Какие свойства проявляет hno3

Какие свойства проявляет hno3 thumbnail

Строение молекулы азотной кислоты:

строение молекулы азотной кислоты

Связь N+-O- образуются по донорно-акцепторному механизму: атом азота отдает электрон, играя роль донора и приобретая положительный заряд, атом кислорода присоединяет электрон, выступая в роли акцептора и приобретая отрицательный заряд. Атомы азота проявляют степень окисления +5 (валентность 4).

Физические свойства азотной кислоты:

  • бесцветная маслянистая жидкость с резким запахом;
  • температура кипения 83°C
  • плотность 1,4 г/см3 (63% HNO3);
  • с водой смешивается в любых пропорциях, проявляя в водных растворах свойства сильной кислоты;
  • легко разлагается на свету при длительном хранении, приобретая при этом желтый оттенок, в который ее окрашивает газ NO2, выделяющийся при разложении:
    4HNO3 ↔ 2H2O+4NO2↑+O2↑

Химические свойства азотной кислоты

HNO3 является одной из самых сильных кислот – в водных растворах полностью диссоциирует на катионы водорода и нитрат-ионы:
HNO3 ↔ H++NO3-

Азотная кислота вступает в реакции:

  • с оксидами металлов:
    MgO+2H+NO3 = Mg2+(NO3)2+H2O
  • с основаниями:
    Mg(OH)2+2H+NO3 = Mg2+(NO3)2+2H2O
  • с солями более слабых кислот:
    Na2CO32-+2H+NO3 = 2NaNO3+CO2↑+H2O

Следует обратить внимание, что азотная кислота в обменных реакциях может взаимодействовать далеко не со всеми солями, а лишь только с теми, при реагировании с которыми образуются нерастворимые, слабодиссоциирующие и газообразные вещества, которые, по мере их образования, более не участвуют в реакции обмена. В обменных реакциях солями, при взаимодействии с которыми образуются растворимые в воде соли азотной кислоты, азотная кислота не участвует.

В окислительно-восстановительных реакциях азотная кислота выступает в роли сильного окислителя. Высокие окислительные свойства HNO3 объясняются тем, что в молекуле азотной кислоты атом азота в составе кислотного остатка NO3- имеет максимально возможную степень окисления +5. По этой причине окислительные свойства NO3- значительно превосходят “возможности” катионов водорода H+, из-за чего азотная кислота реагирует практически со всеми металлами за исключением золота,платины, родия, рутения, иридия и тантала, стоящими в конце ряда напряжений.

Какие свойства проявляет hno3

Характерной особенностью взаимодействия азотной кислоты с металлами является отсутствие выделения водорода, поскольку окислителями являются не катионы водорода, а нитрат-ионы NO3-, которые, при взаимодействии азотной кислоты с металлами восстанавливается тем полнее, чем более активным является металл и чем более разбавленной является HNO3.

По этой причине образование тех или иных продуктов реакции азотной кислоты и металла зависит от концентрации кислоты и активности металла.

Атом азота в молекуле азотной кислоты имеет степень окисления +5, и может принимать 1, 2, 3, 4, 5 или 8 электронов:

HN+5O3+1e- → N+4O2
HN+5O3+2e- → HN+3O2
HN+5O3+3e- → N+2O
HN+5O3+4e- → N2+1O
HN+5O3+5e- → N20
HN+5O3+8e- → N-3H3
HN+5O3+8e- → N-3H4NO3

Чем более концентрированной является азотная кислота, тем меньшей окислительной способностью по отношению к металлам она обладает.

С другой стороны, чем более активным является металл, тем в большей степени он восстанавливает азотную кислоту.

Примеры реакций азотной кислоты:

  • концентрированная HN+5O3 с активными металлами (до алюминия в ряду напряжений) восстанавливается до N2O
    10HN+5O3+4Ca0 = 4Ca+2(NO3)2+N2+1O↑+5H2O
  • концентрированная HN+5O3 с неактивными металлами (Ni, Cu, Ag, Hg) восстанавливается до NO2
    4HN+5O3+Ni0 = Ni+2(NO3)2+2N+4O2↑+2H2O
  • концентрированная HN+5O3 с неметаллами (Ni, Cu, Ag, Hg) восстанавливается до NO2
    4HN+5O3+P0 = HP+5O3+5N+4O2↑+2H2O
  • разбавленная HN+5O3 с активными металлами (до алюминия в ряду напряжений) образует аммиак или нитрат аммония
    10HN+5O3+4Mg0 = 4Mg+2(NO3)2+N-3H4N+5O3+3H2O
  • разбавленная HN+5O3 с неактивными металлами образует оксид азота (II)
    8HN+5O3+3Cu0 = 3Cu+2(NO3)2+2N+2O↑+4H2O
  • разбавленная HN+5O3 с неметаллами образует оксид азота (II)
    2HN+5O3+S0 = H2S+6O4+2N+2O↑

Уравнения окислительно-восстановительных реакций азотной кислоты…

Концентрированная азотная кислота пассивирует алюминий, железо и хром, образуя на их поверхности очень прочную нерастворимую оксидную пленку:
2Al+6HNO3 = Al2O3+6NO2+3H2O

“Царская водка” (смесь концентрированной азотной кислоты с соляной в соотношении 1:3) окисляет золото и платину:
Au+3HNO3+3HCl = AuCl3+3NO2+3H2O

Получение и применение азотной кислоты

Промышленный способ получения азотной кислоты:

  • окислением аммиака на платиновом катализаторе до оксида азота (II):
    4N-3H3+5O20 = 4N+2O-2+6H2O
  • окислением оксида азота (II) до оксида азота (IV):
    2N+2O-2+O20 = 2N+4O2-2
  • растворением оксида азота (IV) в воде в присутствии кислорода (автор способа И.И.Андреев, 1916 г.):
    4N+4O2+2H2O+O20 = 4HN+5O3-2

Лабораторный способ получения азотной кислоты:

  • взаимодействием безводных нитратов с концентрированной серной кислотой:
    NaNO3+H2SO4 = NaHSO4+HNO3

Применение азотной кислоты:

  • производство азотных удобрений;
  • в фармакологии для производства лекарственных препаратов;
  • в производстве взрывчатых веществ.

Соли азотной кислоты

О солях азотной кислоты, наверняка, слышали многие, ведь в последнее время так много говорят о вреде нитратов в овощах и фруктах.

Нитраты калия, натрия, аммония и кальция называются селитрами (калийная селитра, натриевая селитра, аммонийная селитра, известковая селитра). Селитры нашли широкое применение в сельском хозяйстве в качестве минеральных азотных удобрений, что вполне логично, ибо азот является одним из основных элементов растений.

Нитраты хорошо растворяются в воде, при этом такие растворы не обладают окислительными свойствами, а вот расплавы нитратов являются хорошими окислителями.

Те нитраты, которые были образованы слабыми основаниями, гидролизуются, их водные растворы являются кислыми:
Cu2+(NO3)2+H2O ↔ CuOH+NO3+H+NO3

Соли азотной кислоты являются сильными окислителями.

Все нитраты, за исключением нитрата аммония разлагаются с выделением кислорода, при этом образующиеся продукты разложения зависят от электроотрицательности металла (см. таблицу выше):

  • соли металлов, расположенных в ряду напряжений левее магния, при разложении образуют кроме кислорода еще и нитриты:
    MeN+5O3 → MeN+3O2+O20↑
    2KNO3 = 2KNO2+O2
  • соли металлов, расположенных от магния до меди – образуют оксиды металла и азота (IV):
    MeN+5O3 → MeO+N+4O2↑+O20↑
    2Pb(NO3)2 = 2PbO+4NO2+O2
  • соли металлов, расположенных правее меди – образуют свободный металл и оксид азота (IV):
    MeN+5O3 → Me+N+4O2↑+O20↑
    2AgNO3 = 2Ag+2NO2+O2
  • нитрат аммония разлагается с образованием оксида азота (I) и воды:
    NH4NO3 = N2O+2H2O

Нитраты вступают в реакции, типичные для всех солей:

  • с металлами:
    Hg(NO3)2+Zn = Zn(NO3)2+Hg
  • с щелочами:
    Pb(NO3)2+2NaOH = Pb(OH)2↓+2NaNO3
  • с кислотами:
    Ba(NO3)2+H2SO4 = BaSO4↓+2HNO3
  • с другими солями:
    AgNO3+NaCl = AgCl↓+NaNO3

Получение и применение нитратов

Нитраты получают реакцией азотной кислоты:

  • на металлы:
    10HNO3(разб)+4Zn = 4Zn(NO3)2+NH4NO3+3H2O
  • на оксиды металлов:
    2HNO3+CuO = Cu(NO3)2+H2O
  • на основания:
    3HNO3+Al(OH)3 = Al(NO3)3+3H2O

Применение нитратов:

  • Селитры используются в качестве минеральных удобрений:
    • KNO3 – калийная или индийская селитра;
    • NaNO3 – натриевая или чилийская селитра;
    • NH4NO3 – аммонийная селитра;
    • Ca(NO3)2 – известковая или норвежская селитра.
  • Калийная селитра используется для изготовления “черного пороха”.
  • Аммонийная селитра используют для изготовления взрывчатого вещества – аммонала.

Другие соединения азота:

  • Аммиак
  • Оксиды азота

Источник

Определение и формула

Азотная кислота

Неорганическая сильная одноосновная кислота.

Формула

HNO3HNO_3HNO3​

Свойства азотной кислоты

Физические свойства

Представляет собой бесцветную жидкость, дымящую на воздухе. С водой смешивается в любых соотношениях. Концентрированной азотной кислотой называют растворы с концентрацией HNO3, равной 60-70%, «дымящей азотной кислотой» 95-98%-ные растворы азотной кислоты.

СвойствоОписание
плотность1,51 г/см3
молярная масса63,01 г/моль
температура кипения+82,6°C
температура плавления-41,59 ᵒС

Химические свойства

В химических реакциях азотная кислота может выступать в роли сильной одноосновной кислоты, либо окислителя. Азотная кислота высокой концентрации обычно окрашена в бурый цвет за счет присутствия в ней оксида азота (IV), образующегося по уравнению:

4HNO3⟶4NO2↑+2H2O+O24HNO_3 longrightarrow 4NO_2↑+ 2H_2O + O_24HNO3​⟶4NO2​↑+2H2​O+O2​↑

Такое же превращение азотная кислота претерпевает при нагревании.

Кислотные свойства

  1. Диссоциация в воде

HNO3⟷H++NO3−HNO3 longleftrightarrow H^+ + NO_3^-HNO3⟷H++NO3−​

  1. Взаимодействие с основными и амфотерными оксидами

MgO+2HNO3⟶Mg(NO3)2+H2OMgO + 2HNO_3 longrightarrow Mg(NO_3)_2 + H_2OMgO+2HNO3​⟶Mg(NO3​)2​+H2​O

ZnO+2HNO3⟶Zn(NO3)2+H2OZnO + 2HNO_3 longrightarrow Zn(NO_3)_2 + H_2OZnO+2HNO3​⟶Zn(NO3​)2​+H2​O

  1. Взаимодействие с основаниями и амфотерными гидроксидами

NaOH+HNO3⟶NaNO3+H2ONaOH + HNO_3 longrightarrow NaNO_3 + H_2ONaOH+HNO3​⟶NaNO3​+H2​O

Zn(OH)2+2HNO3⟶Zn(NO3)2+2H2OZn(OH)_2 + 2HNO_3 longrightarrow Zn(NO_3)_2 + 2H_2OZn(OH)2​+2HNO3​⟶Zn(NO3​)2​+2H2​O

  1. Взаимодействие с солями слабых кислот (карбонатами, силикатами)

BaCO3+2HNO3⟶Ba(NO3)2+CO2↑+H2OBaCO_3 + 2HNO_3 longrightarrow Ba(NO_3)_2 + CO_2↑ + H_2OBaCO3​+2HNO3​⟶Ba(NO3​)2​+CO2​↑+H2​O

Окислительные свойства

В азотной кислоте атом азота находится в высшей степени окисления +5, благодаря чему азотная кислота любой концентрации может выступать в роли окислителя. Азот может восстанавливаться до степеней окисления от +4 до -3. Возможные продукты восстановления азотной кислоты при взаимодействии с металлами представлены в таблице 1.

Таблица 1. Типичные продукты восстановления азотной кислоты

Степень окисления азота+4+2+10-3
Формула веществаNO2NON2ON2NH4NO3

Закономерность

Увеличение активности металла и разбавление кислоты способствуют более полному восстановлению азотной кислоты.

  1. Взаимодействие с металлами

Железо (Fe), алюминий (Al), хром (Cr) пассивируются холодной концентрированной азотной кислотой.

Азотная кислота не взаимодействует с золотом, металлами платиновой группы и танталом. В остальных случаях продукты (табл. 2) зависят от концентрации HNO3:

Таблица 2. Зависимость продуктов реакции взаимодействия азотной кислоты с металлами от концентрации кислоты и активности металла

Формула кислотыКонцентрацияАктивность металлаПродукты взаимодействия с кислотой
HNO3КонцентрированнаяНезависимо от активности металлаСоль + NO2 + Н2О
РазбавленнаяАктивный металл Li-ZnСоль + N2 + Н2О
Металл средней активности Fe-PbСоль + N2O + Н2О
Неактивный металл (после Н2)Соль + NO + Н2О
Очень разбавленнаяАктивный металлСоль + NH4NO3 + Н2О
  1. Взаимодействие с неметаллами

При взаимодействии с неметаллами азотная кислота восстанавливается до NONONO или NO2NO_2NO2​:

S+6HNO3S + 6HNO_3S+6HNO3​(конц.) ⟶H2SO4+6NO2↑+2H2Olongrightarrow H_2SO_4 + 6NO_2↑ + 2H_2O⟶H2​SO4​+6NO2​↑+2H2​O

S+2HNO3S + 2HNO_3S+2HNO3​(разб.) ⟶H2SO4+2NO↑longrightarrow H_2SO_4 + 2NO↑⟶H2​SO4​+2NO↑

  1. Взаимодействие со сложными веществами-восстановителями

FeS+4HNO3FeS + 4HNO_3FeS+4HNO3​(разб.) ⟶Fe(NO3)3+S+NO↑+2H2Olongrightarrow Fe(NO_3)_3 +S + NO↑ + 2H_2O⟶Fe(NO3​)3​+S+NO↑+2H2​O

Взаимодействие с органическими соединениями

Взаимодействие углеводородов с азотной кислотой используется для введения в молекулу органического вещества нитрогруппы –NO2NO_2NO2​. В результате нитрования углеводородов образуются нитросоединения.

  1. Реакция Коновалова (взаимодействие разбавленной азотной кислоты с алканами):

CH4+HNO3⟶CH3NO2+H2OCH_4 + HNO_3 longrightarrow CH_3NO_2 + H_2OCH4​+HNO3​⟶CH3​NO2​+H2​O

  1. Нитрование аренов

C6H6+HNO3⟶C6H5NO2+H2OC_6H_6 + HNO_3 longrightarrow C_6H_5NO_2 + H_2OC6​H6​+HNO3​⟶C6​H5​NO2​+H2​O

Источники получения

В природе не встречается.

Способом производства является каталитическое окисление синтетического аммиака на платиновом катализаторе до смеси оксидов азота с дальнейшим поглощением их водой:

4NH3+5O2⟶4NO+6H2O4NH_3 + 5O_2 longrightarrow 4NO + 6H_2O4NH3​+5O2​⟶4NO+6H2​O

2NO+O2⟶2NO22NO + O_2 longrightarrow 2NO_22NO+O2​⟶2NO2​

4NO2+O2+2H2O⟶4HNO34NO_2 + O_2 + 2H_2O longrightarrow 4HNO_34NO2​+O2​+2H2​O⟶4HNO3​

Применение

  1. Производство минеральных удобрений (нитратов);
  2. органический синтез (получение нитроалканов, анилиза, нитроцеллюлоз, тринитротолуола);
  3. производство лекарственных средств (нитроглицерин);
  4. военная промышленность (производство взрывчатых веществ, в качестве окислителя ракетного топлива, синтез отравляющих веществ);
  5. травление печатных форм в станковой графике;
  6. ювелирное дело (определение золота в сплаве).

Тест по теме «Азотная кислота»

Источник

Азотная кислота является одной из самых сильных минеральных кислот, в концентрированном виде выделяет пары
желтого цвета с резким запахом. За исключением золота и платины растворяет все металлы.

Применяют азотную кислоту для получения красителей, удобрений, органических нитропродуктов, серной и фосфорной
кислот. В результате ожога азотной кислотой образуется сухой струп желто-зеленого цвета.

Ожог азотной кислотой

Получение

В промышленности азотную кислоту получают в результате окисления аммиака на платино-родиевых катализаторах.

NH3 + O2 → (кат. Pt) NO + H2O

NO + O2 → NO2

NO2 + H2O + O2 → HNO3

Чистая азотная кислота впервые была получена действием на селитру концентрированной серной кислоты:

KNO3 + H2SO4(конц.) → KHSO4 + HNO3↑

Химические свойства

  • Кислотные свойства
  • Является одноосновной сильной кислотой, вступает в реакции с основными оксидами, основаниями. С солями реагирует при условии
    выпадения осадка, выделения газа или образования слабого электролита.

    CaO + HNO3 → Ca(NO3)2 + H2O

    HNO3 + NaOH → NaNO3 + H2O

    Na2CO3 + HNO3 → NaNO3 + H2O + CO2↑

    Выделение углекислого газа

  • Термическое разложение
  • При нагревании азотная кислота распадается. На свету (hv) также происходит подобная реакция, поэтому азотную кислоту следует хранить в
    темном месте.

    HNO3 → (hv) NO2 + H2O + O2

  • Реакции с неметаллами
  • Азотная кислота способна окислить все неметаллы, при этом, если кислота концентрированная, азот обычно восстанавливается до NO2,
    если разбавленная – до NO.

    HNO3(конц.) + C → CO2 + H2O + NO2

    HNO3(конц.) + S → H2SO4 + NO2 + H2O

    HNO3(разб.) + S → H2SO4 + NO + H2O

    HNO3(конц.) + P → H3PO4 + NO2 + H2O

    Оксид азота IV бурый газ

  • Реакции с металлами
  • В любой концентрации азотная кислота проявляет свойства окислителя, при этом азот восстанавливается до степени окисления от +5 до -3. На какой
    именно степени окисления остановится азот, зависит от активности металла и концентрации азотной кислоты.

    Для малоактивных металлов (стоящих в ряду напряжений после водорода) реакция с концентрированной азотной кислотой происходит с образованием
    нитрата и преимущественно NO2.

    Cu + HNO3(конц.) → Cu(NO3)2 + NO2 + H2O

    С разбавленной азотной кислотой газообразным продуктом преимущественно является NO.

    Cu + HNO3(разб.) → Cu(NO3)2 + NO + H2O

    В реакциях с металлами, стоящими левее водорода в ряду напряжений, возможны самые разные газообразные (и не газообразные) продукты: бурый газ NO2,
    NO, N2O, атмосферный газ N2, NH4NO3.

    Помните о закономерности: чем более разбавлена кислота и активен металл, тем сильнее восстанавливается азот. Ниже представлены реакции цинка
    с азотной кислотой в различных концентрациях.

    Zn + HNO3(70% – конц.) → Zn(NO3)2 + NO2 + H2O

    Zn + HNO3(35% – ср. конц.) → Zn(NO3)2 + NO + H2O

    Zn + HNO3(20% – разб.) → Zn(NO3)2 + N2O + H2O

    Цинк и азотная кислота

    Zn + HNO3(10% – оч. разб.) → Zn(NO3)2 + N2 + H2O

    Zn + HNO3(3% – оч. разб.) → Zn(NO3)2 + NH4NO3 + H2O

    Посмотрите на таблицу ниже, в которой также отражены изученные нами закономерности.

    Азотная кислота и металлы

    Концентрированная холодная азотная кислота пассивирует хром, железо, алюминий, никель, свинец и бериллий. Это происходит
    за счет оксидной пленки, которой покрыты данные металлы.

    Al + HNO3(конц.) ⇸ (реакция не идет)

    При нагревании или амальгамировании (покрытие ртутью) перечисленных металлов реакция с азотной кислотой идет, так
    как оксидная пленка на поверхности металлов разрушается.

    Al + HNO3 → (t) Al2O3 + NO2 + H2O

Соли азотной кислоты – нитраты NO3-

Получение

Получают нитраты в ходе реакции азотной кислоты с металлами, их оксидами и основаниями.

Fe + HNO3(разб.) → Fe(NO3)2 + NH4NO3 + H2O

В реакциях с оксидами и основаниями газообразный продукт обычно не выделяется.

MgO + HNO3 → Mg(NO3)2 + H2O

Cr(OH)3 + HNO3 → Cr(NO3)3 + H2O

Гидроксид хрома III

Нитрат аммония получают реакция аммиака с азотной кислотой.

NH3 + HNO3 → NH4NO3

Обратите внимание на следующую закономерность: концентрированная азотная кислота, как правило, окисляет железо и хром до +3. Разбавленная
кислота – до +2.

Fe + HNO3(разб.) → Fe(NO3)2 + NH4NO3 + H2O

Fe + HNO3(конц.) → Fe(NO3)3 + NO + H2O

Химические свойства

  • Реакции с металлами, основаниями и кислотами
  • Как и для всех солей, из нитратов можно вытеснить металл другим более активным. Соли реагируют с основаниями и кислотами, если в результате
    реакции выпадает осадок, выделяется газ или образуется слабый электролит (вода).

    Hg(NO3)2 + Mg → Mg(NO3)2 + Hg

    Pb(NO3)2 + LiOH → Pb(OH)2 + LiNO3

    AgNO3 + KCl → AgCl↓ + KNO3

    Хлорид серебра осадок

    Ba(NO3)2 + Na2SO4 → BaSO4 + NaNO3

  • Разложение нитратов
  • Нитраты разлагаются в зависимости от активности металла, входящего в их состав.

    Разложение нитратов

    Pb(NO3)2 → (t) PbO + NO2 + O2

    NaNO3 → (t) NaNO2 + O2

    Cu(NO3)2 → (t) CuO + NO2 + O2

    PtNO3 → (t) Pt + NO2 + O2

    Разложение нитратов

    © Беллевич Юрий Сергеевич 2018-2020

    Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
    (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
    без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
    обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

СПЕЦИФИЧЕСКИЕ СВОЙСТВА АЗОТНОЙ КИСЛОТЫ

Азотная
кислота – сильный окислитель

N+5
N+4N+2N+1NoN-3

N+5
+ 8eN-3 

окислитель, восстанавливается

1.     
Разлагается на свету и при нагревании

 4HNO3  t˚C→ 2H2O + 4NO2­
+ O2­

 Образуется бурый газ

Какие свойства проявляет hno3

2.     
Окрашивает белки в оранжево-желтый цвет
(при попадании на кожу рук –
“ксантопротеиновая реакция”)

 3.     
Реагирует с металлами.

В зависимости от концентрации кислоты и
положения металла в электрохимическом ряду напряжений Н. Бекетова могут
образовываться разные азотсодержащие продукты.

Какие свойства проявляет hno3

При взаимодействии с металлами никогда
не выделяется водород

HNO3 + Me = соль + H2O + Х

Щелочные и щелочноземельные

Fe, Cr,  Al,
  Ni,  Co

Металлы до водорода

Металлы после водорода

(Cu и др)

Благородные

Au, Pt, Os, Ir, Ta

HNO3
(конц.ω>60%)

N2O

пассивация (при обычных условиях);

NO2 (при нагревании)

NO2

NO2

Нет реакции

HNO3
(разбавл.)

NH3,
NH4NO3

Основной NO, но в зависимости от
разбавления могут образовываться N2, N2O, NH3, NH4NO3. Чем больше разбавлена
кислота, тем ниже степень окисления азота.

NO

Таблица. Продукты реакции взаимодействия азотной
кислоты с металлами

 

Взаимодействие меди с азотной
кислотой


Какие свойства проявляет hno3

Упрощенная
схема

«Продукты реакции взаимодействия азотной
кислоты с металлами
»

Царская водка:  V(HNO3)
: V(HCl) = 1 : 3 растворяет
благородные металлы.

HNO3 + 4HCl + Au
= H[AuCl4]
+ NO + 2H2O

4HNO3 + 18HCl + 3Pt = 3H2[PtCl6] + 4NO
+ 8H2O

4.
Реагирует с неметаллами.

Азотная кислота превращается в NO (или в
NO2); неметаллы окисляются до соответствующих кислот:

Видео “Взаимодействие азотной кислоты с углем”

S0 + 6HNO3(конц) → H2S+6O4 + 6NO2 + 2H2O

B0 + 3HNO3 → H3B+3O3
+ 3NO2

3P0 + 5HNO3 + 2H2O → 5NO + 3H3P+5O4

HNO3  (конц.)
+ неметалл = окисление неметалла до кислоты в высшей степени окисления +
NO2 +
вода

HNO3(разбав.) + неметалл +
вода = окисление неметалла до кислоты в высшей степени окисления +
NO

ВИДЕО – ЭКСПЕРИМЕНТЫ

Видео – Эксперимент ” Индикаторы в
азотной кислоте”

Видео – Эксперимент “Действие
азотной кислоты на белки”

Видео – Эксперимент “Действие
азотной кислоты на бумагу и солому”

Видео – Эксперимент “Взаимодействие
меди с азотной кислотой”

Видео – Эксперимент “Свойства
азотной кислоты”

Видео – Эксперимент “Взаимодействие
азотной кислоты с металлами”

Видео – Эксперимент “Взаимодействие
безводной азотной кислоты с белым фосфором”

Видео – Эксперимент “Взаимодействие
безводной азотной кислоты с углем”

Видео – Эксперимент “Взаимодействие
безводной азотной кислоты со скипидаром”

Видео – Эксперимент “Окислительные
свойства азотной кислоты”

Тренажёр  “Взаимодействие азотной
кислоты с металлами”

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Осуществите
превращения по схеме, назовите вещества, для УХР со * составить ОВ баланс, а
для** разбор РИО:

NH4Cl**→ NH3* → N2 → NO → NO2
→ HNO3 → NO2

№2. Осуществить превращения по схеме
(внимательно посмотрите, куда направлены стрелки):

Соль аммония←Аммиак←Нитрид Лития ←Азот →
Оксид азота (II)←Азотная кислота

Для ОВР составить е-баланс, для РИО
полные, ионные уравнения.

№3. Напишите уравнения реакций взаимодействия
азотной кислоты со следующими веществами в молекулярном и ионном виде:
a) Al2O3
б) Ba(OH)2
в) Na2S

№4. Запишите уравнения, составьте
электронный баланс, укажите процессы окисления и восстановления, окислитель и
восстановитель:
А) Сa + HNO3 (конц.)
Б) Сa + HNO3 (paзбавл.)

№5. Осуществите переход по ссылке,
изучите информацию на странице и      посмотрите видео , нажмите “посмотреть
опыт”.
Напишите в молекулярном и ионном виде уравнения реакций, с помощью которых
можно различить азотную, серную и соляную кислоту.

Это интересно:

“Фотохимический смог”

Источник