Какие свойства проявляет разбавленная серная кислота

Какие свойства проявляет разбавленная серная кислота thumbnail

Оксид серы (VI)  – SO
(серный ангидрид)

Физические свойства

Бесцветная летучая маслянистая жидкость, t°пл. = 17°C; t°кип. = 66°С; на воздухе
“дымит”, сильно поглощает влагу (хранят в запаянных сосудах).

SO3
+ H2O → H2SO4

SO3
хорошо растворяется в 100%-ной серной кислоте, этот раствор называется
олеумом. 

Получение

1)      2SO2
+ O2  →  2SO3
(катализатор – V2O5,
при 450˚С)

 2)    
 Fe2(SO4)3  →  Fe2O3
+ 3SO3­
(разложение при нагревании) 

Химические свойства 

1)    
Серный ангидрид – кислотный оксид.

Взаимодействие
с водой

При растворении в воде дает сильную двухосновную
серную кислоту:

SO3
+ H2O → H2SO4

Диссоциация протекает ступенчато:

H2SO4→
H+
+
HSO4-
(первая ступень, образуется гидросульфат – ион)

HSO4-
→ H+
+
SO42-  (вторая ступень, образуется сульфат – ион)

H2SO4
образует два ряда солей – средние (сульфаты) и кислые (гидросульфаты)

Взаимодействие
со щелочами 

2NaOH
+ SO3
→ Na2SO4
+ H2O

NaOH
+ SO3
(избыток) → NaHSO4

Взаимодействие
с основными оксидами

Na2O
+ SO3 → Na2SO4

2)     SO3 – сильныйокислитель.

СЕРНАЯ КИСЛОТА – H2SO4

Физические свойства

Тяжелая маслянистая жидкость (“купоросное
масло”); r=
1,84 г/см3; нелетучая, хорошо растворима в воде – с сильным
нагревом; t°пл.
= 10,3°C,
t°кип.
= 296°С, очень гигроскопична, обладает водоотнимающими свойствами (обугливание
бумаги, дерева, сахара). 

 Помните!
Кислоту вливать малыми порциями в воду, а не наоборот!

Производство серной кислоты

1-я стадия.
Печь для обжига колчедана

4FeS2
+ 11O2
→ 2Fe2O3
+ 8SO2
+ Q

Процесс гетерогенный:

1)     измельчение железного
колчедана (пирита)

2)     метод “кипящего
слоя”

3)     800°С; отвод лишнего
тепла

4)     увеличение концентрации
кислорода в воздухе 

2-я стадия.
Контактный аппарат

После очистки, осушки и теплообмена сернистый газ поступает в контактный
аппарат, где окисляется в серный ангидрид (450°С – 500°С; катализатор V2O5):

2SO2
+ O2
→ 2SO3

3-я стадия.
Поглотительная башня

nSO3
+ H2SO4(конц) → (H2SO4 • nSO3)  (олеум) 

Воду использовать нельзя из-за образования тумана. Применяют
керамические насадки и принцип противотока.

Химические свойства разбавленной серной кислоты

H2SO4
– сильная двухосновная кислота, водный раствор изменяет окраску индикаторов
(лакмус и универсальный индикатор краснеют)

1)
Диссоциация протекает ступенчато:

H2SO4→
H+
+
HSO4-
(первая ступень, образуется гидросульфат – ион)

HSO4-
→ H+
+
SO42-  (вторая ступень, образуется сульфат – ион)

H2SO4
образует два ряда солей – средние (сульфаты) и кислые (гидросульфаты)

2)    
Взаимодействие с металлами: 

Разбавленная серная кислота растворяет только
металлы, стоящие в ряду напряжений левее водорода:

Zn0 +
H2+1SO4(разб) → Zn+2SO4
+ H20↑ 

Zn0
+ 2H+
→ Zn2+
+ H20↑ 

3)    
Взаимодействие с основными и амфотерными  оксидами:

CuO + H2SO4
→ CuSO4 + H2O

CuO + 2H+ →
Cu2+ + H2O

4)    Взаимодействие
с основаниями:

·       
H2SO4
+ 2NaOH

Na2SO4
+ 2H2O (реакция нейтрализации)

          H+ +
OH-

H2O

Если
кислота в избытке, то образуется кислая соль:

H2SO4 + NaOH → NaНSO4 + H2O

·       
H2SO4
+ Cu(OH)2 → CuSO4 + 2H2O

          2H+ +
Cu(OH)2 → Cu2+ +
2H2O 

5)    
Обменные реакции с солями:

образование
осадка

BaCl2
+ H2SO4 → BaSO4↓ + 2HCl

Ba2+
+
SO42-
→ BaSO4↓ 

Качественная реакция
на сульфат-ион:

Образование белого
осадка
BaSO4 (нерастворимого в
кислотах) используется для идентификации серной кислоты и растворимых
сульфатов.

образование
газа –
 как
сильная нелетучая кислота серная вытесняет из солей другие менее сильные
кислоты, например, угольную

MgCO3
+ H2SO4 → MgSO4 + H2O + CO2↑

MgCO3
+ 2H+ → Mg2+ + H2O + CO2­↑

Серную кислоту применяют

  • в
    производстве минеральных удобрений;
  • как
    электролит в свинцовых аккумуляторах;
  • для
    получения различных минеральных кислот и солей;
  • в
    производстве химических волокон, красителей, дымообразующих веществ и
    взрывчатых веществ;
  • в
    нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях
    промышленности;
  • в
    пищевой промышленности — зарегистрирована в качестве пищевой добавки E513(эмульгатор);
  • в
    промышленном органическом синтезе в реакциях:
    • дегидратации
      (получение диэтилового эфира, сложных эфиров);
    • гидратации
      (получение этанола);
    • сульфирования
      (получение СМС и промежуточные продукты в производстве красителей);
    • и
      др.

Самый крупный потребитель серной кислоты —
производство минеральных удобрений. На 1 т P₂O₅ фосфорных удобрений
расходуется 2,2-3,4 т серной кислоты, а на 1 т (NH₄)₂SO₄ — 0,75 т серной
кислоты. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами
по производству минеральных удобрений.

Применение солей серной кислоты

Железный купорос FеSО4•7Н2O применяли раньше
для лечения чесотки, гельминтоза и опухолей желез, в настоящее время используют
для борьбы с сельскохозяйственными вредителями.

Какие свойства проявляет разбавленная серная кислота

Медный купорос CuSO4•5Н2O широко используют
в сельском хозяйстве для борьбы с вредителями растений.

Какие свойства проявляет разбавленная серная кислота

«Глауберова соль» (мирабилит) Nа2SO4•10Н2O
была получена немецким химиком  И. Р. Глаубером
при действии серной кислоты на хлорид натрия, в медицине ее используют как
слабительное средство.

Какие свойства проявляет разбавленная серная кислота

«Бариевая каша» BaSO4обладает способностью задерживать
рентгеновские лучи в значительно большей степени, чем ткани организма. Это
позволяет рентгенологам при заполнении «бариевой кашей» полых органов
определить в них наличие анатомических изменений.

Гипс СаSO4•2Н2O находит широкое применение в
строительном деле, в медицинской практике для накладывания гипсовых повязок,
для изготовления гипсовых скульптур.

Какие свойства проявляет разбавленная серная кислота

Тренажёр №1 – Сероводород. Оксиды серы

Тренажёр №2 – Свойства разбавленной серной кислоты

Это интересно:

ГЛАУБЕР, ИОГАНН РУДОЛЬФ

ГЛАУБЕРОВА СОЛЬ

Задания для закрепления

№1. Осуществите превращения по схеме:

1) Zn →ZnSO4→Zn(OH)2 →ZnSO4 → BaSO4

2)
S →SO2 →SO3→H2SO4 →K2SO4

№2. Закончите уравнения практически осуществимых
реакций в полном и кратком ионном виде:

Na2CO3
+ H2SO4→

Cu
+ H2SO4 (раствор) →

Al(OH)3
+ H2SO4 →

MgCl2
+ H2SO4 →

№3. Запишите уравнения реакций взаимодействия
разбавленной серной кислоты с магнием, гидроксидом железа (III), оксидом
алюминия, нитратом бария и сульфитом калия в молекулярном, полном и кратком
ионном виде.

Источник

Концентрированной кислоты, техника безопасности при работе.

СЕРНАЯ КИСЛОТА. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА.

Физические свойства: Безводная серная кислота — бесцветная маслянистая жидкость, кристаллизующаяся при 10,50С. С водой смешивается в любых соотношениях. При растворении в воде выделяется большое количество

Читайте также:  Какие свойства характерны для эпителиальной ткани

теплоты. При этом образуются гидраты серной кислоты.

Т.к. растворение Н2SO4 в воде сопровождается выделением большого количества теплоты, необходимо эту операцию проводить с большой осторожностью. Во избежание разбрызгивания разогретого поверхностного слоя раствора следует серную кислоту вливать в воду.

Концентрированная серная кислота энергично поглощает влагу и поэтому применяется для осушки газов.

ХИМИЧЕСКИЕ СВОЙСТВА СЕРНОЙ КИСЛОТЫ.

Она является двухосновной кислотой.

Структурная формула:

HO O

S

HO O

Концентрированная серная кислота — энергичныйокислитель:

1. При нагревании окисляет большинство металлов, в том числе и медь, серебро, ртуть. В зависимости от активности металла в качестве продуктов восстановления могут быть: S0, SO2, H2S, но чаще до SO2.

Например: При взаимодействии с медью и другими малоактивными металлами при нагревании образуется SO2.

Cu + 2 H2SO4 = CuSO4 + SO2 + H2O

Восстановитель окислитель

Cu0 – 2ē — Cu+2 1 пр.ок-я вос-ль

SO42- + 4H- +2ē — SO20 +2H2O 1пр. вос-я ок-ль

На холоду концентрированная серная кислота (выше 93%) не взаимодей- ствует с такими активными металлами, как алюминий, железо, хром.

Объясняется это явление пассивацией металлов. Такая особенность серной кислоты широко используется для транспортировки последней в железной таре.

2. При кипячении окисляет такие неметаллы, как серу, углерод:

S + 2 Н2SО4= 3 SO2 +2 H2O

С + 2 H2SO4 = СO2 + 2 SO2 + 2 Н2O

3. Водоотнимающее действие (обугливание).

СВОЙСТВА РАЗБАВЛЕННОЙ СЕРНОЙ КИСЛОТЫ.

1. Изменяет окраску индикатора.

2. Взаимодействует с основными и амфотерными оксидами:

Nа2O + Н2SO4 = Nа2SO4 + Н2O

ZnO + Н2SO4 = ZnSO4 + H2O

3. С основаниями (реакция нейтрализации):

Н2SO4 + 2КОН = K2SO4 + Н2O

3Н2SO4 + 2 Al(OH)3 = Al2(SO4)3 + 6 Н2O

4. С солями:

H2SO4 + Ba(NO3)2 = BaSO4 ↓+ 2 HNO3

Выводы :

1.Безводная серная кислота — бесцветная маслянистая жидкость, кристаллизующаяся при 10,50С. С водой смешивается в любых соотношениях.

2.Т.к. растворение Н2SO4 в воде сопровождается выделением большого количества теплоты, необходимо эту операцию проводить с большой осторожностью. Во избежание разбрызгивания разогретого поверхностного слоя раствора следует серную кислоту вливать в воду.

3.Концентрированная серная кислота энергично поглощает влагу и поэтому применяется для осушки газов.

4.Серная кислота является двухосновной кислотой.

5.Концентрированная серная кислота — энергичныйокислитель.

· При нагревании окисляет большинство металлов, в том числе и медь, серебро, ртуть. В зависимости от активности металла в качестве продуктов восстановления могут быть: S0, SO2, H2S, но чаще до SO2.

· .На холоду концентрированная серная кислота (выше 93%) не взаимодействует с такими активными металлами, как алюминий, железо, хром.

· При кипячении окисляет такие неметаллы, как серу, углерод.

· Водоотнимающее действие (обугливание).

6.СВОЙСТВА РАЗБАВЛЕННОЙ СЕРНОЙ КИСЛОТЫ.

· Изменяет окраску индикатора.

· Взаимодействует:

· с основными и амфотерными оксидами.

· С основаниями (реакция нейтрализации).

· С солями.

Сульфаты. Качественная реакция на сульфат- ион

Реактивом на сульфат-ион является хлорид бария.

Хлорид бария BaCl2 осаждает из разбавленных растворов сульфатов белый кристаллический ни в чем нерастворимый осадок сульфата бария:

BaCl2 + Nа2SO4 = BaSO4↓ + 2 NаCl

Ba2+ + SO42- = BaSO4 ↓

реакция фармакопейная.

Техника выполнения: к 2 каплям раствора сульфата натрия Na2SO4 добавляют раствор хлорида бария BaCl2 и наблюдают выпадение осадка.

Выводы :

1.Реактивом на сульфат-ион является хлорид бария.

2.Хлорид бария BaCl2 осаждает из разбавленных растворов сульфатов белый кристаллический ни в чем нерастворимый осадок сульфата бария.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник

Серная кислота
Систематическое
наименование
серная кислота
Традиционные названия купоросное масло
Хим. формула H2SO4
Состояние жидкость
Молярная масса 98,078 ± 0,006 г/моль
Плотность 1,8356 г/см³
Динамическая вязкость 21 мПа·с[2]
Температура
 • плавления 10,38 °C
 • кипения 337 °C
Удельная теплота плавления 10,73 Дж/кг
Давление пара 0,001 ± 0,001 мм рт.ст.[3]
Константа диссоциации кислоты -3
Растворимость
 • в воде смешивается
Показатель преломления 1.397
Дипольный момент 2.72 Д
Рег. номер CAS 7664-93-9
PubChem 1118
Рег. номер EINECS 231-639-5
SMILES

OS(O)(=O)=O

InChI

InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)

QAOWNCQODCNURD-UHFFFAOYSA-N

Кодекс Алиментариус E513
RTECS WS5600000
ChEBI 26836
Номер ООН 1830
ChemSpider 1086
ЛД50 510 мг/кг
Токсичность 2 класс (высокоопасная)[1]
Пиктограммы СГС
NFPA 704

3

2

W
OX

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Се́рная кислота́ H2SO4 — сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная кислота — тяжёлая маслянистая жидкость без цвета и запаха, с сильнокислым «медным» вкусом. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом SO3. Если молярное отношение SO3 : H2O < 1, то это водный раствор серной кислоты, если > 1 — раствор SO3 в серной кислоте (олеум). Токсична, и относится к высокоопасным веществам (2-й класс опасности по ГОСТ 12.1.007).

Название[править | править код]

В XVIII—XIX веках серу для пороха производили из серного колчедана (пирит) на купоросных заводах. Серную кислоту в то время называли «купоросным маслом»[4][5], очевидно отсюда происхождение названия её солей (а точнее именно кристаллогидратов) — купоросы.

Получение серной кислоты[править | править код]

Промышленный (контактный) способ[править | править код]

В промышленности серную кислоту получают окислением диоксида серы (сернистый газ, образующийся в процессе сжигания серы или серного колчедана) до триоксида (серного ангидрида) с последующим взаимодействием SO3 с водой. Получаемую данным способом серную кислоту также называют контактной (концентрация 92-94 %).

Нитрозный (башенный) способ[править | править код]

Раньше серную кислоту получали исключительно нитрозным методом в специальных башнях, а кислоту называли башенной (концентрация 75 %). Сущность этого метода заключается в окислении диоксида серы диоксидом азота в присутствии воды. Именно таким способом произошла реакция в воздухе Лондона во время Великого смога.

Физические и физико-химические свойства[править | править код]

Очень сильная кислота, при 18оС pKa (1) = −2,8, pKa (2) = 1,92 (К₂ 1,2 10−2); длины связей в молекуле S=O 0,143 нм, S—OH 0,154 нм, угол HOSOH 104°, OSO 119°; кипит, образуя азеотропную смесь (98,3 % H2SO4 и 1,7 % H2О с температурой кипения 338,8оС). Серная кислота, отвечающая 100%-ному содержанию H2SO4, имеет состав (%): H2SO4 99,5, HSO4− — 0,18, H3SO4+ — 0,14, H3O+ — 0,09, H2S2O7, — 0,04, HS2O7⁻ — 0,05. Смешивается с водой и SO3, во всех соотношениях. В водных растворах серная кислота практически полностью диссоциирует на H3О+, HSO3+, и 2НSO₄−. Образует гидраты H2SO4·nH2O, где n = 1, 2, 3, 4 и 6,5.

Читайте также:  Какие свойства проявляет сероводород в реакциях

Олеум[править | править код]

Основная статья: Олеум

Растворы серного ангидрида SO3 в серной кислоте называются олеумом, они образуют два соединения H2SO4·SO3 и H2SO4·2SO3.

Олеум содержит также пиросерные кислоты, получающиеся по реакциям:

Сульфит

Температура кипения водных растворов серной кислоты повышается с ростом её концентрации и достигает максимума при содержании 98,3 % H2SO4.

Свойства водных растворов серной кислоты и олеума

Содержание % по массеПлотность при 20 ℃, г/см³Температура плавления, ℃Температура кипения, ℃
H2SO4SO3 (свободный)
101,0661−5,5102,0
201,1394−19,0104,4
401,3028−65,2113,9
601,4983−25,8141,8
801,7272−3,0210,2
981,83650,1332,4
1001,830510,4296,2
104,5201,8968−11,0166,6
109401,961133,3100,6
113,5602,00127,169,8
118,0801,994716,955,0
122,51001,920316,844,7

Температура кипения олеума с увеличением содержания SO3 понижается. При увеличении концентрации водных растворов серной кислоты общее давление пара над растворами понижается и при содержании 98,3 % H2SO4 достигает минимума. С увеличением концентрации SO3 в олеуме общее давление пара над ним повышается. Давление пара над водными растворами серной кислоты и олеума можно вычислить по уравнению:

величины коэффициентов А и В зависят от концентрации серной кислоты. Пар над водными растворами серной кислоты состоит из смеси паров воды, H2SO4 и SO3, при этом состав пара отличается от состава жидкости при всех концентрациях серной кислоты, кроме соответствующей азеотропной смеси.

С повышением температуры усиливается диссоциация:

Уравнение температурной зависимости константы равновесия:

При нормальном давлении степень диссоциации: 10⁻⁵ (373 К), 2,5 (473 К), 27,1 (573 К), 69,1 (673 К).

Плотность 100%-ной серной кислоты можно определить по уравнению:

С повышением концентрации растворов серной кислоты их теплоемкость уменьшается и достигает минимума для 100%-ной серной кислоты, теплоемкость олеума с повышением содержания SO3 увеличивается.

При повышении концентрации и понижении температуры теплопроводность λ уменьшается:

где С — концентрация серной кислоты, в %.

Максимальную вязкость имеет олеум H2SO4·SO3, с повышением температуры η снижается. Электрическое сопротивление серной кислоты минимально при концентрации SO3 и 92 % H2SO4 и максимально при концентрации 84 и 99,8 % H2SO4[источник не указан 3322 дня]. Для олеума минимальное ρ при концентрации 10 % SO3. С повышением температуры ρ серной кислоты увеличивается. Диэлектрическая проницаемость 100%-ной серной кислоты 101 (298,15 К), 122 (281,15 К); криоскопическая постоянная 6,12, эбулиоскопическая постоянная 5,33; коэффициент диффузии пара серной кислоты в воздухе изменяется в зависимости от температуры; D = 1,67·10⁻⁵T3/2 см²/с.

Химические свойства[править | править код]

Серная кислота в концентрированном виде при нагревании — довольно сильный окислитель.

Окисляет HI и частично HBr до свободных галогенов.

Углерод до CO2, серу — до SO2.

Окисляет многие металлы (исключения: Au, Pt, Ir, Rh, Ta.). При этом концентрированная серная кислота восстанавливается до SO2, например[6]:

На холоде в концентрированной серной кислоте Fe, Al, Cr, Co, Ni, Ba пассивируются и реакции не протекают.

Наиболее сильными восстановителями концентрированная серная кислота восстанавливается до S и H2S. Концентрированная серная кислота поглощает водяные пары, поэтому она применяется для сушки газов, жидкостей и твёрдых тел, например, в эксикаторах. Однако концентрированная H2SO4 частично восстанавливается водородом, из-за чего не может применяться для его сушки. Отщепляя воду от органических соединений и оставляя при этом чёрный углерод (уголь), концентрированная серная кислота приводит к обугливанию древесины, сахара и других веществ[6].

Разбавленная H2SO4 взаимодействует со всеми металлами, находящимися в электрохимическом ряду напряжений левее водорода с его выделением, например[6]:

Окислительные свойства для разбавленной H2SO4 нехарактерны. Серная кислота образует два ряда солей: средние — сульфаты и кислые — гидросульфаты, а также эфиры. Известны пероксомоносерная (или кислота Каро) H2SO5 и пероксодисерная H2S2O8 кислоты.

Серная кислота реагирует также с основными оксидами, образуя сульфат и воду:

На металлообрабатывающих заводах раствор серной кислоты применяют для удаления слоя оксида металла с поверхности металлических изделий, подвергающихся в процессе изготовления сильному нагреванию. Так, оксид железа удаляется с поверхности листового железа действием нагретого раствора серной кислоты:

Концентрированная H2SO4 превращает некоторые органические вещества в другие соединения углерода:

Качественной реакцией на серную кислоту и её растворимые соли является их взаимодействие с растворимыми солями бария, при котором образуется белый осадок сульфата бария, нерастворимый в воде и кислотах, например[7]:

Применение[править | править код]

Серную кислоту применяют:

  • в обработке руд, особенно при добыче редких элементов, в том числе урана, иридия, циркония, осмия и т. п.;
  • в производстве минеральных удобрений;
  • как электролит в свинцовых аккумуляторах;
  • для получения различных минеральных кислот и солей;
  • в производстве химических волокон, красителей, дымообразующих и взрывчатых веществ;
  • в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности;
  • в пищевой промышленности — зарегистрирована в качестве пищевой добавки E513 (эмульгатор);
  • в промышленном органическом синтезе в реакциях:
    • дегидратации (получение диэтилового эфира, сложных эфиров);
    • гидратации (этанол из этилена);
    • сульфирования (синтетические моющие средства и промежуточные продукты в производстве красителей);
    • алкилирования (получение изооктана, полиэтиленгликоля, капролактама) и др.;
    • для восстановления смол в фильтрах на производстве дистиллированной воды.
Читайте также:  Что такое вертикальные углы и какие их свойства

Мировое производство серной кислоты около 200 млн тонн в год[8]. Самый крупный потребитель серной кислоты — производство минеральных удобрений. На P₂O₅ фосфорных удобрений расходуется в 2,2—3,4 раза больше по массе серной кислоты, а на (NH₄)₂SO₄ серной кислоты 75 % от массы расходуемого (NH₄)₂SO₄. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений.

Токсическое действие[править | править код]

Серная кислота и олеум — очень едкие вещества. Они поражают все ткани организма. При вдыхании паров этих веществ они вызывают затруднение дыхания, кашель, нередко — ларингит, трахеит, бронхит и т. д. Попадание кислоты на глаза может привести как к конъюнктивиту, так и к полной потере зрения.[9] Предельно допустимая концентрация аэрозоля серной кислоты в воздухе рабочей зоны 1,0 мг/м³, в атмосферном воздухе 0,3 мг/м³ (максимальная разовая) и 0,1 мг/м³ (среднесуточная). Поражающая концентрация паров серной кислоты 0,008 мг/л (экспозиция 60 мин), смертельная 0,18 мг/л (60 мин). Класс опасности II. Аэрозоль серной кислоты может образовываться в атмосфере в результате выбросов химических и металлургических производств, содержащих оксиды S, и выпадать в виде кислотных дождей.

В РФ оборот серной кислоты концентрации 45 % и более — ограничен[10].

Исторические сведения[править | править код]

Серная кислота известна с древности, встречаясь в природе в свободном виде, например, в виде озёр вблизи вулканов. Возможно, первое упоминание о кислых газах, получаемых при прокаливании квасцов или железного купороса «зеленого камня», встречается в сочинениях, приписываемых арабскому алхимику Джабир ибн Хайяну.

В IX веке персидский алхимик Ар-Рази, прокаливая смесь железного и медного купороса (FeSO4•7H2O и CuSO4•5H2O), также получил раствор серной кислоты. Этот способ усовершенствовал европейский алхимик Альберт Магнус, живший в XIII веке.

Схема получения серной кислоты из железного купороса — термическое разложение сульфата железа (II) с последующим охлаждением смеси[11]

В трудах алхимика Валентина (XIII в) описывается способ получения серной кислоты путём поглощения водой газа (серный ангидрид), выделяющегося при сжигании смеси порошков серы и селитры. Впоследствии этот способ лег в основу т. н. «камерного» способа, осуществляемого в небольших камерах, облицованных свинцом, который не растворяется в серной кислоте. В СССР такой способ просуществовал вплоть до 1955 г.

Алхимикам XV века в известен был также способ получения серной кислоты из пирита — серного колчедана, более дешёвого и распространенного сырья, чем сера. Таким способом получали серную кислоту на протяжении 300 лет, небольшими количествами в стеклянных ретортах.
Впоследствии, в связи с развитием катализа этот метод вытеснил камерный способ синтеза серной кислоты. В настоящее время серную кислоту получают каталитическим окислением (на V2O5) оксида серы (IV) в оксид серы (VI), и последующим растворением оксида серы (VI) в 70 % серной кислоте с образованием олеума.

В России производство серной кислоты впервые было организовано в 1805 году под Москвой в Звенигородском уезде. В 1913 году Россия по производству серной кислоты занимала 13 место в мире.[12]

Дополнительные сведения[править | править код]

Мельчайшие капельки серной кислоты могут образовываться в средних и верхних слоях атмосферы в результате реакции водяного пара и вулканического пепла, содержащего большие количества серы. Получившаяся взвесь, из-за высокого альбедо облаков серной кислоты, затрудняет доступ солнечных лучей к поверхности планеты. Поэтому (а также в результате большого количества мельчайших частиц вулканического пепла в верхних слоях атмосферы, также затрудняющих доступ солнечному свету к планете) после особо сильных вулканических извержений могут произойти значительные изменения климата. Например, в результате извержения вулкана Ксудач (Полуостров Камчатка, 1907 г.) повышенная концентрация пыли в атмосфере держалась около 2 лет, а характерные серебристые облака серной кислоты наблюдались даже в Париже[13]. Взрыв вулкана Пинатубо в 1991 году, отправивший в атмосферу 3⋅107 тонн серы, привёл к тому, что 1992 и 1993 года были значительно холоднее, чем 1991 и 1994[14].

Стандарты[править | править код]

  • Кислота серная техническая ГОСТ 2184—77
  • Кислота серная аккумуляторная. Технические условия ГОСТ 667—73
  • Кислота серная особой чистоты. Технические условия ГОСТ 14262—78
  • Реактивы. Кислота серная. Технические условия ГОСТ 4204—77

Примечания[править | править код]

  1. ↑ Кислота серная техническая ГОСТ 2184—77
  2. ↑ Kirk-Othmer Encyclopedia of Chemical Technology — ISBN 0-471-23896-1
  3. ↑ https://www.cdc.gov/niosh/npg/npgd0577.html
  4. Ушакова Н. Н., Фигурновский Н. А. Василий Михайлович Севергин: (1765—1826) / Ред. И. И. Шафрановский. М.: Наука, 1981. C. 59.
  5. ↑ См. также Каменное масло
  6. 1 2 3 Ходаков Ю.В., Эпштейн Д.А., Глориозов П.А. § 91. Химические свойства серной кислоты // Неорганическая химия: Учебник для 7—8 классов средней школы. — 18-е изд. — М.: Просвещение, 1987. — С. 209—211. — 240 с. — 1 630 000 экз.
  7. Ходаков Ю.В., Эпштейн Д.А., Глориозов П.А. § 92. Качественная реакция на серную кислоту и её соли // Неорганическая химия: Учебник для 7—8 классов средней школы. — 18-е изд. — М.: Просвещение, 1987. — С. 212. — 240 с. — 1 630 000 экз.
  8. ↑ Sulfuric acid (англ.) // «The Essential Chemical Industry — online»
  9. ↑ SULFURIC ACID | CAMEO Chemicals | NOAA. cameochemicals.noaa.gov. Дата обращения: 22 мая 2020.
  10. ↑ Постановление Правительства Российской Федерации от 3 июня 2010 года № 398 (недоступная ссылка). Дата обращения: 30 мая 2016. Архивировано 30 июня 2016 года.
  11. ↑ Эпштейн, 1979, с. 40.
  12. ↑ Эпштейн, 1979, с. 41.
  13. ↑ см. статью «Вулканы и климат» Архивная копия от 28 сентября 2007 на Wayback Machine (рус.)
  14. ↑ Русский архипелаг — Виновато ли человечество в глобальном изменении климата? Архивная копия от 1 декабря 2007 на Wayback Machine (рус.)

Литература[править | править код]

  • Справочник сернокислотчика, под ред. К. М. Малина, 2 изд., М., 1971
  • Эпштейн Д. А. Общая химическая технология. — М.: Химия, 1979. — 312 с.

Ссылки[править | править код]

  • Статья «Серная кислота» (Химическая энциклопедия)
  • Плотность и значение pH серной кислоты при t=20 °C

Источник