Какие свойства проявляют атомы азота

Какие свойства проявляют атомы азота thumbnail

Азот, свойства атома, химические и физические свойства.

Какие свойства проявляют атомы азотаКакие свойства проявляют атомы азотаКакие свойства проявляют атомы азотаКакие свойства проявляют атомы азотаКакие свойства проявляют атомы азотаКакие свойства проявляют атомы азотаКакие свойства проявляют атомы азотаКакие свойства проявляют атомы азотаКакие свойства проявляют атомы азотаКакие свойства проявляют атомы азота

N 7  Азот

14,00643-14,00728*     1s2 2s2 2p3

Азот — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 7. Расположен в 15-й группе (по старой классификации — главной подгруппе пятой группы), втором периоде периодической системы.

Атом и молекула азота. Формула азота. Строение азота

Изотопы и модификации азота

Свойства азота (таблица): температура, плотность, давление и пр.

Физические свойства азота

Химические свойства азота. Взаимодействие азота. Реакции с азотом

Получение азота

Применение азота

Таблица химических элементов Д.И. Менделеева

Атом и молекула азота. Формула азота. Строение азота:

Азот (фр. azote, по наиболее распространённой версии, от др.-греч. ἄζωτος – «безжизненный») – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением N и атомным номером 7. Расположен в 15-й группе (по старой классификации — главной подгруппе пятой группы), втором периоде периодической системы.

Азот самый лёгкий элемент периодической таблицы химических элементов Д. И. Менделеева из группы пниктогенов.

Азот – химически весьма инертный неметалл.

Как простое вещество азот (химическая формула N2) при нормальных условиях представляет собой двухатомный газ без цвета, вкуса и запаха. В жидком состоянии азот – бесцветная, подвижная, как вода, жидкость, а в твёрдом – представляет собой белоснежные кристаллы или снегоподобную массу.

Молекула азота двухатомна.

Химическая формула азота N2.

Электронная конфигурация атома азота 1s2 2s2 2p3. Потенциал ионизации атома азота равен 14,53 эВ (1401,5 кДж/моль).

Строение атома азота. Атом азота состоит из положительно заряженного ядра (+7), вокруг которого по атомным оболочкам движутся семь электронов. При этом 2 электрона находятся на внутреннем уровне, а 5 электронов – на внешнем. Поскольку азот расположен во втором периоде, оболочки всего две. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внешняя оболочка представлена s- и р-орбиталями. Два спаренных электрона находится на 1s-орбитали, вторая пара электронов – на 2s-орбитали. На 2р-орбитали находятся три неспаренных  электрона. В свою очередь ядро атома азота состоит из семи протонов и семи нейтронов. Азот относится к элементам p-семейства.

Радиус атома азота составляет 92 пм.

Атомная масса атома азота составляет 14,00643-14,00728 а. е. м.

Азот – один из самых распространённых элементов на Земле. Азот – основной компонент воздуха. Он занимает 78, 084 % его объёма и 75,5 % по массе.

Молекула азота крайне прочна. Атомы азота связаны прочными  тройными связями. Даже при высокой температуре молекула азота N2 слабо диссоциирует на атомарный азот. При 3000 °C на атомарный азот диссоциирует 0,1 % молекулярного азота, при 5000 °C – несколько процентов. Переход в атомарное состояние вызывается также полем высокочастотного электрического разряда при сильном разрежении газообразного азота или под действием солнечного излучения в высоких слоях атмосферы.

Атомарный азот намного активнее молекулярного.

Изотопы и модификации азота:

Свойства азота (таблица): температура, плотность, давление и пр.:

Общие сведения 
НазваниеАзот
Прежнее название
Латинское названиеNitrogenium
СимволN
Номер в таблице7
ТипНеметалл
Подтип
ОткрытДаниэль Резерфорд, Англия, 1772 г.
Внешний вид и пр.Газ без цвета, запаха и вкуса
Содержание в атмосфере и воздухе (по массе)75,5 %
Содержание в земной коре (по массе)0,002 %
Содержание в морях и океанах (по массе)0,00005 %
Содержание во Вселенной и космосе (по массе)0,1 %
Содержание в Солнце (по массе)0,1 %
Содержание в организме человека (по массе)2,6 %
Свойства атома 
Атомная масса (молярная масса)*14,00643-14,00728 а. е. м. (г/моль)
Электронная конфигурация1s2 2s2 2p3
Радиус атома (вычисленный)****56 пм
Эмпирический радиус65 пм
Ковалентный радиус****71 пм
Радиус иона13 (+5e) 171 (−3e) пм
Радиус Ван-дер-Ваальса155 пм
Химические свойства 
Степени окисления-3 , -2, -1, 0, +1, +2, +3 , +4, +5
ВалентностьIII, IV
Электроотрицательность3,04 (шкала Полинга)
Энергия ионизации (первый электрон)1402,33 кДж/моль (14,53413(4) эВ)
Электродный потенциал
Физические свойства
Плотность1,2506·10-3  г/см3 (при 0 °C и при  нормальных условиях, состояние вещества – газ),

0,808 г/см3 (при  -196 °C/-195,8 °C и нормальных условиях, состояние вещества – жидкость),

0,8792 г/см3 (при  -210 °C и нормальных условиях, состояние вещества – кристаллы, твердое тело)

Температура плавления**-210 °C (63,15 K, -346 °F)
Температура кипения**-195,795 °C (77,355 K, -320,431 °F)
Температура сублимации
Температура разложения
Температура самовоспламенения смеси газа с воздухом
Удельная теплота плавления (энтальпия плавления ΔHпл)0,72 кДж/моль
Удельная теплота испарения (энтальпия кипения ΔHкип)5,56 кДж/моль
Удельная теплоемкость при постоянном давлении1,040 Дж/г·K (при 25°C)
Молярная теплоёмкость29,124 Дж/(K·моль)
Молярный объём17,3 см³/моль
Теплопроводность (при нормальных условиях)0,02583 Вт/(м·К)
Теплопроводность (при 300 K)0,026 Вт/(м·К)
Критическая температура***-146,94 °C (126,21 К, -232,49°F)
Критическое давление***3,39 МПа
Критическая плотность0,304 г/см3
Тройная точка-210 °C (63,151 К), 12,52 кПа
Давление паров1 мм.рт.ст. (при -226 °C),
10 мм.рт.ст. (при -219 °C),
100 мм.рт.ст. (при -210 °C)
Взрывоопасные концентрации смеси газа с воздухом, % объёмных
Взрывоопасные концентрации смеси газа с кислородом, % объёмных
Стандартная энтальпия образования ΔH0 кДж/моль (при 298 К, для состояния вещества – газ)
Стандартная энергия Гиббса образования ΔG0 кДж/моль (при 298 К, для состояния вещества – газ)
Стандартная энтропия вещества S199,9 Дж/(моль·K) (при 298 К, для состояния вещества – газ)
Стандартная мольная теплоемкость Cp29,1 Дж/(моль·K) (при 298 К, для состояния вещества – газ)
Энтальпия диссоциации ΔHдисс 
Диэлектрическая проницаемость1,000528 (при 25 °C)
Магнетизмдиамагнитный материал
Магнитная восприимчивость
Электропроводность в твердой фазе
Удельное электрическое сопротивление
Сверхпроводимость при температуре
Твёрдость по Моосу
Твёрдость по Бринеллю
Твёрдость по Виккерсу
Скорость звука334 м/с (при 0 °C, состояние вещества – газ),
349 м/с (при 19,1 °C, состояние вещества – газ)
Поверхностное натяжение
Динамическая вязкость газов и жидкостей0,0165 мПа·с (при 0 °C),
0,0208 мПа·с (при 100 °C),
0,0246 мПа·с (при 200 °C),
0,0311 мПа·с (при 400 °C),
0,0366 мПа·с (при 600 °C),
Коэффициент теплового расширения
Модуль Юнга
Модуль сдвига
Объемный модуль упругости
Коэффициент Пуассона
Структура решёткикубическая
Параметры решётки a = 5,661 Å
Отношение c/a
Температура Дебая
Конденсат Бозе-Эйнштейна
Двумерные материалы
Читайте также:  У какого вещества наиболее ярко выражены металлические свойства

Примечание:

* Указан диапазон значений атомной массы в связи с различной распространённостью изотопов данного элемента в природе.

** Температура плавления азота согласно https://ru.wikipedia.org/wiki/Азот [Россия] составляет -209,86 °C (63,29 K, -345,75 °F); температура плавления азота согласно https://de.wikipedia.org/wiki/Stickstoff [Германия] составляет -210,1 °C (63,05 K, -346,18 °F). Температура кипения азота согласно https://ru.wikipedia.org/wiki/Азот [Россия] составляет -195,75 °C (77,4 K, -320,35 °F), температура кипения азота согласно https://de.wikipedia.org/wiki/Stickstoff [Германия] составляет -196 °C (77,15 К, -320,8 °F).

*** Критическая температура и критическое давление азота согласно https://chemister.ru/Database/properties.php?dbid=1&id=210 [Россия] составляет -149,9 °C (123,25 К, -237,82 °F) и 3,905 МПа соответственно.

**** Ковалентный радиус азота согласно https://ru.wikipedia.org/wiki/Азот [Россия] составляет 75 пм, атомный радиус азота (вычисленный) согласно https://ru.wikipedia.org/wiki/Азот [Россия] составляет 92 пм.

Физические свойства азота:

Химические свойства азота. Взаимодействие азота. Реакции с азотом:

Получение азота:

Применение азота:

Таблица химических элементов Д.И. Менделеева

  1. 1. Водород
  2. 2. Гелий
  3. 3. Литий
  4. 4. Бериллий
  5. 5. Бор
  6. 6. Углерод
  7. 7. Азот
  8. 8. Кислород
  9. 9. Фтор
  10. 10. Неон
  11. 11. Натрий
  12. 12. Магний
  13. 13. Алюминий
  14. 14. Кремний
  15. 15. Фосфор
  16. 16. Сера
  17. 17. Хлор
  18. 18. Аргон
  19. 19. Калий
  20. 20. Кальций
  21. 21. Скандий
  22. 22. Титан
  23. 23. Ванадий
  24. 24. Хром
  25. 25. Марганец
  26. 26. Железо
  27. 27. Кобальт
  28. 28. Никель
  29. 29. Медь
  30. 30. Цинк
  31. 31. Галлий
  32. 32. Германий
  33. 33. Мышьяк
  34. 34. Селен
  35. 35. Бром
  36. 36. Криптон
  37. 37. Рубидий
  38. 38. Стронций
  39. 39. Иттрий
  40. 40. Цирконий
  41. 41. Ниобий
  42. 42. Молибден
  43. 43. Технеций
  44. 44. Рутений
  45. 45. Родий
  46. 46. Палладий
  47. 47. Серебро
  48. 48. Кадмий
  49. 49. Индий
  50. 50. Олово
  51. 51. Сурьма
  52. 52. Теллур
  53. 53. Йод
  54. 54. Ксенон
  55. 55. Цезий
  56. 56. Барий
  57. 57. Лантан
  58. 58. Церий
  59. 59. Празеодим
  60. 60. Неодим
  61. 61. Прометий
  62. 62. Самарий
  63. 63. Европий
  64. 64. Гадолиний
  65. 65. Тербий
  66. 66. Диспрозий
  67. 67. Гольмий
  68. 68. Эрбий
  69. 69. Тулий
  70. 70. Иттербий
  71. 71. Лютеций
  72. 72. Гафний
  73. 73. Тантал
  74. 74. Вольфрам
  75. 75. Рений
  76. 76. Осмий
  77. 77. Иридий
  78. 78. Платина
  79. 79. Золото
  80. 80. Ртуть
  81. 81. Таллий
  82. 82. Свинец
  83. 83. Висмут
  84. 84. Полоний
  85. 85. Астат
  86. 86. Радон
  87. 87. Франций
  88. 88. Радий
  89. 89. Актиний
  90. 90. Торий
  91. 91. Протактиний
  92. 92. Уран
  93. 93. Нептуний
  94. 94. Плутоний
  95. 95. Америций
  96. 96. Кюрий
  97. 97. Берклий
  98. 98. Калифорний
  99. 99. Эйнштейний
  100. 100. Фермий
  101. 101. Менделеевий
  102. 102. Нобелий
  103. 103. Лоуренсий
  104. 104. Резерфордий
  105. 105. Дубний
  106. 106. Сиборгий
  107. 107. Борий
  108. 108. Хассий
  109. 109. Мейтнерий
  110. 110. Дармштадтий
  111. 111. Рентгений
  112. 112. Коперниций
  113. 113. Нихоний
  114. 114. Флеровий
  115. 115. Московий
  116. 116. Ливерморий
  117. 117. Теннессин
  118. 118. Оганесон

Таблица химических элементов Д.И. Менделеева

Источник: https://ru.wikipedia.org/wiki/Азот, https://en.wikipedia.org/wiki/Nitrogen, https://de.wikipedia.org/wiki/Stickstoff, https://chemister.ru/Database/properties.php?dbid=1&id=210

Читайте также:  Какое свойство открыл у кристаллов

Примечание: © Фото https://www.pexels.com, https://pixabay.com

карта сайта

азот атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решетка
атом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома
электронные формулы сколько атомов в молекуле азота
сколько электронов в атоме свойства металлические неметаллические термодинамические 

Коэффициент востребованности
4 473

Источник

Азот – неметаллический элемент Va группы периодической таблицы Д.И. Менделеева. Составляет 78% воздуха. Входит в состав
белков, являющихся важной частью живых организмов.

Температура кипения азота составляет -195,8 °C. Однако быстрого замораживания объектов, которое часто демонстрируют в
кинофильмах, не происходит. Даже для заморозки растения нужно продолжительное время, это связано с низкой теплоемкостью
азота.

Азот

Общая характеристика элементов Va группы

От N к Bi (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств.
Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Азот, фосфор и мышьяк являются неметаллами, сурьма – полуметалл, висмут – металл.

Элементы Va группы

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns2np3:

  • N – 2s22p3
  • P – 3s23p3
  • As – 4s24p3
  • Sb – 5s25p3
  • Bi – 6s26p3
Основное и возбужденное состояние азота

При возбуждении атома азота электроны на s-подуровне распариваются и переходят на p-подуровень. Поскольку азот находится во втором периоде, то
3ий уровень у него отсутствует, что проявляется в особенностях электронной конфигурации возбужденного состояния.

Сравнивая возможности перемещения электронов у азота и фосфора, разница становится очевидна.

Основное и возбужденное состояние атома азота

Природные соединения

В природе азот встречается в виде следующих соединений:

  • Воздух – во вдыхаемом нами воздухе содержится 78% азота
  • Азот входит в состав нуклеиновых кислот, белков
  • KNO3 – индийская селитра, калиевая селитра
  • NaNO3 – чилийская селитра, натриевая селитра
  • NH4NO3 – аммиачная селитра (искусственный продукт, в природе не встречается)

Селитры являются распространенными азотными удобрениями, которые обеспечивают быстрый рост и развитие растений, повышают урожайность. Однако,
следует строго соблюдать правила их применения, чтобы не превысить допустимые концентрации.

Аммиачная селитра

Получение

В промышленности азот получают путем сжижения воздуха. В дальнейшем путем испарения их сжиженного воздуха получают азот.

Применяют и метод мембранного разделения, при котором через специальный фильтр из сжатого воздуха удаляют кислород.

Получение азота из сжатого воздуха

В лаборатории методы не столь экзотичны. Чаще всего получают азот разложением нитрита аммония

NH4NO2 → (t) N2 + H2O

Также азот можно получить путем восстановления азотной кислоты активными металлами.

HNO3(разб.) + Zn → Zn(NO3)2 + N2 + H2O

Получение азота из нитрита аммония

Химические свойства

Азот восхищает – он принимает все возможные для себя степени окисления от -3 до +5.

Степени окисления азота

Молекула азота отличается большой прочностью из-за наличия тройной связи. Вследствие этого многие реакции эндотермичны: даже горение
азота в кислороде сопровождается поглощением тепла, а не выделением, как обычно бывает при горении.

Молекула азота

  • Реакция с металлами
  • Без нагревания азот взаимодействует только с литием. При нагревании реагирует и с другими металлами.

    N2 + Li → Li3N (нитрид лития)

    N2 + Mg → (t) Mg3N2

    N2 + Al → (t) AlN

  • Реакция с неметаллами
  • Важное практическое значение имеет синтез аммиака, который применяется в дальнейшим при изготовлении удобрений, красителей, лекарств.

    N2 + H2 ⇄ (t, p) NH3

Аммиак

Бесцветный газ с резким едким запахом, раздражающим слизистые оболочки. Раствор концентрацией 10% аммиака применяется в медицинских целях,
называется нашатырным спиртом.

Аммиак

Получение

В промышленности аммиак получают прямым взаимодействием азота и водорода.

N2 + H2 ⇄ (t, p) NH3

В лабораторных условиях сильными щелочами действуют на соли аммония.

NH4Cl + NaOH → NH3 + NaCl + H2O

Химические свойства

Аммиак проявляет основные свойства, окрашивает лакмусовую бумажку в синий цвет.

  • Реакция с водой
  • Образует нестойкое соединение – гидроксид аммония, слабое основание. Оно сразу же распадается на воду и аммиак.

    NH3 + H2O ⇄ NH4OH

  • Основные свойства
  • Как основание аммиак способен реагировать с кислотами с образованием солей.

    NH3 + HCl → NH4Cl (хлорид аммония)

    NH3 + HNO3 → NH4NO3 (нитрат аммония)

    Нитрат аммония

  • Восстановительные свойства
  • Поскольку азот в аммиаке находится в минимальной степени окисления -3 и способен только ее повышать, то аммиак проявляет выраженные
    восстановительные свойства. Его используют для восстановления металлов из их оксидов.

    NH3 + FeO → N2↑ + Fe + H2O

    NH3 + CuO → N2↑ + Cu + H2O

    Горение аммиака без катализатора приводит к образованию азота в молекулярном виде. Окисление в присутствии катализатора сопровождается
    выделением NO.

    NH3 + O2 → (t) N2 + H2O

    NH3 + O2 → (t, кат) NO + H2O

    Горение аммиака

Читайте также:  Каким уникальным свойством обладают числа 3 и 11
Соли аммония

Получение

NH3 + H2SO4 → NH4HSO4 (гидросульфат аммония, избыток кислоты)

3NH3 + H3PO4 → (NH4)3PO4

Химические свойства

Помните, что по правилам общей химии, если по итогам реакции выпадает осадок, выделяется газ или образуется вода – реакция идет.

  • Реакции с кислотами
  • NH4Cl + H2SO4 → (NH4)2SO4 + HCl↑

  • Реакции с щелочами
  • В реакциях с щелочами образуется гидроксид аммония – NH4OH. Нестойкое основание, которое легко распадается на воду и аммиак.

    NH4Cl + KOH → KCl + NH3 + H2O

  • Реакции с солями
  • (NH4)2SO4 + BaCl2 = BaSO4↓ + NH4Cl

  • Реакция гидролиза
  • В воде ион аммония подвергается гидролизу с образованием нестойкого гидроксида аммония.

    NH4+ + H2O ⇄ NH4OH + H+

    NH4OH ⇄ NH3 + H2O

  • Реакции разложения
  • NH4Cl → (t) NH3↑ + HCl↑

    (NH4)2CO3 → (t) NH3↑ + H2O + CO2↑

    NH4NO2 → (t) N2↑ + H2O

    NH4NO3 → (t) N2O↑ + H2O

    (NH4)3PO4 → (t) NH3↑ + H3PO4

    Фосфат аммония

Оксид азота I – N2O

Закись азота, веселящий газ – N2O – обладает опьяняющим эффектом. Несолеобразующий оксид. При н.у. является бесцветным газом с приятным
сладковатым запахом и привкусом. В медицине применяется в больших концентрациях для ингаляционного наркоза.

Закись азота

Получают N2O разложением нитрата аммония при нагревании:

NH4NO3 → N2O + H2O

Оксид азота I разлагается на азот и кислород:

N2O → (t) N2 + O2

Оксид азота II – NO

Окись азота – NO. Несолеобразующий оксид. При н.у. бесцветный газ, на воздухе быстро окисляется до оксида азота IV.

Получение

В промышленных масштабах оксид азота II получают при каталитическом окислении аммиака.

NH3 + O2 → (t, кат) NO + H2O

В лабораторных условиях – в ходе реакции малоактивных металлов с разбавленной азотной кислотой.

Cu + HNO3(разб.) → Cu(NO3)2 + NO + H2O

Химические свойства

На воздухе быстро окисляется с образованием бурого газа – оксида азота IV – NO2.

NO + O2 → NO2

Оксид азота IV бурый газ

Оксид азота III – N2O3

При н.у. жидкость синего цвета, в газообразной форме бесцветен. Высокотоксичный, приводит к тяжелым ожогам кожи.

Оксид азота III

Получение

Получают N2O3 в две стадии: сначала реакцией оксида мышьяка III с азотной кислотой, затем
охлаждением полученной смеси газов до температуры – 36 °C.

As2O3 + HNO3 → H3AsO 3 + NO↑ + NO2↑

При охлаждении газов образуется оксид азота III.

NO + NO2 → N2O3

Химические свойства

Является кислотным оксидом. соответствует азотистой кислота – HNO2, соли которой называются нитриты (NO2-).
Реагирует с водой, основаниями.

H2O + N2O3 → HNO2

NaOH + N2O3 → NaNO2 + H2O

Оксид азота IV – NO2

Бурый газ, имеет острый запах. Ядовит.

Оксид азота IV

Получение

В лабораторных условиях данный оксид получают в ходе реакции меди с концентрированной азотной кислотой. Также NO2 выделяется при
разложении нитратов.

Cu + HNO3(конц) → Cu(NO3)2 + NO2 + H2O

Разложение нитратов

Cu(NO3)2 → (t) CuO + NO2 + O2

Pb(NO3)2 → (t) PbO + NO2 + O2

Химические свойства

Проявляет высокую химическую активность, кислотный оксид.

  • Окислительные свойства
  • Как окислитель NO2 ведет себя в реакциях с фосфором, углеродом и серой, которые сгорают в нем.

    NO2 + C → CO2 + N2

    NO2 + P → P2O5 + N2

    Окисляет SO2 в SO3 – на этой реакции основана одна из стадий получения серной кислоты.

    SO2 + NO2 → SO3 + NO

  • Реакции с водой и щелочами
  • Оксид азота IV соответствует сразу двум кислотам – азотистой HNO2 и азотной HNO3. Реакции с
    водой и щелочами протекают по одной схеме.

    NO2 + H2O → HNO3 + HNO2

    NO2 + LiOH → LiNO3 + LiNO2 + H2O

    Если растворение в воде оксида проводить в избытке кислорода, образуется азотная кислота.

    NO2 + H2O + O2 → HNO3

Оксид азота IV

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник