Какие свойства проявляет алюминий
Алюминий
Дополнительно на страницах учебника “Фоксфорд”
Главную подгруппу III группы периодической системы составляют бор (В),
алюминий (Аl), галлий (Ga), индий (In) и таллий (Тl).
Как видно из приведенных данных, все эти
элементы были открыты в XIX столетии.
Открытие металлов главной подгруппы III группы
В | Al | Ga | In | Tl |
1806 г. | 1825 г. | 1875 г. | 1863 г. | 1861 г. |
Г.Люссак, | Г.Х.Эрстед | Л. де | Ф.Рейх, | У.Крукс |
Л. Тенар | (Дания) | (Франция) | И.Рихтер | (Англия) |
(Франция) | (Германия) |
Бор представляет собой неметалл.
Алюминий — переходный металл, а галлий, индий и таллий — полноценные металлы.
Таким образом, с ростом радиусов атомов элементов каждой группы периодической
системы металлические свойства простых веществ усиливаются.
В данной лекции мы подробнее рассмотрим
свойства алюминия.
1. Положение
алюминия в таблице Д. И. Менделеева. Строение атома, проявляемые степени
окисления.
Элемент алюминий расположен в III группе, главной «А» подгруппе, 3 периоде
периодической системы, порядковый номер №13, относительная атомная масса Ar(Al) = 27. Его соседом слева в таблице является магний –
типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий
должен проявлять свойства некоторого промежуточного характера и его соединения
являются амфотерными.
Al +13 )2)8)3 , p – элемент,
Основное состояние 1s22s22p63s23p1 | |
Возбуждённое состояние 1s22s22p63s13p2 |
Алюминий проявляет в соединениях степень
окисления +3:
Al0 – 3 e- → Al+3
2. Физические свойства
Алюминий в свободном виде — серебристо-белый
металл, обладающий высокой тепло- и электропроводностью. Температура плавления 650 оС. Алюминий имеет невысокую
плотность (2,7 г/см3) — примерно втрое меньше, чем у железа или
меди, и одновременно — это прочный металл.
3. Нахождение в природе
По распространённости в природе занимает
1-е среди металлов и 3-е место среди
элементов, уступая только кислороду и кремнию. Процент содержания алюминия
в земной коре по данным различных исследователей составляет от 7,45 до
8,14 % от массы земной коры.
В
природе алюминий встречается только в соединениях (минералах).
Некоторые
из них:
·
Бокситы —
Al2O3 • H2O (с примесями SiO2, Fe2O3,
CaCO3)
·
Нефелины —
KNa3[AlSiO4]4
·
Алуниты — KAl(SO4)2 • 2Al(OH)3
·
Глинозёмы
(смеси каолинов с песком SiO2, известняком CaCO3,
магнезитом MgCO3)
·
Корунд —
Al2O3
·
Полевой
шпат (ортоклаз) — K2O×Al2O3×6SiO2
·
Каолинит —
Al2O3×2SiO2 × 2H2O
·
Алунит — (Na,K)2SO4×Al2(SO4)3×4Al(OH)3
·
Берилл —
3ВеО • Al2О3 • 6SiO2
Боксит |
|
Al2O3 | Корунд
|
Рубин
| |
Сапфир
|
4.Химические
свойства алюминия и его соединений
Алюминий легко взаимодействует с
кислородом при обычных условиях и покрыт оксидной пленкой (она придает матовый
вид).
ДЕМОНСТРАЦИЯ ОКСИДНОЙ ПЛЁНКИ
Алюминий |
Её толщина 0,00001 мм, но благодаря ней
алюминий не коррозирует. Для изучения
химических свойств алюминия оксидную пленку удаляют. (При помощи
наждачной бумаги, или химически: сначала опуская в раствор щелочи для удаления
оксидной пленки, а затем в раствор солей ртути для образования сплава алюминия
со ртутью – амальгамы).
I. Взаимодействие с простыми веществами
Алюминий уже при комнатной температуре
активно реагирует со всеми галогенами, образуя галогениды. При нагревании он
взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и
углеродом (2000 °С), с йодом в присутствии катализатора – воды:
2Аl
+ 3S = Аl2S3 (сульфид алюминия),
2Аl
+ N2 = 2АlN (нитрид
алюминия),
Аl
+ Р = АlР (фосфид алюминия),
4Аl
+ 3С = Аl4С3 (карбид алюминия).
2 Аl +
3 I2 = 2 AlI3
(йодид алюминия) ОПЫТ
Все эти соединения
полностью гидролизуются с образованием гидроксида алюминия и, соответственно,
сероводорода, аммиака, фосфина и метана:
Al2S3 + 6H2O
= 2Al(OH)3 + 3H2S
Al4C3 + 12H2O
= 4Al(OH)3+ 3CH4
В виде стружек или порошка он ярко горит
на воздухе, выделяя большое количество теплоты:
4Аl
+ 3O2 = 2Аl2О3 +
1676 кДж.
ГОРЕНИЕ АЛЮМИНИЯ НА ВОЗДУХЕ
ОПЫТ
II. Взаимодействие со сложными
веществами
Взаимодействие с водой:
2 Al + 6 H2O = 2 Al
(OH)3 + 3 H2
без оксидной пленки
ОПЫТ
Взаимодействие с оксидами металлов:
Алюминий –
хороший восстановитель, так как является одним из активных металлов. Стоит в
ряду активности сразу после щелочно-земельных металлов. Поэтому восстанавливает металлы из их оксидов.
Такая реакция – алюмотермия – используется для получения чистых редких
металлов, например таких, как вольфрам, ваннадий и др.
3 Fe3O4 + 8
Al = 4 Al2O3 + 9 Fe
+Q
Термитная смесь Fe3O4 и Al
(порошок) –используется ещё и в термитной сварке.
Сr2О3 +
2Аl = 2Сr + Аl2О3
Взаимодействие с кислотами:
С раствором
серной кислоты: 2 Al + 3 H2SO4 = Al2(SO4)3
+ 3 H2
С холодными
концентрированными серной и азотной не реагирует (пассивирует). Поэтому азотную
кислоту перевозят в алюминиевых цистернах. При нагревании алюминий способен
восстанавливать эти кислоты без выделения водорода:
2Аl + 6Н2SО4(конц)
= Аl2(SО4)3
+ 3SО2 + 6Н2О,
Аl + 6НNO3(конц) = Аl(NO3)3 +
3NO2 + 3Н2О.
Взаимодействие со щелочами.
2 Al + 2 NaOH + 6 H2O = 2 Na[Al(OH)4]
+ 3 H2
ОПЫТ
Na[Аl(ОН)4] – тетрагидроксоалюминат
натрия
По
предложению химика Горбова, в русско-японскую войну эту реакцию использовали
для получения водорода для аэростатов.
С растворами солей:
2Al + 3CuSO4 = Al2(SO4)3 +
3Cu
Если
поверхность алюминия потереть солью ртути, то происходит реакция:
2Al + 3HgCl2
= 2AlCl3
+ 3Hg
Выделившаяся
ртуть растворяет алюминий, образуя амальгаму.
Обнаружение ионов алюминия в растворах: ОПЫТ
5. Применение алюминия и
его соединений
РИСУНОК 1
РИСУНОК 2
Физические и химические свойства
алюминия обусловили его широкое применение в технике. Крупным потребителем алюминия
является авиационная промышленность: самолет на 2/3 состоит из
алюминия и его сплавов. Самолет из стали оказался бы слишком тяжелым и смог бы
нести гораздо меньше пассажиров. Поэтому
алюминий называют крылатым металлом. Из
алюминия изготовляют кабели и провода: при одинаковой электрической проводимости
их масса в 2 раза меньше, чем соответствующих изделий из меди.
Учитывая коррозионную устойчивость
алюминия, из него изготовляют детали
аппаратов и тару для азотной кислоты. Порошок алюминия является основой при
изготовлении серебристой краски для защиты железных изделий от коррозии, а
также для отражения тепловых лучей такой
краской покрывают нефтехранилища, костюмы пожарных.
Оксид алюминия используется для
получения алюминия, а также как огнеупорный материал.
Гидроксид алюминия – основной компонент
всем известных лекарств маалокса, альмагеля, которые понижают кислотность желудочного
сок.
Соли алюминия сильно гидролизуются. Данное свойство применяют в
процессе очистки воды. В очищаемую воду вводят сульфат алюминия и небольшое
количество гашеной извести для нейтрализации образующейся кислоты. В результате
выделяется объемный осадок гидроксида алюминия, который, оседая, уносит с собой
взвешенные частицы мути и бактерии.
Таким образом, сульфат алюминия является
коагулянтом.
6. Получение алюминия
1) Современный рентабельный способ
получения алюминия был изобретен американцем Холлом и французом Эру в 1886
году. Он заключается в электролизе раствора оксида алюминия в расплавленном
криолите. Расплавленный криолит Na3AlF6 растворяет Al2O3,
как вода растворяет сахар. Электролиз “раствора” оксида алюминия в
расплавленном криолите происходит так, как если бы криолит был только
растворителем, а оксид алюминия – электролитом.
2Al2O3 эл.ток→ 4Al + 3O2
В
английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается
следующими словами: “23 февраля 1886 года в истории цивилизации начался новый
металлический век – век алюминия. В этот день Чарльз Холл, 22-летний химик,
явился в лабораторию своего первого учителя с дюжиной маленьких шариков
серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять
этот металл дешево и в больших количествах”. Так Холл сделался основоположником
американской алюминиевой промышленности и англосаксонским национальным героем,
как человек, сделавшим из науки великолепный бизнес.
2) 2Al2O3 + 3
C =
4 Al + 3 CO2
ЭТО ИНТЕРЕСНО:
- Металлический
алюминий первым выделил в 1825 году датский физик Ханс Кристиан Эрстед.
Пропустив газообразный хлор через слой раскаленного оксида алюминия, смешанного
с углем, Эрстед выделил хлорид алюминия без малейших следов влаги. Чтобы
восстановить металлический алюминий, Эрстеду понадобилось обработать хлорид
алюминия амальгамой калия. Через 2 года немецкий химик Фридрих Вёллер.
Усовершенствовал метод, заменив амальгаму калия чистым калием. - В 18-19 веках
алюминий был главным ювелирным металлом. В 1889 году Д.И.Менделеев в Лондоне за
заслуги в развитии химии был награжден ценным подарком – весами, сделанными из
золота и алюминия. - К 1855 году
французский ученый Сен- Клер Девиль
разработал способ получения металлического алюминия в технических масштабах. Но
способ был очень дорогостоящий. Девиль пользовался особым покровительством
Наполеона III, императора Франции. В знак своей преданности и благодарности Девиль изготовил
для сына Наполеона, новорожденного принца, изящно гравированную погремушку –
первое «изделие ширпотреба» из алюминия. Наполеон намеревался даже снарядить
своих гвардейцев алюминиевыми кирасами, но цена оказалась непомерно высокой. В
то время 1 кг алюминия стоил 1000 марок, т.е. в 5 раз дороже серебра. Только
после изобретения электролитического процесса алюминий по своей стоимости
сравнялся с обычными металлами. - А знаете ли вы, что алюминий, поступая в организм человека, вызывает
расстройство нервной системы. При его
избытке нарушается обмен веществ. А защитными средствами является витамин С,
соединения кальция, цинка. - При сгорании алюминия в кислороде и фторе выделяется
много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета
“Сатурн” сжигает за время полёта 36 тонн алюминиевого порошка. Идея
использования металлов в качестве компонента ракетного топлива впервые высказал
Ф. А. Цандер.
ТРЕНАЖЁРЫ
Тренажёр
№1 – Характеристика алюминия по положению в Периодической системе элементов Д.
И. Менделеева
Тренажёр
№2 – Уравнения реакций алюминия с простыми и сложными веществами
Тренажёр
№3 – Химические свойства алюминия
ЗАДАНИЯ ДЛЯ
ЗАКРЕПЛЕНИЯ
№1.
Для получения алюминия из хлорида алюминия в качестве восстановителя можно
использовать металлический кальций. Составьте уравнение данной химической
реакции, охарактеризуйте этот процесс при помощи электронного баланса.
Подумайте! Почему эту реакцию нельзя проводить в водном растворе?
№2. Закончите уравнения химических реакций:
Al + H2SO4 (раствор) ->
Al + CuCl2 ->
Al + HNO3(конц) -t->
Al + NaOH + H2O ->
№3.
Осуществите превращения:
Al -> AlCl3 -> Al -> Al2S3 ->
Al(OH)3 -t->Al2O3 -> Al
№4.
Решите задачу:
На сплав алюминия и меди подействовали избытком концентрированного раствора
гидроксида натрия при нагревании. Выделилось 2,24 л газа (н.у.). Вычислите
процентный состав сплава, если его общая масса была 10 г?
Источник
Полный курс химии вы можете найти на моем сайте CHEMEGE.RU. Чтобы получать актуальные материалы и новости ЕГЭ по химии, вступайте в мою группу в ВКонтакте или на Facebook. Если вы хотите подготовиться к ЕГЭ по химии на высокие баллы, приглашаю на онлайн-курс “40 шагов к 100 баллам на ЕГЭ по химии“.
1.Положение алюминия в периодической системе химических элементов
2. Электронное строение алюминия
3. Физические свойства
4. Нахождение в природе
5. Способы получения
6. Качественные реакции
7. Химические свойства
7.1. Взаимодействие с простыми веществами
7.1.1. Взаимодействие с галогенами
7.1.2. Взаимодействие с серой и фосфором
7.1.3. Взаимодействие с водородом
7.1.4. Взаимодействие с азотом
7.1.5. Взаимодействие с углеродом
7.1.6. Горение
7.2. Взаимодействие со сложными веществами
7.2.1. Взаимодействие с водой
7.2.2. Взаимодействие с минеральными кислотами
7.2.3. Взаимодействие с серной кислотой
7.2.4. Взаимодействие с азотной кислотой
7.2.5. Взаимодействие с щелочами
7.2.6. Взаимодействие с окислителями
Алюминий
Положение в периодической системе химических элементов
Алюминий расположены в главной подгруппе III группы (или в 13 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.
Электронное строение алюминия и свойства
Электронная конфигурация алюминия в основном состоянии:
Создать карусель Добавьте описание
Электронная конфигурация алюминия в возбужденном состоянии:
Создать карусель Добавьте описание
Алюминий проявляет парамагнитные свойства. Алюминий на воздухе быстро образует прочные оксидные плёнки, защищающие поверхность от дальнейшего взаимодействия, поэтому устойчив к коррозии.
Физические свойства
Алюминий – лёгкий металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Обладает высокой тепло- и электропроводностью.
Создать карусель Пластичность алюминия
Нахождение в природе
Алюминий – самый распространенный металл в природе, и 3-й по распространенности среди всех элементов (после кислорода и кремния). Содержание в земной коре – около 8%.
В природе алюминий встречается в виде соединений:
Бокситы Al₂O₃ · H₂O (с примесями SiO₂, Fe₂O₃, CaCO₃) – гидрат оксида алюминия
Корунд Al₂O₃. Красный корунд называют рубином, синий корунд называют сапфиром.
Способы получения
Алюминий образует прочную химическую связь с кислородом. Поэтому традиционные способы получения алюминия восстановлением из оксида протекают требуют больших затрат энергии. Для промышленного получения алюминия используют процесс Холла-Эру. Для понижения температуры плавления оксид алюминия растворяют в расплавленном криолите (при температуре 960-970⁰С) Na₃AlF₆, а затем подвергают электролизу с углеродными электродами. При растворении в расплаве криолита оксид алюминия распадается на ионы:
Al₂O₃ → Al³⁺ + AlO₃³⁻
На катоде происходит восстановление ионов алюминия:
Катод: Al³⁺ +3e → Al⁰
На аноде происходит окисление алюминат-ионов:
Анод: 4AlO³⁻– 12e → 2Al₂O₃ + 3O₂
Суммарное уравнение электролиза расплава оксида алюминия:
2Al₂O₃ → 4Al + 3O₂
Лабораторный способ получения алюминия заключается в восстановлении алюминия из безводного хлорида алюминия металлическим калием:
AlCl₃ + 3K → 3Al + 3KCl
Качественные реакции
Качественная реакция на ионы алюминия – взаимодействие избытка солей алюминия с щелочами. При этом образуется белый аморфный осадок гидроксида алюминия.
Например, хлорид алюминия взаимодействует с гидроксидом натрия:
AlCl₃ + 3NaOH → Al(OH)₃ + 3NaCl
При дальнейшем добавлении щелочи осадок гидроксида алюминия растворяется с образованием тетрагидроксоалюмината натрия:
Al(OH)₃ + NaOH = Na[Al(OH)₄]
Обратите внимание, если мы поместим соль алюминия в избыток раствора щелочи, то белый осадок гидроксида алюминия не образуется, т.к. в избытке щелочи соединения алюминия сразу переходят в комплекс:
AlCl₃ + 4NaOH = Na[Al(OH)₄] + 3NaCl
Соли алюминия можно обнаружить с помощью водного раствора аммиака. При взаимодействии растворимых солей алюминия с водным раствором аммиака также выпадает полупрозрачный студенистый осадок гидроксида алюминия.
AlCl₃ + 3NH₃ · H₂O = Al(OH)₃ ↓ + 3 NH₄Cl
Al³⁺ + 3NH₃ · H₂O = Al(OH)₃ ↓ + 3NH₄⁺
Видеоопыт взаимодействия раствора хлорида алюминия с раствором аммиака можно посмотреть здесь.
Химические свойства
- Алюминий – сильный восстановитель. Поэтому он реагирует со многими неметаллами.
1.1. Алюминий реагируют с галогенами с образованием галогенидов:
2Al + 3I₂ → 2AlI₃
В редакторе видеозапись не воспроизводится0:09Добавьте описание
1.2. Алюминий реагирует с серой с образованием сульфидов:
2Al + 3S → Al₂S₃
1.3. Алюминий реагируют с фосфором . При этом образуются бинарные соединения – фосфиды:
Al + P → AlP
Алюминий не реагирует с водородом.
1.4. С азотом алюминий реагирует при нагревании до 1000⁰С с образованием нитрида:
2Al + N₂ → 2AlN
1.5. Алюминий реагирует с углеродом с образованием карбида алюминия:
4Al + 3C → Al₄C₃
1.6. Алюминий взаимодействует с кислородом с образованием оксида:
4Al + 3O₂ → 2Al₂O₃
Видеоопыт взаимодействия алюминия с кислородом воздуха (горение алюминия на воздухе) можно посмотреть здесь.
2. Алюминий взаимодействует со сложными веществами:
2.1. Реагирует ли алюминий с водой? Ответ на этот вопрос вы без труда найдете, если покопаетесь немного в своей памяти. Наверняка хотя бы раз в жизни вы встречались с алюминиевыми кастрюлями или алюминиевыми столовыми приборами. Такой вопрос я любил задавать студентам на экзаменах. Что самое удивительное, ответы я получал разные – у кого-то алюминий таки реагировал с водой. И очень, очень многие сдавались после вопроса: “Может быть, алюминий реагирует с водой при нагревании?” При нагревании алюминий реагировал с водой уже у половины респондентов))
Тем не менее, несложно понять, что алюминий все-таки с водой в обычных условиях (да и при нагревании) не взаимодействует. И мы уже упоминали, почему: из-за образования оксидной пленки. А вот если алюминий очистить от оксидной пленки (например, амальгамировать), то он будет взаимодействовать с водой очень активно с образованием гидроксида алюминия и водорода:
2Al + 6H₂O → 2Al(OH)₃ + 3H₂О
Алюминий реагирует с водой
Амальгаму алюминия можно получить, выдержав кусочки алюминия в растворе хлорида ртути (II):
3HgCl₂ + 2Al → 2AlCl₃ + 3Hg
Видеоопыт взаимодействия амальгамы алюминия с водой можно посмотреть здесь.
2.2. Алюминий взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.
Например, алюминий бурно реагирует с соляной кислотой:
2Al + 6HCl = 2AlCl₃+ 3H₂↑
Алюминий с соляной кислотой
2.3. При обычных условиях алюминий не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат алюминия и вода:
2Al + 6H₂SO₄(конц.) → Al₂(SO₄)₃+ 3SO₂+ 6H₂O
2.4. Алюминий не реагирует с концентрированной азотной кислотой также из-за пассивации.
С разбавленной азотной кислотой алюминий реагирует с образованием молекулярного азота:
10Na + 12HNO₃(разб) → N₂+10NaNO₃+ 6H₂O
При взаимодействии алюминия с очень разбавленной азотной кислотой образуется нитрат аммония:
8Al + 14HNO₃(оч.разб.) → 8NaNO₃+ 3NH₄NO₃+ 7H₂O
2.5. Алюминий – амфотерный металл, поэтому он взаимодействует с щелочами. При взаимодействии алюминия с раствором щелочи образуется тетрагидроксоалюминат и водород:
2Al + 2NaOH + 6H₂O → 2Na[Al(OH)₄] + 3H₂↑
Создать карусель Алюминий с гидроксидом натрия
Видеоопыт взаимодействия алюминия со щелочью и водой можно посмотреть здесь.
Алюминий реагирует с расплавом щелочи с образованием алюмината и водорода:
2Al + 6NaOH → 2Na₃AlO₃ + 3H₂↑
Эту же реакцию можно записать в другом виде:
2Al + 6NaOH → NaAlO₂+ 3H₂↑ + Na₂O
2.6. Алюминий восстанавливает менее активные металлы из оксидов. Процесс восстановления металлов из оксидов называется алюмотермия.
Например, алюминий вытесняет медь из оксида меди (II). Реакция очень экзотермическая:
2Al + 3CuO → 3Cu + Al₂O₃
Алюминий с оксидом меди
Еще пример: алюминий восстанавливает железо из железной окалины, оксида железа (II, III):
8Al + 3Fe₃O₄→ 4Al₂O₃+ 9Fe
Восстановительные свойства алюминия также проявляются при взаимодействии его с сильными окислителями: пероксидом натрия, нитратами и нитритами в щелочной среде, перманганатами, соединениями хрома (VI):
2Al + 3Na₂O₂ → 2NaAlO₂ + 2Na₂O
8Al + 3KNO₃ + 5KOH + 18H₂O → 8K[Al(OH)₄] + 3NH₃
10Al + 6KMnO₄+ 24H₂SO₄→ 5Al₂(SO₄)₃ + 6MnSO₄ + 3K₂SO₄+ 24H₂O
2Al + NaNO₂ + NaOH + 5H₂O → 2Na[Al(OH)₄] + NH₃
Al + 3KMnO₄+ 4KOH → 3K₂MnO₄+ K[Al(OH)₄]
4Al + K₂Cr₂O₇→ 2Cr + 2KAlO₂ + Al₂O₃
Оксид алюминия
Способы получения
Оксид алюминия можно получить различными методами:
- Горением алюминия на воздухе:
4Al + 3O₂ → 2Al₂O
2. Разложением гидроксида алюминия при нагревании:
2Al(OH)₃ → Al₂O₃+ 3H₂O
3. Оксид алюминия можно получить разложением нитрата алюминия:
4Al(NO₃)₃ → 2Al₂O₃ + 12NO₂ + 3O₂
Химические свойства
Оксид алюминия – типичный амфотерный оксид. Взаимодействует с кислотными и основными оксидами, кислотами, щелочами.
- При взаимодействии оксида алюминия с основными оксидами образуются соли-алюминаты.
Например, оксид алюминия взаимодействует с оксидом натрия:
Na₂O + Al₂O₃→ 2NaAlO₂
2. Оксид алюминия взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли–алюминаты, а в растворе – комплексные соли. При этом оксид алюминия проявляет кислотные свойства.
Например, оксид алюминия взаимодействует с гидроксидом натрия в расплаве с образованием алюмината натрия и воды:
2NaOH + Al₂O₃→ 2NaAlO₂+ H₂O
Оксид алюминия растворяется в избытке щелочи с образованием тетрагидроксоалюмината:
Al₂O₃ + 2NaOH + 3H₂O → 2Na[Al(OH)₄]
3. Оксид алюминия не взаимодействует с водой.
4. Оксид алюминия взаимодействует с кислотными оксидами (сильных кислот). При этом образуются соли алюминия. При этом оксид алюминия проявляет основные свойства.
Например, оксид алюминия взаимодействует с оксидом серы (VI) с образованием сульфата алюминия:
Al₂O₃+ 3SO₃→ Al₂(SO₄)₃
5. Оксид алюминия взаимодействует с растворимыми кислотами с образованием средних и кислых солей.
Например, оксид алюминия реагирует с серной кислотой:
Al₂O₃ + 3H₂SO₄ → Al₂(SO₄)₃ + 3H₂O
6. Оксид алюминия проявляет слабые окислительные свойства.
Например, оксид алюминия реагирует с гидридом кальция с образованием алюминия, водорода и оксида кальция:
Al₂O₃ + 3CaH₂ → 3CaO + 2Al + 3H₂
Электрический ток восстанавливает алюминий из оксида (производство алюминия):
2Al₂O₃ → 4Al + 3O₂
7. Оксид алюминия – твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.
Например, из карбоната натрия:
Al₂O₃ + Na₂CO₃ → 2NaAlO₂ + CO₂
Гидроксид алюминия
Способы получения
- Гидроксид алюминия можно получить действием раствора аммиака на соли алюминия.
Например, хлорид алюминия реагирует с водным раствором аммиака с образованием гидроксида алюминия и хлорида аммония:
AlCl₃+ 3NH₃ + 3H₂O = Al(OH)₃ + 3NH₄Cl
2. Пропусканием углекислого газа, сернистого газа или сероводорода через раствор тетрагидроксоалюмината натрия:
2Na[Al(OH)₄] + СО₂= 2Al(OH)₃ + NaНCO₃ + H₂O
Чтобы понять, как протекает эта реакция, можно использовать несложный прием: мысленно разбить сложное вещество Na[Al(OH)₄] на составные части: NaOH и Al(OH)₃. Далее мы определяем, как реагирует углекислый газ с каждым из этих веществ, и записываем продукты их взаимодействия. Т.к. Al(OH)₃ не реагирует с СО₂, то мы записываем справа Al(OH)₃ без изменения.
3. Гидроксид алюминия можно получить действием недостатка щелочи на избыток соли алюминия.
Например, хлорид алюминия реагирует с недостатком гидроксида калия с образованием гидроксида алюминия и хлорида калия:
AlCl₃ + 3KOH(недост) = Al(OH)₃↓+ 3KCl
4. Также гидроксид алюминия образуется при взаимодействии растворимых солей алюминия с растворимыми карбонатами, сульфитами и сульфидами. Сульфиды, карбонаты и сульфиты алюминия необратимо гидролизуются в водном растворе.
Например: бромид алюминия реагирует с карбонатом натрия. При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется бромид натрия:
2AlBr₃ + 3Na₂CO₃ + 3H₂O = 2Al(OH)₃↓ + CO₂↑ + 6NaBr
Хлорид алюминия реагирует с сульфидом натрия с образованием гидроксида алюминия, сероводорода и хлорида натрия:
2AlCl₃ + 3Na₂S + 6H₂O = 2Al(OH)₃ + 3H₂S↑ + 6NaCl
Химические свойства
- Гидроксид алюминия реагирует с растворимыми кислотами. При этом образуются средние или кислые соли, в зависимости от соотношения реагентов и типа соли.
Например, гидроксид алюминия взаимодействует с азотной кислотой с образованием нитрата алюминия:
Al(OH)₃ + 3HNO₃→ Al(NO₃)₃ + 3H₂O
Al(OH)₃ + 3HCl → AlCl₃ + 3H₂O
2Al(OH)₃ + 3H₂SO₄ → Al₂(SO₄)₃ + 6H₂O
Al(OH)₃ + 3HBr → AlBr₃ + 3H₂O
2. Гидроксид алюминия взаимодействует с кислотными оксидами сильных кислот.
Например, гидроксид алюминия взаимодействует с оксидом серы (VI) с образованием сульфата алюминия:
2Al(OH)₃ + 3SO₃→ Al₂(SO₄)₃ + 3H₂O
3. Гидроксид алюминия взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли–алюминаты, а в растворе – комплексные соли. При этом гидроксид алюминия проявляет кислотные свойства.
Например, гидроксид алюминия взаимодействует с гидроксидом калия в расплаве с образованием алюмината калия и воды:
2KOH + Al(OH)₃ → 2KAlO₂ + 2H₂O
Гидроксид алюминия растворяется в избытке щелочи с образованием тетрагидроксоалюмината:
Al(OH)₃ + KOH → K[Al(OH)₄]
4. Гидроксид алюминия разлагается при нагревании:
2Al(OH)₃ → Al₂O₃+ 3H₂O
Видеоопыт взаимодействия гидроксида алюминия с соляной кислотой и щелочами (амфотерные свойства гидроксида алюминия) можно посмотреть здесь.
Соли алюминия
Нитрат и сульфат алюминия
Нитрат алюминия при нагревании разлагается на оксид алюминия, оксид азота (IV) и кислород:
4Al(NO₃)₃ → 2Al₂O₃ + 12NO₂+ 3O₂
Сульфат алюминия при сильном нагревании разлагается аналогично – на оксид алюминия, сернистый газ и кислород:
2Al₂(SO₄)₃ → 2Al₂O₃ + 6SO₂ + 3O₂
Комплексные соли алюминия
Для описания свойств комплексных солей алюминия – гидроксоалюминатов, удобно использоваться следующий прием: мысленно разбейте тетрагидроксоалюминат на две отдельные молекулы – гидроксид алюминия и гидроксид щелочного металла.
Например, тетрагидроксоалюминат натрия разбиваем на гидроксид алюминия и гидроксид натрия:
Na[Al(OH)₄] разбиваем на NaOH и Al(OH)₃
Свойства всего комплекса можно определять, как свойства этих отдельных соединений.
Таким образом, гидроксокомплексы алюминия реагируют с кислотными оксидами.
Например, гидроксокомплекс разрушается под действием избытка углекислого газа. При этом с СО₂ реагирует NaOH с образованием кислой соли (при избытке СО₂), а амфотерный гидроксид алюминия не реагирует с углекислым газом, следовательно, просто выпадает в осадок:
Na[Al(OH)₄] + CO₂→ Al(OH)₃↓ + NaHCO₃
Аналогично тетрагидроксоалюминат калия реагирует с углекислым газом:
K[Al(OH)₄] + CO₂→ Al(OH)₃ + KHCO₃
По такому же принципу тетрагидроксоалюминаты реагирует с сернистым газом SO₂:
Na[Al(OH)₄] + SO₂ → Al(OH)₃↓ + NaHSO₃
K[Al(OH)₄] + SO₂ → Al(OH)₃ + KHSO₃
А вот под действием избытка сильной кислоты осадок не выпадает, т.к. амфотерный гидроксид алюминия реагирует с сильными кислотами.
Например, с соляной кислотой:
Na[Al(OH)₄ ] + 4HCl(избыток) → NaCl + AlCl₃ + 4H₂O
Правда, под действием небольшого количества (недостатка) сильной кислоты осадок все-таки выпадет, для растворения гидроксида алюминия кислоты не будет хватать:
Na[Al(OH)₄] + НCl(недостаток) → Al(OH)₃↓ + NaCl + H₂O
Аналогично с недостатком азотной кислоты выпадает гидроксид алюминия:
Na[Al(OH)₄] + HNO₃(недостаток) → Al(OH)₃↓ + NaNO₃+ H₂O
Комплекс разрушается при взаимодействии с хлорной водой (водным раствором хлора) Cl₂:
2Na[Al(OH)₄] + Cl₂ → 2Al(OH)₃↓ + NaCl + NaClO
При этом хлор диспропорционирует.
Также комплекс может прореагировать с избытком хлорида алюминия. При этом выпадает осадок гидроксида алюминия:
AlCl₃+ 3Na[Al(OH)₄] → 4Al(OH)₃↓ + 3NaCl
Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-алюминат:
Na[Al(OH)₄] → NaAlO₂ + 2H₂O↑
K[Al(OH)₄] → KAlO₂ + 2H₂O
Гидролиз солей алюминия
Растворимые соли алюминия и сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:
I ступень: Al³⁺+ H₂O = AlOH²⁺ + H⁺
II ступень: AlOH²⁺ + H₂O = Al(OH)²⁺ + H⁺
III ступень: Al(OH)²⁺ + H₂O = Al(OH)₃ + H⁺
Однако сульфиды, сульфиты, карбонаты алюминия и их кислые соли гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:
Al₂(SO₄)₃ + 6NaHSO₃→ 2Al(OH)₃ + 6SO₂ + 3Na₂SO₄
2AlBr₃ + 3Na₂CO₃+ 3H₂O → 2Al(OH)₃↓ + CO₂↑ + 6NaBr
2Al(NO₃)₃ + 3Na₂CO₃+ 3H₂O → 2Al(OH)₃↓ + 6NaNO₃+ 3CO₂↑
2AlCl₃ + 3Na₂CO₃+ 3H₂O → 2Al(OH)₃↓ + 6NaCl + 3CO₂↑
Al₂(SO₄)₃ + 3K₂CO₃+ 3H₂O → 2Al(OH)₃↓ + 3CO₂↑ + 3K₂SO₄
2AlCl₃ + 3Na₂S + 6H₂O → 2Al(OH)₃+ 3H₂S↑ + 6NaCl
Более подробно про гидролиз можно прочитать в соответствующей статье.
Алюминаты
Соли, в которых алюминий является кислотным остатком (алюминаты) – образуются из оксида алюминия при сплавлении с щелочами и основными оксидами:
Al₂O₃ + Na₂O → 2NaAlO₂
Для понимания свойств алюминатов их также очень удобно разбить на два отдельных вещества.
Например, алюминат натрия мы разделим мысленно на два вещества: оксид алюминия и оксид натрия.
NaAlO₂ разбиваем на Na₂O и Al₂O₃
Тогда нам станет очевидно, что алюминаты реагируют с кислотами с образованием солей алюминия:
KAlO₂ + 4HCl → KCl + AlCl₃ + 2H₂O
NaAlO₂ + 4HCl → AlCl₃ + NaCl + 2H₂O
NaAlO₂ + 4HNO₃ → Al(NO₃)₃ + NaNO₃ + 2H₂O
2NaAlO₂ + 4H₂SO₄ → Al₂(SO₄)₃ + Na₂SO₄ + 4H₂O
Под действием избытка воды алюминаты переходят в комплексные соли:
KAlO₂ + H₂O = K[Al(OH)₄]
NaAlO₂ + 2H₂O = Na[Al(OH)₄]