Какие свойства проявляет ксенон

Какие свойства проявляет ксенон thumbnail

Запрос «Xe» перенаправляется сюда; об американской частной военной организации Xe Services LLC см. Academi.

Ксенон
← Иод | Цезий →
54Kr

Xe

Rn

54Xe

Тяжёлый газ без цвета, вкуса и запаха

Ксенон в сосуде

Название, символ, номер Ксено́н / Xenon (Xe), 54
Атомная масса
(молярная масса)
131,293(6)[1] а. е. м. (г/моль)
Электронная конфигурация [Kr] 4d10 5s2 5p6
Радиус атома ? (108)[2]пм
Ковалентный радиус 140[2] пм
Радиус иона 190[2] пм
Электроотрицательность 2,6 (шкала Полинга)
Электродный потенциал
Степени окисления 0, +1, +2, +4, +6, +8
Энергия ионизации
(первый электрон)
 1170,35 (12,1298)[3] кДж/моль (эВ)
Плотность (при н. у.)

3,52 (при −107,05 °C);

0,005894 (при 0 °C) г/см³

Температура плавления 161,3 К (-111,85 °C)
Температура кипения 166,1 К (-107,05 °C)
Уд. теплота плавления 2,27 кДж/моль
Уд. теплота испарения 12,65 кДж/моль
Молярная теплоёмкость 20,79[4] Дж/(K·моль)
Молярный объём 42,9 см³/моль
Структура решётки кубическая
гранецентрированая
Параметры решётки 6,197[4]
Теплопроводность (300 K) 0,0057 Вт/(м·К)
Номер CAS 7440-63-3

Ксено́н — элемент 18-й группы (по устаревшей классификации — элемент главной подгруппы VIII группы), пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 54. Обозначается символом Xe (лат. Xenon). Простое вещество ксенон — благородный одноатомный газ без цвета, вкуса и запаха.

История[править | править код]

Открыт в 1898 году британскими учёными Уильямом Рамзаем и Морисом Траверсом, которые подвергли медленному испарению жидкий воздух и спектроскопическим методом исследовали его наиболее труднолетучие фракции. Ксенон был обнаружен как небольшая примесь к криптону[5][6]. За открытие инертных газов (в частности ксенона) и определение их места в периодической таблице Менделеева Рамзай получил в 1904 году Нобелевскую премию по химии.

Происхождение названия[править | править код]

Рамзай предложил в качестве названия элемента древнегреческое слово ξένον, которое является формой среднего рода единственного числа от прилагательного ξένος «чужой, странный». Название связано с тем, что ксенон был обнаружен как примесь к криптону, и с тем, что его доля в атмосферном воздухе чрезвычайно мала.

Распространённость[править | править код]

Ксенон — весьма редкий элемент. При нормальных условиях в кубометре воздуха содержится 0,086[4]—0,087[7] см3 ксенона.

В Солнечной системе[править | править код]

Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0,08 миллионной доли[8], хотя содержание изотопа 129Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты[9][10]. В атмосфере Юпитера, напротив, концентрация ксенона необычно высока — почти в два раза выше, чем в фотосфере Солнца[11].

Земная кора[править | править код]

Ксенон содержится в земной атмосфере в крайне незначительных количествах, 0,087 ± 0,001 миллионной доли по объёму (мкл/л), или 1 часть на 11,5 млн[7]. Он также встречается в газах, выделяемых водами некоторых минеральных источников. Некоторые радиоактивные изотопы ксенона, например 133Xe и 135Xe, получаются в результате нейтронного облучения ядерного топлива в реакторах.

Определение[править | править код]

Качественно ксенон обнаруживают с помощью эмиссионной спектроскопии (характеристические линии с длиной волны 467,13 нм и 462,43 нм). Количественно его определяют масс-спектрометрически, хроматографически, а также методами абсорбционного анализа[4].

Свойства[править | править код]

Физические свойства[править | править код]

При нормальном давлении температура плавления 161,40 К (−111,75 °C), температура кипения 165,051 К (−108,099 °C). Молярная энтальпия плавления 2,3 кДж/моль, молярная энтальпия испарения 12,7 кДж/моль, стандартная молярная энтропия 169,57 Дж/(моль·К)[4].

Плотность в газообразном состоянии при стандартных условиях (0 °C, 100 кПа) 5,894 г/л (кг/м3), в 4,9 раза тяжелее воздуха. Плотность жидкого ксенона при температуре кипения 2,942 г/см3. Плотность твёрдого ксенона 2,7 г/см3 (при 133 К)[4], он образует кристаллы кубической сингонии (гранецентрированная решётка), пространственная группа Fm3m, параметры ячейки a = 0,6197 нм, Z = 4[4].

Критическая температура ксенона 289,74 К (16,59 °C), критическое давление 5,84 МПа, критическая плотность 1,099 г/см3[4].

Тройная точка: температура 161,36 К (−111,79 °C), давление 81,7 кПа, плотность 3,540 г/см3[4].

В электрическом разряде светится синим цветом (462 и 467 нм). Жидкий ксенон является сцинтиллятором.

Заполненная ксеноном газоразрядная трубка

Слабо растворим в воде (0,242 л/кг при 0 °C, 0,097 л/кг при 25 °C)[4].

При стандартных условиях (273 К, 100 кПа): теплопроводность 5,4 мВт/(м·К), динамическая вязкость 21 мкПа·с, коэффициент самодиффузии 4,8·10−6 м2/с, коэффициент сжимаемости 0,9950, молярная теплоёмкость при постоянном давлении 20,79 Дж/(моль·К)[4].

Ксенон диамагнитен, его магнитная восприимчивость −4,3·10−5. Поляризуемость 4,0·10−3 нм3[4]. Энергия ионизации 12,1298 эВ[3].

Химические свойства[править | править код]

Ксенон стал первым инертным газом, для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона, тетрафторид ксенона, гексафторид ксенона, триоксид ксенона, ксеноновая кислота и другие[12].

Первое соединение ксенона было получено Нилом Барлеттом реакцией ксенона с гексафторидом платины в 1962 году. В течение двух лет после этого события было получено уже несколько десятков соединений, в том числе фториды, которые являются исходными веществами для синтеза всех остальных производных ксенона.

В настоящее время описаны фториды ксенона и их различные комплексы, оксиды, оксифториды ксенона, малоустойчивые ковалентные производные кислот, соединения со связями Xe-N, ксенонорганические соединения. Относительно недавно был получен комплекс на основе золота, в котором ксенон является лигандом. Существование ранее описанных относительно стабильных хлоридов ксенона не подтвердилось (позже были описаны эксимерные хлориды с ксеноном).

  • Реакции со фтором[13]:

при комнатной температуре и УФ-облучении или при 300—500 ºC под давлением; при 400 ºC под давлением; примеси XeF2, XeF6; при 300 ºC под давлением; примесь XeF4.

Изотопы[править | править код]

Известны изотопы ксенона с массовыми числами от 108 до 147 (количество протонов 54, нейтронов от 54 до 93), и 12 ядерных изомеров.

9 изотопов встречаются в природе. Из них стабильными являются семь: 126Xe, 128Xe, 129Xe, 130Xe, 131Xe, 132Xe, 134Xe. Еще два изотопа (124Xe и 136Xe) имеют огромные периоды полураспада, много больше возраста Вселенной.

Остальные изотопы искусственные, самые долгоживущие — 127Xe (период полураспада 36,345 суток) и 133Xe (5,2475 суток), период полураспада остальных изотопов не превышает 20 часов. Среди ядерных изомеров наиболее стабильны 131Xem с периодом полураспада 11,84 суток, 129Xem (8,88 суток) и 133Xem (2,19 суток)[14].

Изотоп ксенона с массовым числом 135 (период полураспада 9,14 часа) имеет максимальное сечение захвата тепловых нейтронов среди всех известных веществ — примерно 3 миллиона барн для энергии 0,069 эВ[15], его накопление в ядерных реакторах в результате цепочки β-распадов ядер теллура-135 и иода-135 приводит к эффекту так называемого отравления ксеноном (см. также Иодная яма).

Получение[править | править код]

Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методом ректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0,1—0,2 % криптоно-ксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. В дальнейшем ксеноно-криптоновый концентрат может быть разделён дистилляцией на криптон и ксенон, подробнее см. Криптон#Получение.

Из-за своей малой распространённости ксенон гораздо дороже более лёгких инертных газов. В 2009 году цена ксенона составляла около 20 евро за литр газообразного вещества при стандартном давлении[3].

Применение[править | править код]

Несмотря на высокую стоимость, ксенон незаменим в ряде случаев:

  • Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует испарению вольфрама с поверхности нити накаливания).
  • Радиоактивные изотопы (127Xe, 133Xe, 137Xe и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках.
  • Фториды ксенона используют для пассивации металлов.
  • Ксенон как в чистом виде, так и с небольшой добавкой паров цезия-133, является высокоэффективным рабочим телом для электрореактивных (главным образом — ионных и плазменных) двигателей космических аппаратов. В 2020 году Роскосмос заявил о начале строительства космического аппарата «Нуклон» с ядерной силовой установкой. Ксенон будет использоваться в качестве рабочего тела реактивного двигателя.
  • В конце XX века был разработан метод применения ксенона в качестве средства для наркоза и обезболивания. Первые диссертации о технике ксенонового наркоза появились в России в 1993 году. В 1999 году ксенон был разрешён к медицинскому применению в качестве средства для ингаляционного наркоза[16].
  • В наши дни[уточнить] ксенон проходит апробацию в лечении зависимых состояний[17].
  • Жидкий ксенон иногда используется как рабочая среда лазеров[18].
  • Фториды и оксиды ксенона предложены в качестве мощнейших окислителей ракетного топлива, а также в качестве компонентов газовых смесей для лазеров.
  • В изотопе 129Xe возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами — состояния, называемого гиперполяризацией.
  • Ксенон используется для наполнения ячейки Голея в детекторах терагерцевого излучения[19].
  • Для транспортировки фтора, проявляющего сильные окисляющие свойства.

Ксенон как допинг[править | править код]

  • В 2014 году Всемирное антидопинговое агентство приравняло ингаляции ксенона к применению допинга[20][21].

Биологическая роль[править | править код]

  • Газ ксенон нетоксичен, но способен вызвать наркоз (по физическому механизму), а в больших концентрациях (более 80 %) вызывает асфиксию.
  • Заполнение ксеноном лёгких и выдыхание при разговоре приводит к значительному понижению тембра голоса (эффект, обратный эффекту гелия).
  • Фториды ксенона ядовиты, ПДК в воздухе — 0,05 мг/м³.

Примечания[править | править код]

  1. Meija J. et al. Atomic weights of the elements 2013 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2016. — Vol. 88, no. 3. — P. 265—291. — doi:10.1515/pac-2015-0305.
  2. 1 2 3 Size of xenon in several environments (англ.). www.webelements.com. Дата обращения 6 августа 2009.
  3. 1 2 3 CRC Handbook of Chemistry and Physics / D. R. Lide (Ed.). — 90th edition. — CRC Press; Taylor and Francis, 2009. — 2828 p. — ISBN 1420090844.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 Легасов В. А., Соколов В. Б. Ксенон // Химическая энциклопедия : в 5 т. / Гл. ред. И. Л. Кнунянц. — М.: Советская энциклопедия, 1990. — Т. 2: Даффа—Меди. — С. 548—549. — 671 с. — 100 000 экз. — ISBN 5-85270-035-5.
  5. Ramsay W., Travers M. W. On the extraction from air of the companions of argon, and neon (англ.) // Report of the Meeting of the British Association for the Advancement of Science. — 1898. — P. 828.
  6. Gagnon, Steve It’s Elemental – Xenon. Thomas Jefferson National Accelerator Facility. Дата обращения 16 июня 2007.
  7. 1 2 Hwang S.-C., Lein R. D., Morgan D. A. Noble Gases // Kirk-Othmer Encyclopedia of Chemical Technology. — 5th Ed.. — Wiley, 2005. — ISBN 0-471-48511-X. — doi:10.1002/0471238961.0701190508230114.a01.
  8. Williams, David R. Mars Fact Sheet. NASA (1 сентября 2004). Дата обращения 10 октября 2007. Архивировано 16 июля 2011 года.
  9. Schilling, James Why is the Martian atmosphere so thin and mainly carbon dioxide? (недоступная ссылка). Mars Global Circulation Model Group. Дата обращения 10 октября 2007. Архивировано 22 августа 2011 года.
  10. Zahnle K. J. Xenological constraints on the impact erosion of the early Martian atmosphere (англ.) // Journal of Geophysical Research (англ.)русск.. — 1993. — Vol. 98, no. E6. — P. 10899—10913. — doi:10.1029/92JE02941.
  11. Mahaffy P. R. et al. Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer (англ.) // Journal of Geophysical Research (англ.)русск.. — 2000. — Vol. 105, no. E6. — P. 15061—15072. — doi:10.1029/1999JE001224. — Bibcode: 2000JGR…10515061M.
  12. Андрей Вакулка. Ксенон и кислород: сложные отношения (рус.) // Наука и жизнь. — 2018. — № 5. — С. 43—47.
  13. Лидин Р. А., Молочко В. А., Андреева Л. Л. Неорганическая химия в реакциях. Справочник. — 2-е изд.. — Москва: Дрофа, 2007. — С. 609. — 640 с.
  14. ↑ Архивированная копия (недоступная ссылка). Дата обращения 11 сентября 2011. Архивировано 20 июля 2011 года.
  15. ↑ Медицинский комплекс по производству радиоизотопов на базе растворного реактора
  16. ↑ О РАЗРЕШЕНИИ МЕДИЦИНСКОГО ПРИМЕНЕНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ. Приказ. Министерство здравоохранения РФ. 08.10.99 363 :: Инновации и предпринимательство: гранты, технологии, патенты
  17. ↑ Ксенон — новое слово в наркологии (недоступная ссылка). Дата обращения 16 февраля 2011. Архивировано 7 июля 2011 года.
  18. ↑ Эксимерный лазер на жидком ксеноне
  19. ↑ Приемники излучения терагерцового диапазона (обзор).
  20. ↑ Gas used by Russian Sochi 2014 medallists banned
  21. ↑ WADA признала ксенон допингом (недоступная ссылка). Дата обращения 10 ноября 2015. Архивировано 17 ноября 2015 года.

Ссылки[править | править код]

  • Ксенон в Популярной библиотеке химических элементов

Источник

Ксенон
Тяжёлый газ без цвета, вкуса и запаха
Ксенон

Ксенон в сосуде

Название, символ, номерКсенон / Xenon (Xe), 54
Атомная масса
(молярная масса)
131,293(6) а. е. м. (г/моль)
Электронная конфигурация[Kr] 4d10 5s2 5p6
Радиус атома? (108) пм
Ковалентный радиус140 пм
Радиус иона190 пм
Электроотрицательность2,6 (шкала Полинга)
Электродный потенциал
Степени окисления0, +1, +2, +4, +6, +8
Энергия ионизации
(первый электрон)
 1170,35 (12,1298) кДж/моль (эВ)
Плотность (при н. у.)

3,52 (при −107,05 °C);

0,005894 (при 0 °C) г/см³

Температура плавления161,3 К (-111,85 °C)
Температура кипения166,1 К (-107,05 °C)
Уд. теплота плавления2,27 кДж/моль
Уд. теплота испарения12,65 кДж/моль
Молярная теплоёмкость20,79 Дж/(K·моль)
Молярный объём42,9 см³/моль
Структура решёткикубическая
гранецентрированая
Параметры решётки6,197
Теплопроводность(300 K) 0,0057 Вт/(м·К)
Номер CAS7440-63-3

Ксенон — элемент 18-й группы (по устаревшей классификации — элемент главной подгруппы VIII группы), пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 54. Обозначается символом Xe (лат. Xenon). Простое вещество ксенон — благородный одноатомный газ без цвета, вкуса и запаха.

Ксенон

                  Сравнение свечения разных газов.

История

Открыт в 1898 году британскими учёными Уильямом Рамзаем и Морисом Траверсом, которые подвергли медленному испарению жидкий воздух и спектроскопическим методом исследовали его наиболее труднолетучие фракции. Ксенон был обнаружен как небольшая примесь к криптону. За открытие инертных газов (в частности ксенона) и определение их места в периодической таблице Менделеева Рамзай получил в 1904 году Нобелевскую премию по химии.

Происхождение названия

Рамзай предложил в качестве названия элемента древнегреческое слово ξένον, которое является формой среднего рода единственного числа от прилагательного ξένος «чужой, странный». Название связано с тем, что ксенон был обнаружен как примесь к криптону, и с тем, что его доля в атмосферном воздухе чрезвычайно мала.

Распространённость

Ксенон — весьма редкий элемент. При нормальных условиях в кубометре воздуха содержится 0,086—0,087 см3 ксенона.

В Солнечной системе

Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0,08 миллионной доли, хотя содержание изотопа 129Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. В атмосфере Юпитера, напротив, концентрация ксенона необычно высока — почти в два раза выше, чем в фотосфере Солнца.

Земная кора

Ксенон содержится в земной атмосфере в крайне незначительных количествах, 0,087 ± 0,001 миллионной доли по объёму (мкл/л), или 1 часть на 11,5 млн. Он также встречается в газах, выделяемых водами некоторых минеральных источников. Некоторые радиоактивные изотопы ксенона, например 133Xe и 135Xe, получаются в результате нейтронного облучения ядерного топлива в реакторах.

Определение

Качественно ксенон обнаруживают с помощью эмиссионной спектроскопии (характеристические линии с длиной волны 467,13 нм и 462,43 нм). Количественно его определяют масс-спектрометрически, хроматографически, а также методами абсорбционного анализа.

Свойства

Физические свойства

Ксенон

Гранецентрированная кубическая структура ксенона; a = 0,6197 нм

При нормальном давлении температура плавления 161,40 К (−111,75 °C), температура кипения 165,051 К (−108,099 °C). Молярная энтальпия плавления 2,3 кДж/моль, молярная энтальпия испарения 12,7 кДж/моль, стандартная молярная энтропия 169,57 Дж/(моль·К).

Плотность в газообразном состоянии при стандартных условиях (0 °C, 100 кПа) 5,894 г/л (кг/м3), в 4,9 раза тяжелее воздуха. Плотность жидкого ксенона при температуре кипения 2,942 г/см3. Плотность твёрдого ксенона 2,7 г/см3 (при 133 К), он образует кристаллы кубической сингонии (гранецентрированная решётка), пространственная группа Fm3m, параметры ячейки a = 0,6197 нм, Z = 4.

Критическая температура ксенона 289,74 К (16,59 °C), критическое давление 5,84 МПа, критическая плотность 1,099 г/см3.

Тройная точка: температура 161,36 К (−111,79 °C), давление 81,7 кПа, плотность 3,540 г/см3.

В электрическом разряде светится синим цветом (462 и 467 нм). Жидкий ксенон является сцинтиллятором.

Ксенон

Заполненная ксеноном газоразрядная трубка

Слабо растворим в воде (0,242 л/кг при 0 °C, 0,097 л/кг при 25 °C).

При стандартных условиях (273 К, 100 кПа): теплопроводность 5,4 мВт/(м·К), динамическая вязкость 21 мкПа·с, коэффициент самодиффузии 4,8·10−6 м2/с, коэффициент сжимаемости 0,9950, молярная теплоёмкость при постоянном давлении 20,79 Дж/(моль·К).

Ксенон диамагнитен, его магнитная восприимчивость −4,3·10−5. Поляризуемость 4,0·10−3 нм3. Энергия ионизации 12,1298 эВ.

Химические свойства

Ксенон стал первым инертным газом, для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона, тетрафторид ксенона, гексафторид ксенона, триоксид ксенона, ксеноновая кислота и другие.

Первое соединение ксенона было получено Нилом Барлеттом реакцией ксенона с гексафторидом платины в 1962 году. В течение двух лет после этого события было получено уже несколько десятков соединений, в том числе фториды, которые являются исходными веществами для синтеза всех остальных производных ксенона.

В настоящее время описаны фториды ксенона и их различные комплексы, оксиды, оксифториды ксенона, малоустойчивые ковалентные производные кислот, соединения со связями Xe-N, ксенонорганические соединения. Относительно недавно был получен комплекс на основе золота, в котором ксенон является лигандом. Существование ранее описанных относительно стабильных хлоридов ксенона не подтвердилось (позже были описаны эксимерные хлориды с ксеноном).

  • Реакции со фтором:

 Xe + F2 → XeF2   при комнатной температуре и УФ-облучении или при 300—500 ºC под давлением; Xe + 2F2 → XeF4  при 400 ºC под давлением; примеси XeF2, XeF6; Xe + 3F2 → XeF6  при 300 ºC под давлением; примесь XeF4.

Изотопы

Основная статья: Изотопы ксенона

Известны изотопы ксенона с массовыми числами от 108 до 147 (количество протонов 54, нейтронов от 54 до 93), и 12 ядерных изомеров.

9 изотопов встречаются в природе. Из них стабильными являются семь: 126Xe, 128Xe, 129Xe, 130Xe, 131Xe, 132Xe, 134Xe. Еще два изотопа (124Xe и 136Xe) имеют огромные периоды полураспада, много больше возраста Вселенной.

Остальные изотопы искусственные, самые долгоживущие — 127Xe (период полураспада 36,345 суток) и 133Xe (5,2475 суток), период полураспада остальных изотопов не превышает 20 часов. Среди ядерных изомеров наиболее стабильны 131Xem с периодом полураспада 11,84 суток, 129Xem (8,88 суток) и 133Xem (2,19 суток).

Изотоп ксенона с массовым числом 135 (период полураспада 9,14 часа) имеет максимальное сечение захвата тепловых нейтронов среди всех известных веществ — примерно 3 миллиона барн для энергии 0,069 эВ, его накопление в ядерных реакторах в результате цепочки β-распадов ядер теллура-135 и йода-135 приводит к эффекту так называемого отравления ксеноном (см. также Иодная яма).

Получение

Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методом ректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0,1—0,2 % криптоно-ксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. В дальнейшем ксеноно-криптоновый концентрат может быть разделён дистилляцией на криптон и ксенон, подробнее см. Криптон#Получение.

Из-за своей малой распространённости ксенон гораздо дороже более лёгких инертных газов. В 2009 году цена ксенона составляла около 20 евро за литр газообразного вещества при стандартном давлении.

Применение

Ксенон

Прототип ионного двигателя на ксеноне

Несмотря на высокую стоимость, ксенон незаменим в ряде случаев:

  • Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует испарению вольфрама с поверхности нити накаливания).
  • Радиоактивные изотопы (127Xe, 133Xe, 137Xe и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках.
  • Фториды ксенона используют для пассивации металлов.
  • Ксенон как в чистом виде, так и с небольшой добавкой паров цезия-133, является высокоэффективным рабочим телом для электрореактивных (главным образом — ионных и плазменных) двигателейкосмических аппаратов.
  • В конце XX века был разработан метод применения ксенона в качестве средства для наркоза и обезболивания. Первые диссертации о технике ксенонового наркоза появились в России в 1993 г. В 1999 году ксенон был разрешён к медицинскому применению в качестве средства для ингаляционного наркоза.
  • В наши дни ксенон проходит апробацию в лечении зависимых состояний.
  • Жидкий ксенон иногда используется как рабочая среда лазеров.
  • Фториды и оксиды ксенона предложены в качестве мощнейших окислителей ракетного топлива, а также в качестве компонентов газовых смесей для лазеров.
  • В изотопе 129Xe возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами — состояния, называемого гиперполяризацией.
  • Для транспортировки фтора, проявляющего сильные окисляющие свойства.

Ксенон

Свечение ксенона, с разным количеством Кельвинов, дает разное свечение.

Ксенон как допинг

  • В 2014 году Всемирное антидопинговое агентство приравняло ингаляции ксенона к применению допинга.

Биологическая роль

  • Газ ксенон нетоксичен, но способен вызвать наркоз (по физическому механизму), а в больших концентрациях (более 80 %) вызывает асфиксию.
  • Заполнение ксеноном лёгких и выдыхание при разговоре приводит к значительному понижению тембра голоса (эффект, обратный эффекту гелия).
  • Фториды ксенона ядовиты, ПДК в воздухе — 0,05 мг/м³.

Периодическая система химических элементов Д. И. Менделеева

 12              3456789101112131415161718
1H He
2LiBe BCNOFNe
3NaMg AlSiPSClAr
4KCa ScTiVCrMnFeCoNiCuZnGaGeAsSeBrKr
5RbSr YZrNbMoTcRuRhPdAgCdInSnSbTeIXe
6CsBaLaCePrNdPmSmEuGdTbDyHoErTmYbLuHfTaWReOsIrPtAuHgTlPbBiPoAtRn
7FrRaAcThPaUNpPuAmCmBkCfEsFmMdNoLrRfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
8UueUbnUbuUbbUbtUbqUbpUbhUbs

Источник

Читайте также:  Какое свойство воздуха подтверждает этот опыт