Ее удобно рассматривать с помощью таких понятий, как длина волны, частота, фаза и прочих характеристик, свойственных волновым явлениям.

Интерференция света в тонких пленках

Картину интерференции часто можно наблюдать в тонких пленках, например, таких, какие образуются на поверхности воды при попадании на нее маслянистых прозрачных жидкостей. Такие вещества, будучи легче воды, растекаются по ее поверхности до тех пор, пока их толщина не будет представлять собой всего несколько слоев молекул. Это расстояние сопоставимо с длиной световой волны. К тому же наружная и внутренняя поверхности таких пленок параллельны с высокой точностью.

Интерференционная картина при попадании света на такую пленку получается потому, что часть пучка отражается от внешней ее стороны, а часть, пройдя сквозь пленку, отражается от внутренней.

Поскольку оптическая плотность пленки отличается от оптической плотности среды, из которой пришел световой пучок, световой луч преломляется при вхождении в пленку и выходе из нее. От точки, где такой луч выходит из пленки, может отразиться еше один луч, пришедший из того же источника. Таким образом, для наблюдателя эта точка будет выглядеть как источник двух независимых лучей, светящих с одной частотой, но с разностью по фазе, возникающей в результате задержки при прохождении первого луча сквозь пленку. Эта разность зависит от угла, под которым наблюдатель смотрит на точку, а математические закономерности, описывающие характеристики результирующей волны, будут такими же, как в опыте Юнга.

Особенностью интерференционной картины, порождаемой тонкими пленками, является то, что на них меняется не интенсивность освещения, а цвета, которые при изменении угла зрения “переливаются”, создают радужные картины. Это связано с тем, что длина волны результирующего пучка настолько мала, что сопоставима с длинами волн различных цветов. Если пленка немного утончается (например, вследствие ветра, колышущего поверхность воды), цвет интерференционной картины смещается к синей стороне спектра, если утолщается – к красной.

Зависимость длины результирующей волны от толщины пленки можно описать формулой

$2dn = m cdot lambda$ ,

где $d$ – толщина пленки, $n$ – коэффициент, отражающий оптическую плотность вещества пленки и, следовательно, обуславливающий коэффициент преломления.

Кольца Ньютона

Еще одно проявление интерференции можно наблюдать в так называемых кольцах Ньютона. Увидеть их можно в ходе следующего опыта. Нужно положить выпуклую линзу на прозрачную пластину выпуклостью вниз. Верхняя поверхность линзы должна быть плоской. Если осветить такую систему монохроматическим (с постоянной длиной волны) светом сверху, то вокруг места соприкосновения линзы и пластинки образуется система из темных и светлых концентрических колец. Замерив диаметр одного из таких колец и определив его порядковый номер, можно узнать длину волны освещающего пучка. Чем больше выпуклость линзы, тем ближе друг к другу располагаются светлые и тёмные кольца.

Рисунок 2. Кольца Ньютона. Автор24 — интернет-биржа студенческих работ

Здесь, как и в случаях с опытом Юнга и тонкими пленками, мы имеем дело с распадением исходного светового пучка на два производных с той же длиной волны (частотой), но сдвинутых по фазе за счет преломления в линзе и ее геометрии.

Зависимость между радиусом кольца $r$, кривизной линзы $R$ и длиной волны $lambda$ описывается формулой

$r = sqrt{R cdot k cdot lambda}$ .

Проблема когерентности волн

Для возникновения интерференционных полос недостаточно двух источников света, излучающих с одинаковой частотой. В повседневной жизни можно видеть множество примеров, когда при наличии таких источников (например, светящихся одноцветных светодиодов в гирлянде) никаких светлых и темных полос не возникает.

В реальности световые волны, за исключением тех, что излучают некоторые лазеры, не совпадают по частоте с достаточной для появления интерференционной картины точностью. Источник света состоит из атомов, излучающих свет независимо друг от друга в хаотической последовательности и с интервалами порядка $tau = 10^{–8}$ с.

Это можно объяснить следующим образом. Результирующие волны от очень большого числа источников существует в течение очень краткого периода времени, после чего в процесс вступает другая группа излучающих атомов. Суммарное излучение меняет амплитуду и фазу, т.е. интерференционная картина появляется на чрезвычайно малые моменты времени, неразличимые с помощью оптических приборов. Фрагменты испускаемого света продолжительностью $tau$ называют цугами. Их длина в пространстве равна $c cdot τ$, где $c$ – скорость света. Фазы разных цугов не совпадают, поэтому мы видим не интерференционную картину, а хаотический по фазе набор цугов, т.е. эти колебания некогерентны, а интерференционные полосы хаотически перемещаются и глаз или фотоприбор вместо них видит лишь точки с усредненной освещенностью.

Применение интерференции в технике

Благодаря тому, что интерференционные изображения чувствительны к малейшим изменениям геометрии и оптической плотности прозрачных тел, интерференцию используют в технике для точных измерений. Особенно широко она примеряется в оптике.

Например, при шлифовке вогнутых зеркал для телескопов отклонения их поверхностей от геометрически правильной формы проверяют особым образом освещая и рассматривая отражение светового пучка на специальном экране. Характер расположения светлых и темных полос выявляет характер дефектов.

Просветление линз – еще одно применение интерференции в оптике. Объективы оптических устройств (фотоаппаратов, проекторов, перископов) представляют собой системы, состоящие из большого числа оптических компонентов (линз, призм, зеркал). Их стеклянные поверхности отражают около 5% попадающего на них света. Интерференция используется для снижения этих потерь. Для этого на поверхности оптических компонентов наносят тонкие пленки. Их толщину подбирают так, чтобы происходило гашение отражающегося света для длин волн зеленой (средней) части. Красные и фиолетовые лучи при прохождении через объективы ослабляются в меньшей степени, что, кстати, обуславливает сиреневые блики, испускаемые объективами в отраженном свете.

Интерферометры применяются также для анализа химического состава и физических характеристик (температуры, плотности) газов и других пропускающих свет веществ.

Источник