Какие свойства проявляют атомы азота
Азот, свойства атома, химические и физические свойства.
N 7 Азот
14,00643-14,00728* 1s2 2s2 2p3
Азот — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 7. Расположен в 15-й группе (по старой классификации — главной подгруппе пятой группы), втором периоде периодической системы.
Атом и молекула азота. Формула азота. Строение азота
Изотопы и модификации азота
Свойства азота (таблица): температура, плотность, давление и пр.
Физические свойства азота
Химические свойства азота. Взаимодействие азота. Реакции с азотом
Получение азота
Применение азота
Таблица химических элементов Д.И. Менделеева
Атом и молекула азота. Формула азота. Строение азота:
Азот (фр. azote, по наиболее распространённой версии, от др.-греч. ἄζωτος – «безжизненный») – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением N и атомным номером 7. Расположен в 15-й группе (по старой классификации — главной подгруппе пятой группы), втором периоде периодической системы.
Азот самый лёгкий элемент периодической таблицы химических элементов Д. И. Менделеева из группы пниктогенов.
Азот – химически весьма инертный неметалл.
Как простое вещество азот (химическая формула N2) при нормальных условиях представляет собой двухатомный газ без цвета, вкуса и запаха. В жидком состоянии азот – бесцветная, подвижная, как вода, жидкость, а в твёрдом – представляет собой белоснежные кристаллы или снегоподобную массу.
Молекула азота двухатомна.
Химическая формула азота N2.
Электронная конфигурация атома азота 1s2 2s2 2p3. Потенциал ионизации атома азота равен 14,53 эВ (1401,5 кДж/моль).
Строение атома азота. Атом азота состоит из положительно заряженного ядра (+7), вокруг которого по атомным оболочкам движутся семь электронов. При этом 2 электрона находятся на внутреннем уровне, а 5 электронов – на внешнем. Поскольку азот расположен во втором периоде, оболочки всего две. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внешняя оболочка представлена s- и р-орбиталями. Два спаренных электрона находится на 1s-орбитали, вторая пара электронов – на 2s-орбитали. На 2р-орбитали находятся три неспаренных электрона. В свою очередь ядро атома азота состоит из семи протонов и семи нейтронов. Азот относится к элементам p-семейства.
Радиус атома азота составляет 92 пм.
Атомная масса атома азота составляет 14,00643-14,00728 а. е. м.
Азот – один из самых распространённых элементов на Земле. Азот – основной компонент воздуха. Он занимает 78, 084 % его объёма и 75,5 % по массе.
Молекула азота крайне прочна. Атомы азота связаны прочными тройными связями. Даже при высокой температуре молекула азота N2 слабо диссоциирует на атомарный азот. При 3000 °C на атомарный азот диссоциирует 0,1 % молекулярного азота, при 5000 °C – несколько процентов. Переход в атомарное состояние вызывается также полем высокочастотного электрического разряда при сильном разрежении газообразного азота или под действием солнечного излучения в высоких слоях атмосферы.
Атомарный азот намного активнее молекулярного.
Изотопы и модификации азота:
Свойства азота (таблица): температура, плотность, давление и пр.:
Общие сведения | |
Название | Азот |
Прежнее название | |
Латинское название | Nitrogenium |
Символ | N |
Номер в таблице | 7 |
Тип | Неметалл |
Подтип | |
Открыт | Даниэль Резерфорд, Англия, 1772 г. |
Внешний вид и пр. | Газ без цвета, запаха и вкуса |
Содержание в атмосфере и воздухе (по массе) | 75,5 % |
Содержание в земной коре (по массе) | 0,002 % |
Содержание в морях и океанах (по массе) | 0,00005 % |
Содержание во Вселенной и космосе (по массе) | 0,1 % |
Содержание в Солнце (по массе) | 0,1 % |
Содержание в организме человека (по массе) | 2,6 % |
Свойства атома | |
Атомная масса (молярная масса)* | 14,00643-14,00728 а. е. м. (г/моль) |
Электронная конфигурация | 1s2 2s2 2p3 |
Радиус атома (вычисленный)**** | 56 пм |
Эмпирический радиус | 65 пм |
Ковалентный радиус**** | 71 пм |
Радиус иона | 13 (+5e) 171 (−3e) пм |
Радиус Ван-дер-Ваальса | 155 пм |
Химические свойства | |
Степени окисления | -3 , -2, -1, 0, +1, +2, +3 , +4, +5 |
Валентность | III, IV |
Электроотрицательность | 3,04 (шкала Полинга) |
Энергия ионизации (первый электрон) | 1402,33 кДж/моль (14,53413(4) эВ) |
Электродный потенциал | |
Физические свойства | |
Плотность | 1,2506·10-3 г/см3 (при 0 °C и при нормальных условиях, состояние вещества – газ), 0,808 г/см3 (при -196 °C/-195,8 °C и нормальных условиях, состояние вещества – жидкость), 0,8792 г/см3 (при -210 °C и нормальных условиях, состояние вещества – кристаллы, твердое тело) |
Температура плавления** | -210 °C (63,15 K, -346 °F) |
Температура кипения** | -195,795 °C (77,355 K, -320,431 °F) |
Температура сублимации | |
Температура разложения | |
Температура самовоспламенения смеси газа с воздухом | |
Удельная теплота плавления (энтальпия плавления ΔHпл) | 0,72 кДж/моль |
Удельная теплота испарения (энтальпия кипения ΔHкип) | 5,56 кДж/моль |
Удельная теплоемкость при постоянном давлении | 1,040 Дж/г·K (при 25°C) |
Молярная теплоёмкость | 29,124 Дж/(K·моль) |
Молярный объём | 17,3 см³/моль |
Теплопроводность (при нормальных условиях) | 0,02583 Вт/(м·К) |
Теплопроводность (при 300 K) | 0,026 Вт/(м·К) |
Критическая температура*** | -146,94 °C (126,21 К, -232,49°F) |
Критическое давление*** | 3,39 МПа |
Критическая плотность | 0,304 г/см3 |
Тройная точка | -210 °C (63,151 К), 12,52 кПа |
Давление паров | 1 мм.рт.ст. (при -226 °C), 10 мм.рт.ст. (при -219 °C), 100 мм.рт.ст. (при -210 °C) |
Взрывоопасные концентрации смеси газа с воздухом, % объёмных | |
Взрывоопасные концентрации смеси газа с кислородом, % объёмных | |
Стандартная энтальпия образования ΔH | 0 кДж/моль (при 298 К, для состояния вещества – газ) |
Стандартная энергия Гиббса образования ΔG | 0 кДж/моль (при 298 К, для состояния вещества – газ) |
Стандартная энтропия вещества S | 199,9 Дж/(моль·K) (при 298 К, для состояния вещества – газ) |
Стандартная мольная теплоемкость Cp | 29,1 Дж/(моль·K) (при 298 К, для состояния вещества – газ) |
Энтальпия диссоциации ΔHдисс | |
Диэлектрическая проницаемость | 1,000528 (при 25 °C) |
Магнетизм | диамагнитный материал |
Магнитная восприимчивость | |
Электропроводность в твердой фазе | |
Удельное электрическое сопротивление | |
Сверхпроводимость при температуре | |
Твёрдость по Моосу | |
Твёрдость по Бринеллю | |
Твёрдость по Виккерсу | |
Скорость звука | 334 м/с (при 0 °C, состояние вещества – газ), 349 м/с (при 19,1 °C, состояние вещества – газ) |
Поверхностное натяжение | |
Динамическая вязкость газов и жидкостей | 0,0165 мПа·с (при 0 °C), 0,0208 мПа·с (при 100 °C), 0,0246 мПа·с (при 200 °C), 0,0311 мПа·с (при 400 °C), 0,0366 мПа·с (при 600 °C), |
Коэффициент теплового расширения | |
Модуль Юнга | |
Модуль сдвига | |
Объемный модуль упругости | |
Коэффициент Пуассона | |
Структура решётки | кубическая |
Параметры решётки | a = 5,661 Å |
Отношение c/a | |
Температура Дебая | |
Конденсат Бозе-Эйнштейна | |
Двумерные материалы |
Примечание:
* Указан диапазон значений атомной массы в связи с различной распространённостью изотопов данного элемента в природе.
** Температура плавления азота согласно https://ru.wikipedia.org/wiki/Азот [Россия] составляет -209,86 °C (63,29 K, -345,75 °F); температура плавления азота согласно https://de.wikipedia.org/wiki/Stickstoff [Германия] составляет -210,1 °C (63,05 K, -346,18 °F). Температура кипения азота согласно https://ru.wikipedia.org/wiki/Азот [Россия] составляет -195,75 °C (77,4 K, -320,35 °F), температура кипения азота согласно https://de.wikipedia.org/wiki/Stickstoff [Германия] составляет -196 °C (77,15 К, -320,8 °F).
*** Критическая температура и критическое давление азота согласно https://chemister.ru/Database/properties.php?dbid=1&id=210 [Россия] составляет -149,9 °C (123,25 К, -237,82 °F) и 3,905 МПа соответственно.
**** Ковалентный радиус азота согласно https://ru.wikipedia.org/wiki/Азот [Россия] составляет 75 пм, атомный радиус азота (вычисленный) согласно https://ru.wikipedia.org/wiki/Азот [Россия] составляет 92 пм.
Физические свойства азота:
Химические свойства азота. Взаимодействие азота. Реакции с азотом:
Получение азота:
Применение азота:
Таблица химических элементов Д.И. Менделеева
- 1. Водород
- 2. Гелий
- 3. Литий
- 4. Бериллий
- 5. Бор
- 6. Углерод
- 7. Азот
- 8. Кислород
- 9. Фтор
- 10. Неон
- 11. Натрий
- 12. Магний
- 13. Алюминий
- 14. Кремний
- 15. Фосфор
- 16. Сера
- 17. Хлор
- 18. Аргон
- 19. Калий
- 20. Кальций
- 21. Скандий
- 22. Титан
- 23. Ванадий
- 24. Хром
- 25. Марганец
- 26. Железо
- 27. Кобальт
- 28. Никель
- 29. Медь
- 30. Цинк
- 31. Галлий
- 32. Германий
- 33. Мышьяк
- 34. Селен
- 35. Бром
- 36. Криптон
- 37. Рубидий
- 38. Стронций
- 39. Иттрий
- 40. Цирконий
- 41. Ниобий
- 42. Молибден
- 43. Технеций
- 44. Рутений
- 45. Родий
- 46. Палладий
- 47. Серебро
- 48. Кадмий
- 49. Индий
- 50. Олово
- 51. Сурьма
- 52. Теллур
- 53. Йод
- 54. Ксенон
- 55. Цезий
- 56. Барий
- 57. Лантан
- 58. Церий
- 59. Празеодим
- 60. Неодим
- 61. Прометий
- 62. Самарий
- 63. Европий
- 64. Гадолиний
- 65. Тербий
- 66. Диспрозий
- 67. Гольмий
- 68. Эрбий
- 69. Тулий
- 70. Иттербий
- 71. Лютеций
- 72. Гафний
- 73. Тантал
- 74. Вольфрам
- 75. Рений
- 76. Осмий
- 77. Иридий
- 78. Платина
- 79. Золото
- 80. Ртуть
- 81. Таллий
- 82. Свинец
- 83. Висмут
- 84. Полоний
- 85. Астат
- 86. Радон
- 87. Франций
- 88. Радий
- 89. Актиний
- 90. Торий
- 91. Протактиний
- 92. Уран
- 93. Нептуний
- 94. Плутоний
- 95. Америций
- 96. Кюрий
- 97. Берклий
- 98. Калифорний
- 99. Эйнштейний
- 100. Фермий
- 101. Менделеевий
- 102. Нобелий
- 103. Лоуренсий
- 104. Резерфордий
- 105. Дубний
- 106. Сиборгий
- 107. Борий
- 108. Хассий
- 109. Мейтнерий
- 110. Дармштадтий
- 111. Рентгений
- 112. Коперниций
- 113. Нихоний
- 114. Флеровий
- 115. Московий
- 116. Ливерморий
- 117. Теннессин
- 118. Оганесон
Таблица химических элементов Д.И. Менделеева
Источник: https://ru.wikipedia.org/wiki/Азот, https://en.wikipedia.org/wiki/Nitrogen, https://de.wikipedia.org/wiki/Stickstoff, https://chemister.ru/Database/properties.php?dbid=1&id=210
Примечание: © Фото https://www.pexels.com, https://pixabay.com
карта сайта
азот атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решетка
атом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома
электронные формулы сколько атомов в молекуле азота
сколько электронов в атоме свойства металлические неметаллические термодинамические
Коэффициент востребованности
4 473
Источник
Азот – неметаллический элемент Va группы периодической таблицы Д.И. Менделеева. Составляет 78% воздуха. Входит в состав
белков, являющихся важной частью живых организмов.
Температура кипения азота составляет -195,8 °C. Однако быстрого замораживания объектов, которое часто демонстрируют в
кинофильмах, не происходит. Даже для заморозки растения нужно продолжительное время, это связано с низкой теплоемкостью
азота.
Общая характеристика элементов Va группы
От N к Bi (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств.
Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.
Азот, фосфор и мышьяк являются неметаллами, сурьма – полуметалл, висмут – металл.
Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns2np3:
- N – 2s22p3
- P – 3s23p3
- As – 4s24p3
- Sb – 5s25p3
- Bi – 6s26p3
Основное и возбужденное состояние азота
При возбуждении атома азота электроны на s-подуровне распариваются и переходят на p-подуровень. Поскольку азот находится во втором периоде, то
3ий уровень у него отсутствует, что проявляется в особенностях электронной конфигурации возбужденного состояния.
Сравнивая возможности перемещения электронов у азота и фосфора, разница становится очевидна.
Природные соединения
В природе азот встречается в виде следующих соединений:
- Воздух – во вдыхаемом нами воздухе содержится 78% азота
- Азот входит в состав нуклеиновых кислот, белков
- KNO3 – индийская селитра, калиевая селитра
- NaNO3 – чилийская селитра, натриевая селитра
- NH4NO3 – аммиачная селитра (искусственный продукт, в природе не встречается)
Селитры являются распространенными азотными удобрениями, которые обеспечивают быстрый рост и развитие растений, повышают урожайность. Однако,
следует строго соблюдать правила их применения, чтобы не превысить допустимые концентрации.
Получение
В промышленности азот получают путем сжижения воздуха. В дальнейшем путем испарения их сжиженного воздуха получают азот.
Применяют и метод мембранного разделения, при котором через специальный фильтр из сжатого воздуха удаляют кислород.
В лаборатории методы не столь экзотичны. Чаще всего получают азот разложением нитрита аммония
NH4NO2 → (t) N2 + H2O
Также азот можно получить путем восстановления азотной кислоты активными металлами.
HNO3(разб.) + Zn → Zn(NO3)2 + N2 + H2O
Химические свойства
Азот восхищает – он принимает все возможные для себя степени окисления от -3 до +5.
Молекула азота отличается большой прочностью из-за наличия тройной связи. Вследствие этого многие реакции эндотермичны: даже горение
азота в кислороде сопровождается поглощением тепла, а не выделением, как обычно бывает при горении.
- Реакция с металлами
- Реакция с неметаллами
Без нагревания азот взаимодействует только с литием. При нагревании реагирует и с другими металлами.
N2 + Li → Li3N (нитрид лития)
N2 + Mg → (t) Mg3N2
N2 + Al → (t) AlN
Важное практическое значение имеет синтез аммиака, который применяется в дальнейшим при изготовлении удобрений, красителей, лекарств.
N2 + H2 ⇄ (t, p) NH3
Аммиак
Бесцветный газ с резким едким запахом, раздражающим слизистые оболочки. Раствор концентрацией 10% аммиака применяется в медицинских целях,
называется нашатырным спиртом.
Получение
В промышленности аммиак получают прямым взаимодействием азота и водорода.
N2 + H2 ⇄ (t, p) NH3
В лабораторных условиях сильными щелочами действуют на соли аммония.
NH4Cl + NaOH → NH3 + NaCl + H2O
Химические свойства
Аммиак проявляет основные свойства, окрашивает лакмусовую бумажку в синий цвет.
- Реакция с водой
- Основные свойства
- Восстановительные свойства
Образует нестойкое соединение – гидроксид аммония, слабое основание. Оно сразу же распадается на воду и аммиак.
NH3 + H2O ⇄ NH4OH
Как основание аммиак способен реагировать с кислотами с образованием солей.
NH3 + HCl → NH4Cl (хлорид аммония)
NH3 + HNO3 → NH4NO3 (нитрат аммония)
Поскольку азот в аммиаке находится в минимальной степени окисления -3 и способен только ее повышать, то аммиак проявляет выраженные
восстановительные свойства. Его используют для восстановления металлов из их оксидов.
NH3 + FeO → N2↑ + Fe + H2O
NH3 + CuO → N2↑ + Cu + H2O
Горение аммиака без катализатора приводит к образованию азота в молекулярном виде. Окисление в присутствии катализатора сопровождается
выделением NO.
NH3 + O2 → (t) N2 + H2O
NH3 + O2 → (t, кат) NO + H2O
Соли аммония
Получение
NH3 + H2SO4 → NH4HSO4 (гидросульфат аммония, избыток кислоты)
3NH3 + H3PO4 → (NH4)3PO4
Химические свойства
Помните, что по правилам общей химии, если по итогам реакции выпадает осадок, выделяется газ или образуется вода – реакция идет.
- Реакции с кислотами
- Реакции с щелочами
- Реакции с солями
- Реакция гидролиза
- Реакции разложения
NH4Cl + H2SO4 → (NH4)2SO4 + HCl↑
В реакциях с щелочами образуется гидроксид аммония – NH4OH. Нестойкое основание, которое легко распадается на воду и аммиак.
NH4Cl + KOH → KCl + NH3 + H2O
(NH4)2SO4 + BaCl2 = BaSO4↓ + NH4Cl
В воде ион аммония подвергается гидролизу с образованием нестойкого гидроксида аммония.
NH4+ + H2O ⇄ NH4OH + H+
NH4OH ⇄ NH3 + H2O
NH4Cl → (t) NH3↑ + HCl↑
(NH4)2CO3 → (t) NH3↑ + H2O + CO2↑
NH4NO2 → (t) N2↑ + H2O
NH4NO3 → (t) N2O↑ + H2O
(NH4)3PO4 → (t) NH3↑ + H3PO4
Оксид азота I – N2O
Закись азота, веселящий газ – N2O – обладает опьяняющим эффектом. Несолеобразующий оксид. При н.у. является бесцветным газом с приятным
сладковатым запахом и привкусом. В медицине применяется в больших концентрациях для ингаляционного наркоза.
Получают N2O разложением нитрата аммония при нагревании:
NH4NO3 → N2O + H2O
Оксид азота I разлагается на азот и кислород:
N2O → (t) N2 + O2
Оксид азота II – NO
Окись азота – NO. Несолеобразующий оксид. При н.у. бесцветный газ, на воздухе быстро окисляется до оксида азота IV.
Получение
В промышленных масштабах оксид азота II получают при каталитическом окислении аммиака.
NH3 + O2 → (t, кат) NO + H2O
В лабораторных условиях – в ходе реакции малоактивных металлов с разбавленной азотной кислотой.
Cu + HNO3(разб.) → Cu(NO3)2 + NO + H2O
Химические свойства
На воздухе быстро окисляется с образованием бурого газа – оксида азота IV – NO2.
NO + O2 → NO2
Оксид азота III – N2O3
При н.у. жидкость синего цвета, в газообразной форме бесцветен. Высокотоксичный, приводит к тяжелым ожогам кожи.
Получение
Получают N2O3 в две стадии: сначала реакцией оксида мышьяка III с азотной кислотой, затем
охлаждением полученной смеси газов до температуры – 36 °C.
As2O3 + HNO3 → H3AsO 3 + NO↑ + NO2↑
При охлаждении газов образуется оксид азота III.
NO + NO2 → N2O3
Химические свойства
Является кислотным оксидом. соответствует азотистой кислота – HNO2, соли которой называются нитриты (NO2-).
Реагирует с водой, основаниями.
H2O + N2O3 → HNO2
NaOH + N2O3 → NaNO2 + H2O
Оксид азота IV – NO2
Бурый газ, имеет острый запах. Ядовит.
Получение
В лабораторных условиях данный оксид получают в ходе реакции меди с концентрированной азотной кислотой. Также NO2 выделяется при
разложении нитратов.
Cu + HNO3(конц) → Cu(NO3)2 + NO2 + H2O
Cu(NO3)2 → (t) CuO + NO2 + O2
Pb(NO3)2 → (t) PbO + NO2 + O2
Химические свойства
Проявляет высокую химическую активность, кислотный оксид.
- Окислительные свойства
- Реакции с водой и щелочами
Как окислитель NO2 ведет себя в реакциях с фосфором, углеродом и серой, которые сгорают в нем.
NO2 + C → CO2 + N2
NO2 + P → P2O5 + N2
Окисляет SO2 в SO3 – на этой реакции основана одна из стадий получения серной кислоты.
SO2 + NO2 → SO3 + NO
Оксид азота IV соответствует сразу двум кислотам – азотистой HNO2 и азотной HNO3. Реакции с
водой и щелочами протекают по одной схеме.
NO2 + H2O → HNO3 + HNO2
NO2 + LiOH → LiNO3 + LiNO2 + H2O
Если растворение в воде оксида проводить в избытке кислорода, образуется азотная кислота.
NO2 + H2O + O2 → HNO3
© Беллевич Юрий Сергеевич 2018-2020
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Источник