Какие свойства степени с целым показателем

Какие свойства степени с целым показателем thumbnail

План урока:

Определение степени с целым числом

Свойства степени с целым показателем

Преобразование выражений с целыми степенями

Стандартный вид числа

Действия с числами в стандартном виде

Определение степени с целым показателем

В 7 классе мы уже изучили степень с натуральным показателем. Напомним, что запись anозначает произведение, состоящее из n множителей, каждый из которых равен a:

1fdgd

Число а именуется основанием степени, а n – это показатель степени. Отдельно напомним, что число в первой степени равно самому себе:

а1 = а

Любое число, кроме нуля, возведенное в нулевую степень, дает единицу:

а0 = 1

Сам же ноль в нулевую степень возводить нельзя (так же, как и нельзя делить на ноль).

Математики стремятся по возможности расширить используемые ими понятия. Можно ли сделать показатель степени отрицательным числом? Для этого надо дать новое определение степени. При этом важно, чтобы все уже известные нам правила действий со степенями (их умножение и деление) оставались справедливыми.

При делении степеней их показатели вычитаются, например:

815:813 = 815 – 13 = 82 = 64

Теперь попробуем произвести деление в том случае, когда показатель делимого меньше показателя делителя:

815:817 = 815 – 17 = 8– 2

Получили отрицательную степень, смысл которой нам пока не понятен. Выполним это же деление с помощью дробей, при этом учтем, что 817 = 815•82:

Итак, мы получили, что

То есть 8– 2 – это число, обратное 82. Подобные рассуждения помогают сформулировать определение степени с отрицательным показателем:

4gdfg

Напомним, что обратными называются числа, которые при умножении друг на друга дают единицу. Примерами обратных чисел являются:

  • 5 и 1/5
  • 2 и 1/2
  • (– 15) и – 1/15

Вообще для каждой дроби обратной является «перевернутая дробь», поэтому следующие пары чисел являются обратными:

5ghdfgh

Теперь покажем, как вычислять отрицательную степень числа, пользуясь определением:

6fgh

Вообще находить отрицательную степень дроби удобней с помощью формулы

Докажем ее справедливость:

Покажем применение этой формулы:

9gdfg

Заметим, что возвести ноль в отрицательную степень не получится. Действительно, если мы попробуем, например, вычислить 0– 2, то получим деление на ноль:

Вообще, при возведении нуля в любую отрицательную степень получается деление на ноль, а потому выражение 0n, где n–отрицательное число, не имеет смысла.

Отрицательные степени очень удобны при работе с некоторыми выражениями. В частности, любую дробь с их помощью можно записать в виде произведения:

Пример: Запишите в виде произведения дробь

Решение.

Ответ: а2b– 4

Отдельно заметим, формулу, определяющую отрицательную степень

можно и «перевернуть». В ней число 1 выступает в роли делимого, выражение аn – это делитель, а a– n – это частное. Известно, что делитель можно получить, поделив делимое на частное, то есть верна запись

Это значит, что справедливо не только равенство

но и

Свойства степени с целым показателем

Правила действий со степенями, имеющими целый показатель, не отличаются от тех, которые мы изучали ранее. Напомним их.

19khjl

Убедимся в этом на нескольких примерах:

20sdfs

Однако эти примеры ещё не являются полноценными доказательствами этого свойства степеней. Приведем общее доказательство для того случая, когда число в натуральной степени умножается на число в отрицательной степени:

Также докажем справедливость этого правила и в том случае, когда перемножаются два числа в отрицательной степени:

23gdfgd

Проиллюстрируем это:

24ghfdgh

Для строгого доказательства заменим операцию деления на умножение. Так как

25fgfh

Здесь мы сначала заменяем степень an на дробь 1/а– n (по определению отрицательной степени), а потом пользуемся тем, что деление на дробь равносильно умножению на «перевернутую дробь».

26ghdfg

Продемонстрируем применение этого правила:

27jghjg

Следующие правила позволяют работать со степенями, у которых различаются основания, но совпадают показатели:

28gdfgd

Покажем, как это работает:

Для общего случая доказательство будет выглядеть так:

31fsgf

Это правило можно проиллюстрировать так:

Приведем доказательство этого свойства для отрицательных степеней с целым показателем:

Как видим, свойства степеней с целыми показателями (в частности, с отрицательными), не отличаются от уже изученных нами свойств степеней с натуральными показателями. Единственное исключение – добавляется дополнительное ограничение, согласно которому основанием степени с отрицательным целым показателем не может быть ноль. То есть запись 0– 3 не имеет смысла, хотя выражение 03 имеет смысл:

03 = 0•0•0 = 0

Рассмотрим несколько заданий, в которых необходимо использовать правила работы со степенями

Пример. Представьте в виде степени выражение

у– 8•у10

Решение. При перемножении степеней их показатели следует сложить:

у– 8•у10 = у– 8 + 10 = у2

Ответ: у2

Пример. Вычислите значение выражения

(10– 1)– 6 : (0,1)– 3

Решение.

(10– 1)– 6 : (0,1)– 3 = 10(– 1)•(– 6): (10– 1)– 3 = 106: 103 = 106 – 3 = 103 = 1000

Ответ: 1000

Пример. Представьте число 3– 36 в виде степени с основанием 9.

Решение.

3– 36 = 32•(– 18) = 9– 18

Ответ: 9– 18

Пример. Представьте произведение 64v– 3 как степень.

Решение.

64v– 3 = 43v– 3 = (1/4)– 3v– 3 = (v/4)– 3

Ответ: (v/4)– 3

Преобразование выражений с целыми степенями

Ранее мы рассматривали понятие рационального выражения. Так называлось выражение, в котором используются 4 основные арифметические операции (в том числе деление), а также возведение в степень. Однако использование отрицательной степени помогает избавиться от операции деления как ненужной. Например, возможны такие преобразования:

34gdfgd

Во всех случаях мы заменили деление на возведение в отрицательную степень.

Рассмотрим несколько примеров по преобразованию выражений со степенями.

Пример. Упростите выражение

Решение. Возведение в степень (– 1) означает, по сути, переворачивание дроби:

36jhl

Ответ: ab

Пример. Упростите дробь

Решение. Вынесем в числителе множитель а– 3 за скобки

Пример. Представьте в виде дроби выражение

Решение.

40hjyu

В данном случае мы воспользовались формулой суммы кубов:

a3 + b3 = (a + b)(a2 – ab + b2)

Пример. Упростите выражение

(h2 + ht + t2)(h– 2 + h– 1t– 1 + t– 2)– 1

Решение.

Вынесем из первой скобки множитель h2t2. При вынесении множителя каждое слагаемое делится на этот самый множитель:

41hgfj

C учетом этого получаем:

(h2 + ht + t2) = h2t2(t– 2 + h– 1t– 1 + h– 2) = h2t2(h– 2 + h– 1t– 1 + t– 2)

Зная это, можно записать

(h2 + ht + t2)(h– 2 + h– 1t– 1 + t– 2)– 1 = h2t2(h– 2 + h– 1t– 1 + t– 2)(h– 2 + h– 1t– 1 + t– 2)– 1

В двух скобках стоят одинаковые выражения, но одно из них в степени (– 1). Такие выражения можно сократить, ведь они являются обратными числами:

а•a– 1 = 1

Поэтому

h2t2(h– 2 + h– 1t– 1 + t– 2)(h– 2 + h– 1t– 1 + t– 2)– 1 = h2t2

Ответ: h2t2

Пример. Докажите тождество

Решение. Преобразуем левую часть:

Стандартный вид числа

В физике и других естественных науках изучаются объекты, чьи характеристики (масса, длина, скорость и т.д.) могут измеряться очень большими или очень малыми величинами. Например, масса атома железа равна 0,0000000000000000000000000927 килограмм, а масса Солнца оценивается в 1988500000000000000000000000000 килограмм. Работать с такими числами достаточно неудобно. Сложно даже сравнивать их между собой, ведь для этого надо подсчитывать количество нулей в каждом числе. Поэтому в науке часто используется особая форма чисел, которую называют стандартным видом числа. Он основан на том, что любое число можно записать как произведение числа a, находящегося в пределах от 1 до 10, и какой-нибудь целой (в том числе отрицательной) степени десятки.

8 6 2

Приведем примеры представления чисел в стандартном виде

90 = 9•10 = 9•101

91 = 9,1•10 = 9,1•101

900 = 9•100 = 9•102

912 = 9,12•100 = 9,12•102

Покажем случаи, когда порядок равен нулю или меньше него

7 = 7•1 = 7•100

7,63 = 7,63•1 = 7,63•100

0,8 = 8•0,1 = 8•10– 1

0,0875 = 8,75•100 = 8,75•10– 2

Посмотрите, насколько короче выглядит запись физических величин с использованием стандартного вида:

  • масса Солнца: 1988500000000000000000000000000 кг = 1,9885•1030 кг;
  • масса Земли: 5970000000000000000000000 кг = 5,97•1024 кг;
  • масса атома железа: 0,0000000000000000000000000927 = 9,27•10-26 кг.

Пример. Укажите стандартный вид числа 76000000.

Решение. Первой ненулевой цифрой в записи является семерка, поэтому стандартный вид будет выглядеть так:

7,6•10n

где n– какое-то целое число, которое нам надо найти. Поставим в исходном числе запятую после семерки:

7,6000000

Видно, что мы отделили запятой 7 разрядов, то есть перенесли запятую на 7 разрядов вправо. Поэтому n равно 7:

76000000 = 7,6•107

Действительно, умножение дробного числа на 10 приводит к смещению запятой на одну позицию влево, поэтому при умножении 7,6 на 107 получим 76000000. Наши действия можно проиллюстрировать рисунком:

В случае с числами, меньшими единицы, также надо смотреть на количество разрядов между запятой и первой ненулевой цифрой. Пусть надо представить в стандартном виде десятичную дробь 0,000005605. Значащей частью числа будет 5,605. Для того чтобы получить ее, надо в исходной дроби перенести запятую на 6 разрядов вправо. Поэтому порядок будет равен (– 6):

Теперь попробуем выполнить обратное преобразование – по стандартному виду числа записать его в привычной нам десятичной форме. Пусть есть запись 2,56•105. Для начала искусственно припишем несколько ноликов к значащей части:

2,56 = 2,5600000

Теоретически мы можем дописать любое количество нулей, величина дроби от этого не изменится. Порядок числа равен 5, а потому запятую надо перенести на 5 знаков вправо:

2,5600000•105 = 256000,00

Теперь лишние нули после запятой и саму запятую можно и убрать:

256000,00 = 256000

Обратите внимание, что порядок числа был равен 5, а в итоге мы получили шестизначное число. Можно сформулировать правило: у числа, имеющего в стандартной виде порядок n, в десятичной представлении перед запятой будет стоять (n + 1)знак. Например:

1,23456789•106 = 1234567,89

Здесь порядок числа равен 6, а потому перед запятой стоит 7 знаков.

Напомним, что если число целое и, соответственно, в его записи нет запятой, то ее можно искусственно добавить:

568 = 568,0

Теперь рассмотрим похожий пример с отрицательным порядком числа. Пусть надо записать в десятичном виде число 9,8765•10– 4. Для этого сначала можно условно «подрисовать» нолики перед значащей частью:

0000009,8765

Порядок равен (– 4), а потому надо передвинуть запятую на 4 знака влево

0000009,8765 =000,00098765

Получается, что мы подрисовали слишком много ноликов. Уберем два из нихи получим число в обычной форме:

0,00098765

Вообще, если у числа отрицательный порядок (n), то первая ненулевая цифра должна оказаться на n-ой позиции после запятой:

Действия с числами в стандартном виде

Стандартный вид чисел удобен тогда, когда есть необходимость сравнивать физические величины, а также перемножать их и делить. Рассмотрим правила сравнения умножения и деления чисел в стандартном виде.

Из двух чисел больше то, у которого больше порядок стандартного вида числа. Так, масса Солнца больше масса Земли, так как у нее порядок равен 30, а у нашей планеты – только 24. Если же порядки одинаковы, то больше то число, у которого больше значащая часть.

Пример. Радиус ядра Солнца оценивается в 1,73•108 м, а радиус Юпитера составляет 6,99•107 м. Какая из этих величин больше?

Решение. Порядок у радиуса ядра Солнца равен 8, а у Юпитера только 7, поэтому радиус ядра Солнца больше радиуса Юпитера.

Пример. Масса протона составляет 1,673•10– 27 кг, а масса нейтрона равна 1,675•10– 27 кг. Какая из этих двух частиц тяжелее?

Решение. У обоих величин одинаковый порядок, равный (– 27). Однако значащая часть у массы нейтрона больше:

1,675 > 1,673

Следовательно, нейтрон тяжелее.

Ответ: Нейтрон тяжелее.

Посмотрим, как перемножать числа, находящиеся в стандартном виде. Переставляя множители местами, можно получить:

(a•10n)•(b•10m) = a•b•10n•10m = (ab)•10n+m

В итоге можно сформулировать правило:

48jyuit

Пример. Земля двигается по своей орбите со средней скоростью 3•104 м/с. Какое расстояние она проходит в течение одного невисокосного календарного года (в каждом таком году 31536000 секунд)?

Решение. Переведем количество секунд в году в стандартный вид

31536000 = 3,1536 •107

Расстояние (обозначим его как S) равно произведению средней скорости на время:

S = 3•104 м/с • 3,1536•107c = 3•3,1536•104 + 7 = 9,4608•1011м.

Ответ: 9,4608•1011м.

Пример. Представьте в стандартном виде произведение чисел 9,5•108 и 1,38•10– 2.

Решение.

(9,5•108)•(1,38•10– 2) = (9,5•1,38)•108 + (– 2) = 13,11•106

Получили число НЕ в стандартном виде, так как 13,11 > 10. Поэтому следует произвести замену 13,11 = 1,311•10:

13,11•106 = 1,311•10•106 = 1,311•107

Ответ:1,311•107

Теперь попытаемся поделить два числа, находящихся в стандартном виде:

Видно, что справедливо следующее правило:

50htyur

Пример. Во сколько раз масса Солнца больше массы Земли?

Решение. Выше мы приводили данные, что масса Солнца оценивается в 1,9885•1030 кг, а масса нашей планеты составляет 5,97•1024 кг. Поделим массу звезды на массу планеты:

(1,9885•1030):(5,97•1024) = (1,9885:5,97)•1030 – 24≈0,333•106 = 333000

Получили, что Солнце примерно в 333 тысячи раз тяжелее Земли.

Ответ: В 333000 раз.

Источник

Ранее мы уже говорили о том, что такое степень числа. Она имеет определенные свойства, полезные в решении задач: именно их и все возможные показатели степени мы разберем в этой статье. Также мы наглядно покажем на примерах, как их можно доказать и правильно применить на практике.

Свойства степени с натуральным показателем

Вспомним уже сформулированное нами ранее понятие степени с натуральным показателем: это произведение n-ного количества множителей, каждый из которых равен а. Также нам понадобится вспомнить, как правильно умножать действительные числа. Все это поможет нам сформулировать для степени с натуральным показателем следующие свойства:

Определение 1

1. Главное свойство степени: am·an=am+n

Можно обобщить до: an1·an2·…·ank=an1+n2+…+nk.

2. Свойство частного для степеней, имеющих одинаковые основания: am:an=am−n 

3. Свойство степени произведения: (a·b)n=an·bn

Равенство можно расширить до: (a1·a2·…·ak)n=a1n·a2n·…·akn 

4. Свойство частного в натуральной степени: (a:b)n=an:bn 

5. Возводим степень в степень: (am)n=am·n,

Можно обобщить до:(((an1)n2)…)nk=an1·n2·…·nk

6. Сравниваем степень с нулем:

  • если a>0, то при любом натуральном n, an будет больше нуля;
  • при a, равном 0, an также будет равна нулю;
  • при a<0 и таком показателе степени, который будет четным числом 2·m, a2·m будет больше нуля;
  • при a <0 и таком показателе степени, который будет нечетным числом 2·m−1, a2·m−1 будет меньше нуля.

7. Равенство an<bn будет справедливо для любого натурального n при условии, что a и b больше нуля и не равны друг другу.

8. Неравенство am>an будет верным при условии, что m и n – натуральные числа, m больше n и а больше нуля и не меньше единицы.

В итоге мы получили несколько равенств; если соблюсти все условия, указанные выше, то они будут тождественными. Для каждого из равенств, например, для основного свойства, можно поменять местами правую и левую часть: am·an=am+n – то же самое, что и am+n=am·an. В таком виде оно часто используется при упрощении выражений.

Далее мы разберем каждое свойство подробно и попробуем привести доказательства.

1. Начнем с основного свойства степени: равенство am·an=am+n будет верным при любых натуральных m и n и действительном a. Как доказать это утверждение?

Основное определение степеней с натуральными показателями позволит нам преобразовать равенство в произведение множителей. Мы получим запись такого вида:

Это можно сократить до  (вспомним основные свойства умножения). В итоге мы получили степень числа a с натуральным показателем m+n. Таким образом, am+n, значит, основное свойство степени доказано.

Разберем конкретный пример, подтверждающий это.

Пример 1

Итак, у нас есть две степени с основанием 2. Их натуральные показатели – 2 и 3 соответственно. У нас получилось равенство: 22·23=22+3=25 Вычислим значения, чтобы проверить верность этого равенства.

Выполним необходимые математические действия: 22·23=(2·2)·(2·2·2)=4·8=32 и 25=2·2·2·2·2=32

В итоге у нас вышло: 22·23=25. Свойство доказано.

В силу свойств умножения мы можем выполнить обобщение свойства, сформулировав его в виде трех и большего числа степеней, у которых показатели являются натуральными числами, а основания одинаковы. Если обозначить количество натуральных чисел n1, n2 и др. буквой k, мы получим верное равенство:

an1·an2·…·ank=an1+n2+…+nk.

Пример 2

Пример с конкретными числами (легко посчитать самостоятельно): (2,1)3·(2,1)3·(2,1)4·(2,1)7=(2,1)3+3+4+7=(2,1)17.

2. Далее нам необходимо доказать следующее свойство, которое называется свойством частного и присуще степеням с одинаковыми основаниями: это равенство am:an=am−n, которое справедливо при любых натуральным m и n (причем m больше n) ) и любом отличном от нуля действительном a.

Для начала поясним, каков именно смысл условий, которые упомянуты в формулировке. Если мы возьмем a, равное нулю, то в итоге у нас получится деление на нуль, чего делать нельзя (ведь 0n=0). Условие, чтобы число m обязательно было больше n, нужно для того, чтобы мы могли удержаться в рамках натуральных показателей степени: вычтя n из m, мы получим натуральное число. Если условие не будет соблюдено, у нас получится отрицательное число или ноль, и опять же мы выйдем за пределы изучения степеней с натуральными показателями.

Теперь мы можем перейти к доказательству. Из ранее изученного вспомним основные свойства дробей и сформулируем равенство так:

am−n·an=a(m−n)+n=am

Из него можно вывести: am−n·an=am

Вспомним про связь деления и умножения. Из него следует, что am−n– частное степеней am и an. Это и есть доказательство второго свойства степени.

Пример 3

Подставим конкретные числа для наглядности в показатели, а основание степени обозначим π: π5:π2=π5−3=π3

3. Следующим мы разберем свойство степени произведения: (a·b)n=an·bn при любых действительных a и b и натуральном n.

Согласно базовому определению степени с натуральным показателем мы можем переформулировать равенство так:

Вспомнив свойства умножения, запишем: . Это значит то же самое, что и an·bn.

Пример 4

23·-4254=234·-4254

Если множителей у нас три и больше, то это свойство также распространяется и на этот случай. Введем для числа множителей обозначение k и запишем:

(a1·a2·…·ak)n=a1n·a2n·…·akn

Пример 5

С конкретными числами получим следующее верное равенство: (2·(-2,3)·a)7=27·(-2,3)7·a

4. После этого мы попробуем доказать свойство частного: (a:b)n=an:bn при любых действительных a и b, если b не равно 0, а n – натуральное число.

Для доказательства можно использовать предыдущее свойство степени. Если (a:b)n·bn=((a:b)·b)n=an , а (a:b)n·bn=an, то из этого выходит, что (a:b)n есть частное от деления an на bn.

Пример 6

Подсчитаем пример: 312:-0.53=3123:(-0,5)3

5. Далее мы поговорим о свойстве возведения степени в степень: (am)n=am·n для любого действительного a и любых натуральных n и m.

Пример 7

Начнем сразу с примера: (52)3=52·3=56

А теперь сформулируем цепочку равенств, которая докажет нам верность равенства:

Если у нас в примере есть степени степеней, то это свойство справедливо для них также. Если у нас есть любые натуральные числа p, q, r, s, то верно будет:

apqys=ap·q·y·s

Пример 8

Добавим конкретики: (((5,2)3)2)5=(5,2)3·2·5=(5,2)30

6. Еще одно свойство степеней с натуральным показателем, которое нам нужно доказать, – свойство сравнения.

Для начала сравним степень с нулем. Почему an>0 при условии, что а больше 0?

Если умножить одно положительное число на другое, то мы получим также положительное число. Зная этот факт, мы можем сказать, что от числа множителей это не зависит – результат умножения любого числа положительных чисел есть число положительное. А что же такое степень, как не результат умножения чисел? Тогда для любой степени an с положительным основанием и натуральным показателем это будет верно.

Пример 9

 35>0, (0,00201)2>0 и 3491351>0

Также очевидно, что степень с основанием, равным нулю, сама есть ноль. В какую бы степень мы не возводили ноль, он останется им.

Пример 10

03=0 и 0762=0

Если основание степени – отрицательное число, тот тут доказательство немного сложнее, поскольку важным становится понятие четности/нечетности показателя. Возьмем для начала случай, когда показатель степени четный, и обозначим его 2·m, где m – натуральное число.

Тогда:

Вспомним, как правильно умножать отрицательные числа: произведение a·a равно произведению модулей, а, следовательно, оно будет положительным числом. Тогда  и степень a2·m также положительны.

Пример 11

Например, (−6)4>0, (−2,2)12>0 и -296>0

А если показатель степени с отрицательным основанием – нечетное число? Обозначим его 2·m−1.

Тогда  

Все произведения a·a, согласно свойствам умножения, положительны, их произведение тоже. Но если мы его умножим на единственное оставшееся число a, то конечный результат будет отрицателен.

Тогда получим: (−5)3<0, (−0,003)17<0 и -111029<0

7. Далее разберем следующее свойство, формулировка которого такова: из двух степеней, имеющих одинаковый натуральный показатель, больше та, основание которой больше (и наоборот).

Как это доказать?

an<bn– неравенство, представляющее собой произведение левых и правых частей nверных неравенств a<b. Вспомним основные свойства неравенств справедливо и an<bn.

Пример 12

Например, верны неравенства: 37<(2,2)7 и 3511124>(0,75)124

8. Нам осталось доказать последнее свойство: если у нас есть две степени, основания которых одинаковы и положительны, а показатели являются натуральными числами, то та из них больше, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше.

Докажем эти утверждения.

Для начала нам нужно убедиться, что am<an при условии, что m больше, чем n, и а больше 0, но меньше 1.Теперь сравним с нулем разность am−an

Вынесем an за скобки, после чего наша разность примет вид an·(am−n−1). Ее результат будет отрицателен (поскольку отрицателен результат умножения положительного числа на отрицательное). Ведь согласно начальным условиям, m−n>0, тогда am−n−1–отрицательно, а первый множитель положителен, как и любая натуральная степень с положительным основанием.

У нас вышло, что am−an<0 и am<an. Свойство доказано.

Осталось привести доказательство второй части утверждения, сформулированного выше: am>a справедливо при m>n и a>1. Укажем разность и вынесем an за скобки: (am−n−1).Степень an при а, большем единицы, даст положительный результат; а сама разность также окажется положительна в силу изначальных условий, и при a>1 степень am−n больше единицы. Выходит, am−an>0 и am>an, что нам и требовалось доказать.

Пример 13

Пример с конкретными числами: 37>32

Основные свойства степеней с целыми показателями

Для степеней с целыми положительными показателями свойства будут аналогичны, потому что целые положительные числа являются натуральными, а значит, все равенства, доказанные выше, справедливы и для них. Также они подходят и для случаев, когда показатели отрицательны или равны нулю (при условии, что само основание степени ненулевое).

Таким образом, свойства степеней такие же для любых оснований a и b (при условии, что эти числа действительны и не равны 0) и любых показателей m и n (при условии, что они являются целыми числами). Запишем их кратко в виде формул:

Определение 2

1. am·an=am+n 

2. am:an=am−n

3. (a·b)n=an·bn

4. (a:b)n=an:bn

5. (am)n=am·n 

6. an<bn и a−n>b−n при условии целого положительного n, положительных a и b, a<b 

7. am<an, при условии целых m и n, m>n и 0<a<1, при a>1   am>an.

Если основание степени равно нулю, то записи am и an имеют смысл только лишь в случае натуральных и положительных m и n. В итоге получим, что формулировки выше подходят и для случаев со степенью с нулевым основанием, если соблюдаются все остальные условия.

Доказательства этих свойств в данном случае несложные. Нам потребуется вспомнить, что такое степень с натуральным и целым показателем, а также свойства действий с действительными числами.

Разберем свойство степени в степени и докажем, что оно верно и для целых положительных, и для целых неположительных чисел. Начнем с доказательства равенств (ap)q=ap·q, (a−p)q=a(−p)·q, (ap)−q=ap·(−q) и (a−p)−q=a(−p)·(−q)

Условия: p=0 или натуральное число; q– аналогично.

Если значения p и q больше 0, то у нас получится (ap)q=ap·q. Схожее равенство мы уже доказывали раньше. Если p=0, то:

(a0)q=1q=1 a0·q=a0=1

Следовательно, (a0)q=a0·q

Для q=0 все точно так же:

(ap)0=1 ap·0=a0=1

Итог: (ap)0=ap·0.

Если же оба показателя нулевые, то (a0)0=10=1 и a0·0=a0=1, значит, (a0)0=a0·0.

Далее разберем равенство (a−p)q=a(−p)·q. Согласно определению степени с целым отрицательным показателем имеем a-p=1ap, значит, (a-p)q=1apq.

Вспомним доказанное выше свойство частного в степени и запишем:

1apq=1qapq

Если 1p=1·1·…·1=1 иapq=ap·q, то 1qapq=1ap·q

Эту запись мы можем преобразовать в силу основных правил умножения в a(−p)·q.

Так же: ap-q=1(ap)q=1ap·q=a-(p·q)=ap·(-q).

И (a-p)-q=1ap-q=(ap)q=ap·q=a(-p)·(-q)

Остальные свойства степени можно доказать аналогичным образом, преобразовав имеющиеся неравенства. Подробно останавливаться мы на этом не будем, укажем только сложные моменты.

Доказательство предпоследнего свойства: вспомним, a−n>b−n верно для любых целых отрицательных значений nи любых положительных a и b при условии, что a меньше b.

Тогда неравенство можно преобразовать следующим образом:

1an>1bn

Запишем правую и левую части в виде разности и выполним необходимые преобразования:

1an-1bn=bn-anan·bn

Вспомним, что в условии a меньше b, тогда, согласно определению степени с натуральным показателем: – an<bn, в итоге: bn−an>0.

an·bn в итоге дает положительное число, поскольку его множители положительны. В итоге мы имеем дробь bn-anan·bn, которая в итоге также дает положительный результат. Отсюда 1an>1bn откуда a−n>b−n, что нам и нужно было доказать.

Последнее свойство степеней с целыми показателями доказывается аналогично свойству степеней с показателями натуральными.

Основные свойства степеней с рациональными показателями

В предыдущих статьях мы разбирали, что такое степень с рациональным (дробным) показателем. Их свойства такие же, что и у степеней с целыми показателями. Запишем:

Определение 3

1. am1n1·am2n2=am1n1+m2n2 при a>0, а если m1n1>0 и m2n2>0, то при a≥0 ( свойство произведения степеней с одинаковыми основаниями).

2.am1n1:bm2n2=am1n1-m2n2 , если a>0 (свойство частного).

3. a·bmn=amn·bmn при a>0 и b>0, а если m1n1>0 и m2n2>0, то при a≥0 и (или) b≥0 (свойство произведения в дробной степени).

4. a:bmn=amn:bmn при a>0 и b>0, а если mn>0, то при a≥0 и b>0 (свойство частного в дробной степени).

5. am1n1m2n2=am1n1·m2n2 при a>0, а если m1n1>0 и m2n2>0, то при a≥0 (свойство степени в степени).

6. ap<bp при условии любых положительных a и b, a<b и рациональном p при p>0; если p<0 – ap>bp (свойство сравнения степеней с равными рациональными показателями).

7. ap<aq при условии рациональных чисел p и q, p>q при 0<a<1; если a>0 – ap>aq

Для доказательства указанных положений нам понадобится вспомнить, что такое степень с дробным показателем, каковы свойства арифметического корня n-ной степени и каковы свойства степени с целыми показателем. Разберем каждое свойство.

Согласно тому, что из себя представляет степень с дробным показателем, получим:

am1n1=am1n1 и am2n2=am2n2, следовательно, am1n1·am2n2=am1n1·am2n2

Свойства корня позволят нам вывести равенства:

am1·m2n1·n2·am2·m1n2·n1=am1·n2·am2·n1n1·n2

Из этого получаем:  am1·n2·am2·n1n1·n2=am1·n2+m2·n1n1·n2

Преобразуем:

am1·n2·am2·n1n1·n2=am1·n2+m2·n1n1·n2

Показатель степени можно записать в виде:

m1·n2+m2·n1n1·n2=m1·n2n1·n2+m2·n1n1·n2=m1n1+m2n2

Это и есть доказательство. Второе свойство доказывается абсолютно так же. Запишем цепочку равенств:

am1n1: am2n2=am1n1: am2n2=am1·n2:am2·n1n1·n2==am1·n2-m2·n1n1·n2=am1·n2-m2·n1n1·n2=am1·n2n1·n2-m2·n1n1·n2=am1n1-m2n2

Доказательства остальных равенств:

a·bmn=(a·b)mn=am·bmn=amn·bmn=amn·bmn;(a:b)mn=(a:b)mn=am:bmn==amn:bmn=amn:bmn;am1n1m2n2=am1n1m2n2=am1n1m2n2==am1m2n1n2=am1·m2n1n2==am1·m2n2·n1=am1·m2n2·n1=am1n1·m2n2

Следующее свойство: докажем, что для любых значений a и b больше 0, если а меньше b, будет выполняться ap<bp, а для p больше 0 – ap>bp

Представим рациональное число p как mn. При этом m–целое число, n–натуральное. Тогда условия p<0 и p>0 будут распространяться на m<0 и m>0. При m>0 и a<b имеем (согласно свойству степени с целым положительным показателем), что должно выполняться неравенство am<bm.

Используем свойство корней и выведем: amn<bmn

Учитывая положительность значений a и b, перепишем неравенство как amn<bmn. Оно эквивалентно ap<bp.

Таким же образом при m<0 имеем a am>bm, получаем amn>bmn значит, amn>bmn и ap>bp.

Нам осталось привести доказательство последнего свойства. Докажем, что для рациональных чисел p и q, p>q при 0<a<1 ap<aq, а при a>0 будет верно ap>aq.

Рациональные числа p и q можно привести к общему знаменателю и получить дроби m1n и m2n

Здесь m1 и m2 – целые числа, а n – натуральное. Если p>q, то m1>m2 (учитывая правило сравнения дробей). Тогда при 0<a<1 будет верно am1<am2, а при a>1 – неравенство a1m>a2m.

Их можно переписать в следующем виде:

am1n<am2nam1n>am2n

Тогда можно сделать преобразования и получить в итоге:

am1n<am2nam1n>am2n

Подводим итог: при p>q и 0<a<1 верно ap<aq, а при a>0– ap>aq.

Основные свойства степеней с иррациональными показателями

На такую степень можно распространить все описанные выше свойства, которыми обладает степень с рациональными показателями. Это следует из самого ее определения, которое мы давали в одной из предыдущих статей. Сформулируем кратко эти свойства (условия: a>0, b>0, показатели p и q– иррациональные числа):

Определение 4

1. ap·aq=ap+q 

2. ap:aq=ap−q 

3. (a·b)p=ap·bp

4. (a:b)p=ap:bp 

5. (ap)q=ap·q

6. ap<bp верно при любых положительных a и b, если a<b и p – иррациональное число больше 0; если p меньше 0, то ap>bp 

7. ap<aq верно, если p и q– иррациональные числа, p<q, 0<a<1; если a>0, то ap>aq.

Таким образом, все степени, показатели которых p и q являются действительными числами, при условии a>0 обладают теми же свойствами.

Источник