Какие свойства проявляет so3

Какие свойства проявляет so3 thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 марта 2020;
проверки требуют 7 правок.

У этого термина существуют и другие значения, см. Оксид серы.

Пространственная модель молекулы γ-SO3

Окси́д се́ры (VI) (се́рный ангидри́д, трёхо́кись се́ры, се́рный га́з) SO3 — высший оксид серы. Ангидрид серной кислоты. В обычных условиях легколетучая бесцветная жидкость с удушающим запахом. Весьма токсичен. При температурах ниже 16,9 °C застывает с образованием смеси различных кристаллических модификаций твёрдого SO3.

Получение[править | править код]

Получают, окисляя оксид серы (IV) кислородом воздуха при нагревании, в присутствии катализатора (V2O5, Pt, NaVO3, оксид железа(III) Fe2O3, NO2):

Можно получить термическим разложением сульфатов:

или взаимодействием SO2 с озоном:

Физические свойства[править | править код]

Оксид серы(VI) — в обычных условиях легколетучая бесцветная жидкость с удушающим запахом.

Находящиеся в газовой фазе молекулы SO3 имеют плоское тригональное строение с симметрией D3h (угол OSO = 120°, d(S-O) = 141 пм). При переходе в жидкое и кристаллическое состояния образуются циклический тример и зигзагообразные цепи. Тип химической связи в молекуле: ковалентная полярная химическая связь.

Твёрдый SO3 существует в α-, β-, γ- и δ-формах, с температурами плавления соответственно 16,8, 32,5, 62,3 и 95 °C и различающихся по форме кристаллов и степени полимеризации SO3. α-Форма SO3 состоит преимущественно из молекул триме́ра. Другие кристаллические формы серного ангидрида состоят из зигзагообразных цепей: изолированных у β-SO3, соединенных в плоские сетки у γ-SO3 или в пространственные структуры у δ-SO3. При охлаждении из пара сначала образуется бесцветная, похожая на лёд, неустойчивая α-форма, которая постепенно переходит в присутствии влаги в устойчивую β-форму — белые «шёлковистые» кристаллы, похожие на асбест. Обратный переход β-формы в α-форму возможен только через газообразное состояние SO3. Обе модификации на воздухе «дымят» (образуются капельки H2SO4) вследствие высокой гигроскопичности SO3.
Взаимный переход в другие модификации протекает очень медленно. Разнообразие форм триоксида серы связано со способностью молекул SO3 полимеризоваться благодаря образованию донорно-акцепторных связей. Полимерные структуры SO3 легко переходят друг в друга, и твердый SO3 обычно состоит из смеси различных форм, относительное содержание которых зависит от условий получения серного ангидрида.

Химические свойства[править | править код]

SO3 — типичный кислотный оксид, ангидрид серной кислоты. Его химическая активность достаточно велика.
При взаимодействии с водой образует серную кислоту:

Однако в данной реакции серная кислота образуется в виде аэрозоля, и поэтому в промышленности оксид серы(VI) растворяют в серной кислоте с образованием олеума, который далее растворяют в воде до образования серной кислоты нужной концентрации.

Взаимодействует с основаниями:

и оксидами:

SO3 характеризуется сильными окислительными свойствами, обычно восстанавливается до диоксида серы:

При взаимодействии с хлороводородом образуется хлорсульфоновая кислота, образуя тионилхлорид:

Применение[править | править код]

Серный ангидрид в основном используют в производстве серной кислоты и в металлургии.

Физиологическое действие[править | править код]

Триоксид серы — токсичное вещество, которое поражает слизистые оболочки и дыхательные пути, разрушает органические соединения. Хранится в запаянных стеклянных сосудах.

Литература[править | править код]

  • Ахметов Н. С. «Общая и неорганическая химия» М.: Высшая школа, 2001
  • Карапетьянц М. Х., Дракин С. И. «Общая и неорганическая химия» М.: Химия 1994

Источник

Оксид серы (VI)  – SO
(серный ангидрид)

Физические свойства

Бесцветная летучая маслянистая жидкость, t°пл. = 17°C; t°кип. = 66°С; на воздухе
“дымит”, сильно поглощает влагу (хранят в запаянных сосудах).

SO3
+ H2O → H2SO4

SO3
хорошо растворяется в 100%-ной серной кислоте, этот раствор называется
олеумом. 

Получение

1)      2SO2
+ O2  →  2SO3
(катализатор – V2O5,
при 450˚С)

 2)    
 Fe2(SO4)3  →  Fe2O3
+ 3SO3­
(разложение при нагревании) 

Химические свойства 

1)    
Серный ангидрид – кислотный оксид.

Взаимодействие
с водой

При растворении в воде дает сильную двухосновную
серную кислоту:

SO3
+ H2O → H2SO4

Диссоциация протекает ступенчато:

H2SO4→
H+
+
HSO4-
(первая ступень, образуется гидросульфат – ион)

HSO4-
→ H+
+
SO42-  (вторая ступень, образуется сульфат – ион)

H2SO4
образует два ряда солей – средние (сульфаты) и кислые (гидросульфаты)

Взаимодействие
со щелочами 

2NaOH
+ SO3
→ Na2SO4
+ H2O

NaOH
+ SO3
(избыток) → NaHSO4

Взаимодействие
с основными оксидами

Na2O
+ SO3 → Na2SO4

2)     SO3 – сильныйокислитель.

СЕРНАЯ КИСЛОТА – H2SO4

Физические свойства

Тяжелая маслянистая жидкость (“купоросное
масло”); r=
1,84 г/см3; нелетучая, хорошо растворима в воде – с сильным
нагревом; t°пл.
= 10,3°C,
t°кип.
= 296°С, очень гигроскопична, обладает водоотнимающими свойствами (обугливание
бумаги, дерева, сахара). 

 Помните!
Кислоту вливать малыми порциями в воду, а не наоборот!

Производство серной кислоты

1-я стадия.
Печь для обжига колчедана

4FeS2
+ 11O2
→ 2Fe2O3
+ 8SO2
+ Q

Процесс гетерогенный:

1)     измельчение железного
колчедана (пирита)

2)     метод “кипящего
слоя”

3)     800°С; отвод лишнего
тепла

4)     увеличение концентрации
кислорода в воздухе 

2-я стадия.
Контактный аппарат

После очистки, осушки и теплообмена сернистый газ поступает в контактный
аппарат, где окисляется в серный ангидрид (450°С – 500°С; катализатор V2O5):

2SO2
+ O2
→ 2SO3

3-я стадия.
Поглотительная башня

nSO3
+ H2SO4(конц) → (H2SO4 • nSO3)  (олеум) 

Воду использовать нельзя из-за образования тумана. Применяют
керамические насадки и принцип противотока.

Химические свойства разбавленной серной кислоты

H2SO4
– сильная двухосновная кислота, водный раствор изменяет окраску индикаторов
(лакмус и универсальный индикатор краснеют)

1)
Диссоциация протекает ступенчато:

H2SO4→
H+
+
HSO4-
(первая ступень, образуется гидросульфат – ион)

HSO4-
→ H+
+
SO42-  (вторая ступень, образуется сульфат – ион)

H2SO4
образует два ряда солей – средние (сульфаты) и кислые (гидросульфаты)

2)    
Взаимодействие с металлами: 

Разбавленная серная кислота растворяет только
металлы, стоящие в ряду напряжений левее водорода:

Zn0 +
H2+1SO4(разб) → Zn+2SO4
+ H20↑ 

Zn0
+ 2H+
→ Zn2+
+ H20↑ 

3)    
Взаимодействие с основными и амфотерными  оксидами:

CuO + H2SO4
→ CuSO4 + H2O

CuO + 2H+ →
Cu2+ + H2O

4)    Взаимодействие
с основаниями:

·       
H2SO4
+ 2NaOH

Na2SO4
+ 2H2O (реакция нейтрализации)

          H+ +
OH-

H2O

Если
кислота в избытке, то образуется кислая соль:

H2SO4 + NaOH → NaНSO4 + H2O

·       
H2SO4
+ Cu(OH)2 → CuSO4 + 2H2O

          2H+ +
Cu(OH)2 → Cu2+ +
2H2O 

5)    
Обменные реакции с солями:

образование
осадка

BaCl2
+ H2SO4 → BaSO4↓ + 2HCl

Ba2+
+
SO42-
→ BaSO4↓ 

Качественная реакция
на сульфат-ион:

Образование белого
осадка
BaSO4 (нерастворимого в
кислотах) используется для идентификации серной кислоты и растворимых
сульфатов.

образование
газа –
 как
сильная нелетучая кислота серная вытесняет из солей другие менее сильные
кислоты, например, угольную

MgCO3
+ H2SO4 → MgSO4 + H2O + CO2↑

MgCO3
+ 2H+ → Mg2+ + H2O + CO2­↑

Серную кислоту применяют

  • в
    производстве минеральных удобрений;
  • как
    электролит в свинцовых аккумуляторах;
  • для
    получения различных минеральных кислот и солей;
  • в
    производстве химических волокон, красителей, дымообразующих веществ и
    взрывчатых веществ;
  • в
    нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях
    промышленности;
  • в
    пищевой промышленности — зарегистрирована в качестве пищевой добавки E513(эмульгатор);
  • в
    промышленном органическом синтезе в реакциях:
    • дегидратации
      (получение диэтилового эфира, сложных эфиров);
    • гидратации
      (получение этанола);
    • сульфирования
      (получение СМС и промежуточные продукты в производстве красителей);
    • и
      др.

Самый крупный потребитель серной кислоты —
производство минеральных удобрений. На 1 т P₂O₅ фосфорных удобрений
расходуется 2,2-3,4 т серной кислоты, а на 1 т (NH₄)₂SO₄ — 0,75 т серной
кислоты. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами
по производству минеральных удобрений.

Применение солей серной кислоты

Железный купорос FеSО4•7Н2O применяли раньше
для лечения чесотки, гельминтоза и опухолей желез, в настоящее время используют
для борьбы с сельскохозяйственными вредителями.

Какие свойства проявляет so3

Медный купорос CuSO4•5Н2O широко используют
в сельском хозяйстве для борьбы с вредителями растений.

Какие свойства проявляет so3

«Глауберова соль» (мирабилит) Nа2SO4•10Н2O
была получена немецким химиком  И. Р. Глаубером
при действии серной кислоты на хлорид натрия, в медицине ее используют как
слабительное средство.

Какие свойства проявляет so3

«Бариевая каша» BaSO4обладает способностью задерживать
рентгеновские лучи в значительно большей степени, чем ткани организма. Это
позволяет рентгенологам при заполнении «бариевой кашей» полых органов
определить в них наличие анатомических изменений.

Гипс СаSO4•2Н2O находит широкое применение в
строительном деле, в медицинской практике для накладывания гипсовых повязок,
для изготовления гипсовых скульптур.

Какие свойства проявляет so3

Тренажёр №1 – Сероводород. Оксиды серы

Тренажёр №2 – Свойства разбавленной серной кислоты

Это интересно:

ГЛАУБЕР, ИОГАНН РУДОЛЬФ

ГЛАУБЕРОВА СОЛЬ

Задания для закрепления

№1. Осуществите превращения по схеме:

1) Zn →ZnSO4→Zn(OH)2 →ZnSO4 → BaSO4

2)
S →SO2 →SO3→H2SO4 →K2SO4

№2. Закончите уравнения практически осуществимых
реакций в полном и кратком ионном виде:

Na2CO3
+ H2SO4→

Cu
+ H2SO4 (раствор) →

Al(OH)3
+ H2SO4 →

MgCl2
+ H2SO4 →

№3. Запишите уравнения реакций взаимодействия
разбавленной серной кислоты с магнием, гидроксидом железа (III), оксидом
алюминия, нитратом бария и сульфитом калия в молекулярном, полном и кратком
ионном виде.

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 февраля 2020;
проверки требуют 3 правки.

У этого термина существуют и другие значения, см. Оксид серы.

Оксид серы​(IV)​
Систематическое
наименование
Оксид серы​(IV)​
Хим. формула SO2
Рац. формула SO2
Состояние бесцветный газ
Молярная масса 64,054 г/моль
Плотность 0,002927 г/см³
Энергия ионизации 12,3 ± 0,1 эВ[2]
Температура
 • плавления −75,5 °C
 • кипения −10,01 °C
Энтальпия
 • образования −296,90 кДж/моль
Давление пара 3,2 ± 0,1 атм[2]
Растворимость
 • в воде 11,5 г/100 мл
Рег. номер CAS [7446-09-5]
PubChem 1119
Рег. номер EINECS 231-195-2
SMILES

O=S=O

InChI

1S/O2S/c1-3-2

RAHZWNYVWXNFOC-UHFFFAOYSA-N

Кодекс Алиментариус E220
RTECS WS4550000
ChEBI 18422
ChemSpider 1087
Предельная концентрация 10 мг/м³[1]
Токсичность Класс опасности III
Пиктограммы ECB
NFPA 704

2

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Окси́д се́ры(IV) (диокси́д се́ры, двуокись серы, серни́стый газ, серни́стый ангидри́д) — соединение серы с кислородом состава SO2. В нормальных условиях представляет собой бесцветный газ с характерным резким запахом (запах загорающейся спички). В высоких концентрациях токсичен. Под давлением сжижается при комнатной температуре. Растворяется в воде с образованием нестойкой серни́стой кислоты; растворимость 11,5 г/100 г воды при 20 °C, снижается с ростом температуры. Растворяется также в этаноле и се́рной кислоте. Один из основных компонентов вулканических газов.

Получение[править | править код]

Промышленный способ получения — сжигание серы или обжиг сульфидов, в основном — пирита:

В лабораторных условиях и в природе SO2 получают воздействием сильных кислот на сульфиты и гидросульфиты. Образующаяся сернистая кислота H2SO3 сразу разлагается на SO2 и H2O:

Химические свойства[править | править код]

Спектр поглощения SO2 в ультрафиолетовом диапазоне.

Относится к кислотным оксидам. Растворяется в воде с образованием сернистой кислоты (при обычных условиях реакция обратима):

С щелочами образует сульфиты:

Химическая активность SO2 весьма велика. Наиболее ярко выражены восстановительные свойства SO2, степень окисления серы в таких реакциях повышается:

Предпоследняя реакция является качественной реакцией на сульфит-ион SO32− и на SO2 (обесцвечивание фиолетового раствора).

В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства. Например, для извлечения серы из отходящих газов металлургической промышленности используют восстановление SO2оксидом углерода(II):

Или для получения фосфорноватистой кислоты:

Применение[править | править код]

Большая часть оксида серы(IV) используется для производства сернистой кислоты. Используется также в виноделии в качестве консерванта (пищевая добавка E220). Так как этот газ убивает микроорганизмы, им окуривают овощехранилища и склады. Оксид серы(IV) используется для отбеливания соломы, шёлка и шерсти, то есть материалов, которые нельзя отбеливать хлором. Применяется он также и в качестве растворителя в лабораториях[3]. Оксид серы(IV) применяется также для получения различных солей сернистой кислоты.

Токсическое действие[править | править код]

Оксид серы (IV) SO2 (диоксид серы) в высоких дозах очень токсичен. Симптомы при отравлении сернистым газом — насморк, кашель, охриплость, сильное першение в горле и своеобразный привкус. При вдыхании сернистого газа более высокой концентрации — удушье, расстройство речи, затруднение глотания, рвота, возможен острый отёк лёгких.

При кратковременном вдыхании оказывает сильное раздражающее действие, вызывает кашель и першение в горле.

Длительное воздействие диоксида серы в малых концентрациях также может нести вред организму. Системное исследование, проведённое в 2011 году показывает связь между воздействием диоксида серы на организм и преждевременными родами у женщин.

  • ПДК (предельно допустимая концентрация):
    • в атмосферном воздухе максимально-разовая — 0,5 мг/м³, среднесуточная — 0,05 мг/м³;
    • в помещении (рабочая зона) — 10 мг/м³.

По степени воздействия на человеческий организм сернистый ангидрид относится к III классу опасности (“умеренно-опасное химическое вещество”)[4] согласно ГОСТ 12.1.007-76.

Интересно, что чувствительность по отношению к SO2 весьма различна у отдельных людей, животных и растений. Так, среди растений наиболее устойчивы по отношению к сернистому газу берёза и дуб, наименее — роза, сосна и ель.

По данным исследования[5] средний порог восприятия запаха может превышать ПДК (21 мг/м3), а у части людей порог был значительно выше среднего значения.

Биологическая роль[править | править код]

Роль эндогенного сернистого газа в физиологии организма млекопитающих ещё окончательно не выяснена.[6] Сернистый газ блокирует нервные импульсы от рецепторов растяжения лёгких и устраняет рефлекс, возникающий в ответ на перерастяжение лёгких, стимулируя тем самым более глубокое дыхание.

Показано, что эндогенный сернистый газ играет роль в предотвращении повреждения лёгких, уменьшает образование свободных радикалов, оксидативный стресс и воспаление в лёгочной ткани, в то время как экспериментальное повреждение лёгких, вызываемое олеиновой кислотой, сопровождается, наоборот, снижением образования сернистого газа и активности опосредуемых им внутриклеточных путей и повышением образования свободных радикалов и уровня оксидативного стресса. Что ещё более важно, блокада фермента, способствующего образованию эндогенного сернистого газа, в эксперименте способствовала усилению повреждения лёгких, оксидативного стресса и воспаления и активации апоптоза клеток лёгочной ткани. И напротив, обогащение организма подопытных животных серосодержащими соединениями, такими, как глютатион и ацетилцистеин, служащими источниками эндогенного сернистого газа, приводило не только к повышению содержания эндогенного сернистого газа, но и к уменьшению образования свободных радикалов, оксидативного стресса, воспаления и апоптоза клеток лёгочной ткани.[7]

Считают, что эндогенный сернистый газ играет важную физиологическую роль в регуляции функций сердечно-сосудистой системы, а нарушения в его метаболизме могут играть важную роль в развитии таких патологических состояний, как лёгочная гипертензия, гипертоническая болезнь, атеросклероз сосудов, ишемическая болезнь сердца, ишемия-реперфузия и др.[8]

Показано, что у детей с врождёнными пороками сердца и лёгочной гипертензией повышен уровень гомоцистеина (вредного токсичного метаболита цистеина) и снижен уровень эндогенного сернистого газа, причём степень повышения уровня гомоцистеина и степень снижения выработки эндогенного сернистого газа коррелировала со степенью выраженности лёгочной гипертензии. Предложено использовать гомоцистеин как маркер степени тяжести состояния этих больных и указано, что метаболизм эндогенного сернистого газа может быть важной терапевтической мишенью у этих больных.[9]

Также показано, что эндогенный сернистый газ понижает пролиферативную активность клеток гладких мышц эндотелия сосудов, угнетая активность MAPK-сигнального пути и одновременно активируя аденилатциклазный путь и протеинкиназу A.[10] А пролиферация гладкомышечных клеток стенок сосудов считается одним из механизмов гипертензивного ремоделирования сосудов и важным звеном патогенеза артериальной гипертензии, а также играет роль в развитии стеноза (сужения просвета) сосудов, предрасполагающего к развитию в них атеросклеротических бляшек.

Эндогенный сернистый газ оказывает эндотелий-зависимое вазодилатирующее действие в низких концентрациях, а в более высоких концентрациях становится эндотелий-независимым вазодилататором, а также оказывает отрицательное инотропное действие на миокард (понижает сократительную функцию и сердечный выброс, способствуя снижению артериального давления). Этот вазодилатирующий эффект сернистого газа опосредуется через АТФ-чувствительные кальциевые каналы и кальциевые каналы L-типа («дигидропиридиновые»). В патофизиологических условиях эндогенный сернистый газ оказывает противовоспалительное действие и повышает антиоксидантный резерв крови и тканей, например при экспериментальной лёгочной гипертензии у крыс. Эндогенный сернистый газ также снижает повышенное артериальное давление и тормозит гипертензивное ремоделирование сосудов у крыс в экспериментальных моделях гипертонической болезни и лёгочной гипертензии. Последние (на 2015 год) исследования показывают также, что эндогенный сернистый газ вовлечён в регуляцию липидного метаболизма и в процессы ишемии-реперфузии.[11]

Эндогенный сернистый газ также уменьшает повреждение миокарда, вызванное экспериментальной гиперстимуляцией адренорецепторов изопротеренолом, и повышает антиоксидантный резерв миокарда.[12]

Воздействие на атмосферу[править | править код]

Из-за образования в больших количествах в качестве отходов диоксид серы является одним из основных газов, загрязняющих атмосферу.

Наибольшую опасность представляет собой загрязнение соединениями серы, которые выбрасываются в атмосферу при сжигании угольного топлива, нефти и природного газа, а также при выплавке металлов и производстве серной кислоты.

Антропогенное загрязнение серой в два раза превосходит природное[13][14]. Серный ангидрид образуется при постепенном окислении сернистого ангидрида кислородом воздуха с участием света. Конечным продуктом реакции является аэрозоль серной кислоты в воздухе, раствор в дождевой воде (в облаках). Выпадая с осадками, она подкисляет почву, обостряет заболевания дыхательных путей, скрыто угнетающе воздействует на здоровье человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий чаще отмечается при низкой облачности и высокой влажности воздуха. Растения около таких предприятий обычно бывают густо усеяны мелкими некротическими пятнами, образовавшимися в местах оседания капель серной кислоты, что доказывает присутствие её в окружающей среде в существенных количествах. Пирометаллургические предприятия цветной и чёрной металлургии, а также ТЭЦ ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.
Необходимо отметить также, что диоксид серы имеет максимум в спектре поглощения света в ультрафиолетовой области (190—220 нм), что совпадает с максимумом в спектре поглощения озона. Это свойство диоксида серы позволяет утверждать, что наличие этого газа в атмосфере имеет также положительный эффект, предотвращая возникновение и развитие онкологических заболеваний кожи человека. Диоксид серы в атмосфере Земли существенно ослабляет влияние парниковых газов (диоксид углерода, метан) на рост температуры атмосферы[15].
Наибольших концентраций сернистый газ достигает в северном полушарии, особенно над территорией США, Европы, Китая, европейской части России и Украины. В южном полушарии содержание его значительно ниже[16].

Примечания[править | править код]

  1. ↑ Ошибка в сносках?: Неверный тег <ref>; для сносок onx.distant.ru не указан текст
  2. 1 2 https://www.cdc.gov/niosh/npg/npgd0575.html
  3. Гордон А., Форд Р. Спутник химика / Пер. на русск. Е. Л. Розенберга, С. И. Коппель. — М.: Мир, 1976. — 544 с.
  4. ↑ Ошибка в сносках?: Неверный тег <ref>; для сносок xumuk.ru не указан текст
  5. Mary O. Amdur, Walter W. Melvin, Philip Drinker. Effects of Inhalation of Sulphur Dioxide by Man (англ.) // The Lancet. — Elsevier B.V, 1953. — 1 October (vol. 262 (iss. 6789). — P. 758—759. — ISSN 0140-6736. — doi:10.1016/S0140-6736(53)91455-X.
  6. Liu, D.; Jin, H; Tang, C; Du, J. Sulfur dioxide: a novel gaseous signal in the regulation of cardiovascular functions (англ.) // Mini-Reviews in Medicinal Chemistry (англ.)русск. : journal. — 2010. — Vol. 10, no. 11. — P. 1039—1045. — PMID 20540708. Архивировано 26 апреля 2013 года.
  7. Chen S, Zheng S, Liu Z, Tang C, Zhao B, Du J, Jin H. Endogenous sulfur dioxide protects against oleic acid-induced acute lung injury in association with inhibition of oxidative stress in rats. // Lab Invest.. — Feb 2015. — Т. 95, вып. 95(2), № 2. — С. 142—156. — doi:10.1038/labinvest.2014.147. — PMID 25581610.
  8. Tian H. Advances in the study on endogenous sulfur dioxide in the cardiovascular system. // Chin Med J. — Nov 2014. — Т. 127, вып. 127(21), № 21. — С. 3803—3807. — PMID 25382339.
  9. Yang R, Yang Y, Dong X, Wu X, Wei Y. Correlation between endogenous sulfur dioxide and homocysteine in children with pulmonary arterial hypertension associated with congenital heart disease (кит.) // Zhonghua Er Ke Za Zhi. — Aug 2014. — 第52卷, 第52(8)期, 第8数. — 第625—629 页. — PMID 25224243.
  10. Liu D, Huang Y, Bu D, Liu AD, Holmberg L, Jia Y, Tang C, Du J, Jin H. Sulfur dioxide inhibits vascular smooth muscle cell proliferation via suppressing the Erk/MAP kinase pathway mediated by cAMP/PKA signaling. // Cell Death Dis.. — May 2014. — Т. 5, вып. 5(5), № 5. — С. e1251. — doi:10.1038/cddis.2014.229.. — PMID 24853429.
  11. Wang XB, Jin HF, Tang CS, Du JB. The biological effect of endogenous sulfur dioxide in the cardiovascular system. // Eur J Pharmacol.. — 16 Nov 2011. — Т. 670, вып. 670(1), № 1. — doi:10.1016/j.ejphar.2011.08.031. — PMID 21925165.
  12. Liang Y, Liu D, Ochs T, Tang C, Chen S, Zhang S, Geng B, Jin H, Du J. Endogenous sulfur dioxide protects against isoproterenol-induced myocardial injury and increases myocardial antioxidant capacity in rats. // Lab Invest.. — Jan 2011. — Т. 91, вып. 91(1), № 1. — С. 12—23. — doi:10.1038/labinvest.2010.156. — PMID 20733562.
  13. ↑ Серный ангидрид, его воздействие на окружающую среду. Дата обращения 21 ноября 2013.
  14. ↑ Основы расчета нормативов пдв. Дата обращения 21 ноября 2013.
  15. ↑ Проблемы загрязнения атмосферы. Парниковый эффект.. Дата обращения 21 ноября 2013.
  16. ↑ Экологические кризисы. Дата обращения 21 ноября 2013.

Литература[править | править код]

  • Ахметов Н. С. Общая и неорганическая химия. — М.: Высшая школа, 2001.
  • Карапетьянц М. Х., Дракин С. И. Общая и неорганическая химия. — М.: Химия, 1994.

Ссылки[править | править код]

  • Global map of sulfur dioxide distribution (англ.)
  • United States Environmental Protection Agency Sulfur Dioxide page (англ.)
  • International Chemical Safety Card 0074 (англ.)
  • IARC Monographs. «Sulfur Dioxide and some Sulfites, Bisulfites and Metabisulfites» v54. 1992. p131. (англ.)
  • Sulfur Dioxide, Molecule of the Month (англ.)

Источник