Какие свойства придает стали марганец

Какие свойства придает стали марганец thumbnail

Условные обозначения химических элементов:

хром ( Cr ) — Х
никель ( Ni ) — Н
молибден ( Mo ) — М
титан ( Ti ) — Т
медь ( Cu ) — Д
ванадий ( V ) — Ф
вольфрам ( W ) — В
азот ( N ) — А
алюминий ( Аl ) — Ю
бериллий ( Be ) — Л
бор ( B ) — Р
висмут ( Вi ) — Ви
галлий ( Ga ) — Гл
иридий ( Ir ) — И
кадмий ( Cd ) — Кд
кобальт ( Co ) — К
кремний ( Si ) — C
магний ( Mg ) — Ш
марганец ( Mn ) — Г
свинец ( Pb ) — АС
ниобий ( Nb) — Б
селен ( Se ) — Е
углерод ( C ) — У
фосфор ( P ) — П
цирконий ( Zr ) — Ц

 ВЛИЯНИЕ ПРИМЕСЕЙ НА СТАЛЬ И ЕЕ СВОЙСТВА

Углерод — находится в стали обычно в виде химического соединения Fe3C, называемого цементитом. С увеличением содержания углерода до 1,2% твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость ухудшается, ухудшается и свариваемость.

Кремний — если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает.(Полезная примесь; вводят в качестве активного раскислителя и остается в стали в кол-ве 0,4%)

Марганец —  как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. (Полезная примесь; вводят в сталь для раскисления и остается в ней в кол-ве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.

Сера —  является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, — свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. ( От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды MnS).

Фосфор — также является вредной примесью. Снижает вязкость при пониженных температурах, то есть вызывает хладноломкость. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

 ЛЕГИРУЮЩИЕ ЭЛЕМЕНТЫ И ИХ ВЛИЯНИЕ НА СВОЙСТВА СТАЛИ

Хром (Х) — наиболее дешевый и распространенный элемент. Он повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; содержание больших количеств хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.

Никель (Н) — сообщает стали коррозионную стойкость, высокую прочность и пластичность, увеличивает прокаливаемость, оказывает влияние на изменение коэффициента теплового расширения. Никель – дорогой металл, его стараются заменить более дешевым.

Вольфрам (В) — образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске. Это дорогой и дефицитный металл.

Ванадий (Ф) — повышает твердость и прочность, измельчает зерно. Увеличивает плотность стали, так как является хорошим раскислителем, он дорог и дефицитен.

Кремний (С)-  в количестве свыше 1% оказывает особое влияние на свойства стали: содержание 1-1,5% Si увеличивает прочность, при этом вязкость сохраняется. При большем содержании кремния увеличивается электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислостойкость, окалиностойкость.

Марганец (Г) —  при содержании свыше 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности.

Кобальт (К) — повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.

Молибден (М) — увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах.

Титан (Т) — повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.

Ниобий (Б) — улучшает кислостойкость и способствует уменьшению коррозии в сварных конструкциях.

Алюминий (Ю) — повышает жаростойкость и окалиностойкость.

Медь (Д) — увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.

Церий — повышает прочность и особенно пластичность.

Цирконий (Ц) — оказывает особое влияние на величину и рост зерна в стали, измельчает зерно и позволяет получать сталь с заранее заданной зернистостью.

Читайте также:  Какие свойства внимания необходимы для избираемой вами профессии

Лантан, цезий, неодим — уменьшают пористость, способствуют уменьшению содержания серы в стали, улучшают качество поверхности, измельчают зерно.

Источник

Содержание:

  • Влияние марганца на структуру и свойства стали

Влияние марганца на структуру и свойства стали

  • Влияние марганца на структуру и характеристики стали Марганец является Карбидообразующим элементом. Использование углерода дает карбиды Mn3C Mangan, которые более стабильны и долговечны, чем карбид железа (цементит).При введении марганца в железоуглеродистый сплав (чугун, сталь) чистые карбиды марганца не образуются, но образуются сложные (двойные) карбиды цементного типа (Fe-Mn) 3C, в которых часть атомов железа всегда замещается марганцем atoms. In Высокомарганцевые аустенитные стали, 1C00 входят в состав таких множественных карбидов 1390 ′ Одна тысяча триста * 1200 Одна тысяча сто Хм. 。 910° ^ 900 В 300. 200. 100 л- 13.2 Тридцать м п + а-ffn (53 63 минута. 730 ′ 10 20 30 iO 50 60 70 SO 90 nn содержание марганца. U. (Вес) Рис.23.

Схема системы Fe-Mp. Влияние марганца на структуру и свойства стали 89 С большим количеством марганца, чем железа(около 80% Mn и 20% Fe), и перлитной марганцевой стали со средним содержанием менее 3% Mn, этот карбид содержит больше железа, чем марганца (около 80% Fe и 20% Mn). В промежуточной марганцевой стали (класс перлита) марганец частично связан с образованием углерода и двойных карбидов, а частично с твердым раствором с iron. In кроме того, распределение марганца между карбидом и твердым раствором этой стали составляет приблизительно соотношение 1.. 4, то есть 4 раза с карбидом марганца 150. 600. г Лу. Мне 150. Один Один ЯГ ! > я-я-я-Я-Я-Я-Я-Я-Я-я… г «) 3-6 О •— •—.  / Яг ’ •—_ < г’ ) 6/9 Шесть 24.

Влияние марганца на критические точки сталей 0,4% C (a) и 0,9% C (b) Меньше, чем твердый раствор.

Людмила Фирмаль

Например, если общее содержание марганца в Стали равно 1,5%, то для карбидов оно составит около 0,3%, для твердых растворов-1,2%, а для карбидов-0,4 общее содержание составит 2,0%.% , Твердый раствор 1,6%, ЕТК. Марганец » снижает концентрацию углерода в perlite. In на диаграмме состояния железоуглеродистой системы под влиянием марганца точка кодирования 5 смещается влево в направлении, отклоняющемся от содержания углерода. Каждый процент марганца снижает концентрацию углерода в перлите на 0,05-0,06%, так, например, в сталях, содержащих 4% Mn, содержание перлита составляет всего 0,6%.

Точка е, на которую влияет (максимальная концентрация углерода в Фэт) марганец, незначительно смещается в сторону right. In другими словами, марганец повышает растворимость углерода в аустените. На рисунке 24 показано влияние марганца на критические точки 0,4 и 0,9% С стали. Из этого рисунка следует, что если увеличить количество марганца с 0,5 до 3,0 и нормализовать сплав углеродистой стали с 0,4% С, то точка% перлитной конверсии последовательно снижается, а точка% перлитной конверсии-АР постепенно проходит. Выше 3,5% Мп появляется марганцевая сталь, которая является точкой мартенситного превращения M. 

  • То есть при охлаждении стали на воздухе с увеличением содержания марганца(нормализованного) происходят точно такие же структурные изменения(происходит при увеличении скорости охлаждения простой углеродистой стали).Аустенит для стали с равномерным содержанием мартенсита или среднего углерода значительно легче, чем для стали с высоким содержанием углерода. На рисунке показано, что в стали 6% Mn, 0,4% C теряется точка тру плотного превращения, получается структура, состоящая из 100% мартенсита, и содержание марганца 0,9% C P стали, осаждается большое количество богатых марганцем карбидов, аустенит на его периферии истощается, что делает Манган нестабильным, и за короткий промежуток времени содержание марганца при охлаждении в зоне метаморфоза разлагается как смесь феррита и цементита. —

Если расход углерода превышает 0,9%, наряду с мартенситом или аустенитом, то вдоль границ зерен, где осаждается карбид марганца, всегда появляется труцит. Марганец вносит большой вклад в аустенитное переохлаждение. Поэтому под воздействием перлитной стали гистерезис между критическими точками увеличивается, а критическая скорость закалки уменьшается sharply. In в этом отношении марганец занимает 1-е место среди других легирующих веществ elements.

In стол. На рис. 17 приведены данные о влиянии марганца на критическую скорость закалки механической стали.
Людмила Фирмаль

Таблица 17 Влияние марганца на критическую скорость закалки среднеуглеродистой стали машиностроение с.% 0.48 0.47 0.46 0.46 MP、% 0.57 1.18 1.80 2.20 Температура закалки 850. 840. 830. Восемьсот двадцать Критическая скорость отверждения,°С / с 520. 120. Тридцать пять Восемь Как видно из таблицы, в станкостроительной стали из углеродистой стали Мп составляет — 1,8%, поэтому изделие диаметром до 20-25 мм погружают не в воду, а в следующую. В эвтектоидных и за〜эвтектоидных сталей 0.8-1.2%, влияние марганца на структуру и свойства стали 91 Эффект марганца и снижение критической скорости закалки еще сильнее. Снижая критическую скорость отверждения, марганец значительно улучшает упрочняющие свойства steel.

Читайте также:  Какие два свойства разбавленных растворов сильных электролитов

In стол. Эффект марганца показан на рисунке 18 и полностью излечим в образцах различного диаметра, изготовленных из углерода и среднего марганца В конструкционной стали, она твердеет на 820-850°пока охлаждающ с водой и маслом. Таблица 18 Диаметр отвержденного образца Состав стали、% И 0.48 0.47 0.46 Mp 0.57 1.18 1.80 Диаметр отверждаемого изделия при отверждении, мм В масле Четыре Двадцать Сорок В воде Двенадцать Сорок 60. Из данных, приведенных в этой таблице, его можно закалить маслом для отверждения изделий из среднеуглеродистых конструкционных сталей диаметром 1,80% Мп и длиной до 40 мм. Для качества закаленных изделий большое значение имеет влияние легирующих элементов на температуру мартенситного превращения и количество удерживаемого аустенита в структуре закаленной стали.

Чем ниже точка мартенситного превращения, тем сильнее упрочнение «будет удерживать больше в структуре аустенитной стали, что снизит твердость и прочность стали». кроме того, когда количество остаточного аустенита увеличивается, предел усталости стали резко падает, когда детали используются с переменными нагрузками. Марганец является одним из легирующих элементов, способствующих переохлаждению аустенита и повышению его стабильности. 1 при увеличении содержания марганца и закалке стали температура мартенситного превращения снижается, а количество удерживаемого аустенита увеличивается.

Количество остаточного аустенита в марганцевой стали очень сильно зависит от температуры нагрева стали перед закалкой: даже незначительное повышение температуры закалки марганцевой стали сопровождается повышением стабильности Фета. На рис. 25 показано влияние марганца на содержание мартенсита и остаточного аустенита в сталях, содержащих 0,5, 0,8 и 1,0% С, при закалке от оптимальной температуры. That92 марганцевой стали В структуре 2% MN высокоуглеродистой закаленной стали количество остаточного аустенита достигает 30-40%. При нагреве перлитно-марганцевой стали под воздействием Mn более 2% с содержанием углерода 0,4-0,5% скорость роста зерен резко возрастает и сталь становится чувствительной к перегреву.

<При нагреве марганцевой стали на 0,2-0,3% С до 3% марганца не будет увеличиваться, но это снизит скорость роста зерна и уменьшит склонность стали к перегреву[69]. В среднеуглеродистой конструкционной стали 0,4-0,5% с предел текучести и прочность увеличатся за счет влияния марганца после закалки и высокого отпуска(улучшения), но пластичность и вязкость значительно уменьшатся, а в мягкой стали с повышением содержания марганца примерно на 3% менее 0,2-0,3% прочность стали возрастет без выраженного снижения пластичности и пластичности[69]. На рисунке 26 представлена диаграмма соотношения углерода и марганца. Восемьдесят%б 0 Один- Да. 300. О * ОО • 「- В ’У’ Три г / / / * В、 х г с MP.% Рисунок 25.Остаточное содержание аустенита в закаленных сталях с различным влиянием марганца на точку мартенситного превращения (м») и содержание углерода: / −1.0% с; 2-0. 8%C; 3-0, 5%C требуется для получения Высокопрочная марганцево-стойкая инженерная сталь.

Этот рисунок показывает, что благодаря правильному сочетанию прочности и вязкости, чем выше содержание марганца в стали, тем ниже содержание углерода. При цементации стали марганец несколько ускоряет процесс цементации, увеличивая концентрацию углерода на поверхности цементного изделия. При длительном давлении при цементации в цементном слое стали, содержащем 1,5-2,0% Mn, рост зерен наблюдается редко, рост зерен под влиянием марганца, особенно в низкоуглеродистых кернах. На фиг. 27 представлена структурная схема марганцевой стали, из которой нормализуется образец, чтобы показать влияние марганца на структуру и характеристики стали.

Марганцевую сталь диаметром 25 мм можно классифицировать на 3 класса, в зависимости от микроструктуры, в зависимости от содержания в ней углерода и марганца.1) перлит. 2) мартенсит и 3) аустенит. < 0,4-0,5% C сталь имеет перлитную структуру до 2,0% Mp, а когда содержание 1,5% Mp уже превышает 0,8% C, в стали начинает появляться мартенсит structure. At в то же время этот показатель показывает, что углерод и марганец взаимно замещают и дополняют друг друга. Чем выше содержание углерода в стали、 26. C и MP совместное влияние. 27.Структурная схема механических свойств марганцевой стали и стали Бист(рисунок) Для получения неравновесных мартенситных или аустенитных структур требуется меньше марганца. В машиностроении широко используются только 2 класса марганцевой стали.

Перлит, содержащий 0,1-0,8% C при 0,7-2,0% Mn и аустенит, содержащий 1,0-1% 10-14% Mn при 4% C. При изотермическом превращении аустенита марганцевой стали с содержанием марганца до 2% Общий вид С-образной диаграммы практически не изменяется по сравнению с диаграммой углеродистой стали в течение инкубационного периода и времени полного изотермического превращения аустенита под действием марганца. Инжир. 図28は 、 0.Является фигурой изотермического превращения аустенитной стали 5 %. C и 1.8%Mp, для сравнения, показывает простой показатель углеродистой стали 0.5% C на том же рисунке. В медленно охлаждаемой углеродистой стали Nieco со сбалансированной структурой содержание марганца составляет до 10-12% 94 марганцевой стали Вызывает относительно небольшое увеличение твердости.

Читайте также:  Поясните какие химические свойства аммиака используют при получении

Поэтому, когда определенное количество марганца добавляется к перлитной стали, критическая скорость закалки в основном снижается, и прокаливаемость улучшается. 200 секунд a * u > время, sen u * 28.Иллюстрация изотермического превращения углеродистой стали 50 (слева) и аустенитной марганцевой стали 50Г2 (справа) На рис. 29 представлен график влияния марганца на твердость стали при 1% С после воздушного охлаждения (2) и 0,5% С после печи. Когда содержание марганца увеличивается и сталь нормализуется 60. Пятьдесят 8-0. Th / / 、 —• Х _ 29.

Нормализующее 0,5% C (1}и отжигающее (2) влияние марганца на твердость стали 3 4 Mp % От 0,4 до 4,0% твердость стали постоянно увеличивается. При более чем 4% Мп в структуре начинает появляться γ-марганцевая техническая сталь класса перлита 95. Твердость стали составляет reduced. In отожженная перлитная сталь, твердость под воздействием марганца почти не увеличивается.

Смотрите также:

Решение задач по материаловедению

Источник

При производстве сталии современная металлургия использует огромное количество примесей и добавок. Пропорции и количество легирующих элементов, как еще называют добавки, обычно составляют коммерческую тайну металлургической компании. 

Углерод – неотъемлемая часть любой стали, так как сталь это сплав углерода с железом. Процентное содержание углерода определяет механические свойства стали. С увеличением содержания углерода в составе стали, твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость и свариваемость ухудшается.

Кремний – незначительное его содержание в составе стали особого влияния на ее свойства не оказывает. При повышении содержания кремния значительно улучшаются упругие свойства, магнитопроницаемость, сопротивление коррозии и стойкость к окислению при высоких температурах.

Марганец – в углеродистой стали содержится в небольшом количестве и особого влияния на ее свойства не оказывает. Однако он образует с железом твердое соединение повышающее твердость и прочность стали, несколько уменьшая ее пластичность. Марганец связывает серу в соединение MnS, препятствуя образованию вредного соединения FeS. Кроме того, марганец раскисляет сталь. Сталь в состав которой входит большое количество марганца приобретает существенную твердость и сопротивление износу.

Сера – является вредной примесью в составе стали, где она находится преимущественно в виде FeS. Это соединение придает стали хрупкость при высоких температурах – красноломкость. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость.
В углеродистой стали допустимое содержание серы – не более 0,07%.

Фосфор – также является вредной примесью в составе стали. Он образует с железом соединение Fe3P. Кристаллы этого соединения очень хрупки, вследствие чего сталь приобретает высокую хрупкость в холодном состоянии – хладноломкость. Отрицательное влияние фосфора наибольшим образом сказывается при высоком содержании углерода.

Легирующие компоненты в составе стали и их влияние на свойства:

Алюминий – сталь, состав которой дополнен этим элементом, приобретает повышенную жаростойкость и окалиностойкость.

Кремний – увеличивает упругость, кислостойкость, окалиностойкость стали.

Марганец – увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок при этом не уменьшает пластичности.

Медь –  улучшает коррозионностойкие свойства стали.

Хром – повышает твердость и прочность стали, незначительно уменьшая пластичность, увеличивает коррозионностойкость. Содержание больших количеств хрома в составе стали придает ей нержавеющие свойства.

Никель – также как и хром придает стали коррозионную стойкость, а также увеличивает прочность и пластичность.

Вольфрам – входя в состав стали, образует очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует расширению стали при нагреве, способствует устранению хрупкости при отпуске.

Ванадий – повышает твердость и прочность стали, увеличивает плотность стали. Ванадий является хорошим раскислителем.

Кобальт – повышает жаропрочность, магнитные свойства, увеличивает стойкость против ударных нагрузок .

Молибден – увеличивает красностойкость, упругость, предел прочности на растяжение, улучшает антикоррозионные свойства стали и сопротивление окислению при высоких температурах.

Титан – повышает прочность и плотность стали, является хорошим раскислителем, улучшает обрабатываемость и увеличивает коррозионностойкость.

Источник