Какие свойства предметов может определять человек с помощью зрения

Какие свойства предметов может определять человек с помощью зрения thumbnail

Глаза помогают человеку ориентироваться в пространстве, узнавать ранее неизвестное, испытывать удовольствие от увиденного. Большую часть информации мы получаем именно с помощью зрения. Зрение — достаточно сложный процесс, в котором задействованы не только глазные яблоки, но и мозг.

Устройство глаза можно сравнить с мощной линзой

  1. Передняя часть глаза называется роговицей, она собирает на себе лучи света, которые проходят сквозь нее и попадают на радужную оболочку.
  2. На радужной оболочке находится зрачок. Благодаря тому, что зрачок может сужаться и расширяться в зависимости от освещения, человеческий глаз способен привыкать к разной интенсивности освещения.
  3. Из зрачка лучи света попадают на хрусталик. Хрусталик преломляет поступающие к нему лучи и фокусирует изображение. У хрусталика есть специальные мышцы.
  4. За хрусталиком расположено стекловидное тело, оно обеспечивает упругость глазному яблоку.
  5. Когда свет сфокусировался с помощью хрусталика, то он попадает на сетчатку. Там проецируется изображение, правда, в перевернутом виде.
  6. Информация, которую мы получаем светочувствительными клетками, передается по нервным тканям в мозг. Мозг анализирует ее и выдает изображение в привычном для нас виде.

Проблемы зрения

Познакомимся с наиболее распространенными проблемами, связанными с нарушением зрения.

  1. Близорукость (миопия) — заболевание глаз, при котором изображение формируется не на сетчатке глаза, а перед ней.
  2. Дальнозоркость (гиперметропия) — нарушение зрения, при котором человек хорошо видит только вдали, вблизи же — расплывчато, мутно.
  3. Амблиопия — нарушение зрения, по причинам изменений в коре головного мозга, развивается исключительно у детей.
  4. Возрастная макулярная дегенерация (ВМД). С латинского термин “макула” обозначает “пятно”, но именно она отвечает за остроту зрения.
  5. Отслойка сетчатки — отделение светочувствительного слоя сетчатки от сосудистой ткани.
  6. Глаукома – основная причина слепоты. Глаукома возникает в результате повреждение зрительного нерва.
  7. Катаракта – помутнение хрусталика.

Упражнения для поддержания зрения

“Беречь свое зрение не сложно” — утверждает Игорь Борисович Медведев, ученик Святослава Федорова.

Чтобы не терять способность видеть хорошо вдали и вблизи, нужно тренировать глазные мышцы, выполняя регулярно следующее упражнение: концентрировать взгляд то на дальних, то на близких предметах.

Усталым глазам полезно смотреть на зелень

Изображение предмета, который мы видим, получается на сетчатке — светочувствительной части глаза — резко уменьшенным и перевернутым вверх ногами и справа налево. Когда мы переводим взгляд от дерева за окном на строчки книги, происходит изменение кривизны хрусталика. Ресничные мышцы сокращаются и заставляют его становиться то более, то менее выпуклым. Поэтому мы видим буквы так же четко, как дальние предметы.

Если же постоянно сосредоточиваться на тексте книги или экране компьютера, то мышцы, управляющие хрусталиком, станут вялыми и слабыми. Как и всякие мышцы, которым не приходится работать, они теряют форму.

Попав на сетчатку, свет возбуждает фоточувствительные клетки — палочки и колбочки. Они содержат светочувствительный пигмент, с помощью которого мы видим. С возрастом этот пигмент разрушается, и острота зрения падает.

“Глаза работают благодаря мускулам, а мускулы надо тренировать, — рассказывает врач-офтальмолог — Движения глазами лучше делать утром или вечером, перед сном. Каждое упражнение повторяйте по 5-30 раз, начинайте с малого, постепенно увеличивайте нагрузку. Движения плавные, без рывков, между упражнениями полезно поморгать. И не забудьте снять очки или контактные линзы”.

Лучшие упражнения для поддержания, восстановления и улучшения зрения:

  • Упражнение 1. Шторки

Быстро и легко моргайте 2 минуты. Способствует улучшению кровообращения.

  • Упражнение 2. Смотрим в окно

Делаем точку из пластилина и лепим на стекло. Выбираем за окном далекий объект, несколько секунд смотрим вдаль, потом переводим взгляд на точку. Позже можно усложнить нагрузки — фокусироваться на четырех разноудаленных объектах.

  • Упражнение 3. Большие глаза

Сидим прямо. Крепко зажмуриваем глаза на 5 секунд, затем широко открываем их. Повторяем 8-10 раз. Укрепляет мышцы век, улучшает кровообращение, способствует расслаблению мышц глаз.

  • Упражнение 4. Массаж

Тремя пальцами каждой руки легко нажмите на верхние веки, через 1-2 секунды снимите пальцы с век. Повторите 3 раза. Улучшает циркуляцию внутриглазной жидкости.

  • Упражнение 5. Гидромассаж

Дважды в день, утром и вечером, ополаскиваем глаза. Утром — сначала ощутимо горячей водой (не обжигаясь!), затем холодной. Перед сном все в обратном порядке: промываем холодной, потом горячей водой.

  • Упражнение 6. Рисуем картинку

Первая помощь для глаз — закройте их на несколько минут и представьте что-то приятное. А если потереть ладони рук и прикрыть глаза теплыми ладонями, скрестив пальцы на середине лба, то эффект будет заметнее.

Читайте также: Как улучшить зрение в домашних условиях

Особенности зрения человека

Чтобы замедлить этот процесс, нужно регулярно есть продукты, содержащие витамин А:

  • морковь,
  • молоко,
  • мясо,
  • рыбу,
  • яйца.

Витамин А растворяется только в жире, поэтому в морковный салат лучше добавить сметаны или подсолнечного масла. И не избегать иногда жирного мяса и рыбы, а молоко пить не только обезжиренное. Особое вещество, восстанавливающее зрительный пигмент, есть в свежей чернике. Постарайтесь летом побаловать себя этими ягодами и запастись на зиму.

Питание и дыхание клеток осуществляется с помощью кровеносных сосудов. Сетчатка страдает при малейших нарушениях кровообращения. Именно эти нарушения пытаются увидеть офтальмологи, когда исследуют глазное дно.

Поэтому так важно регулярно проходить это обследование. Ведь нарушения кровообращения или травмы сетчатки ведут к тяжелым заболеваниям.

Не полезны для сосудов сетчатки:

  • перепады давления,
  • долгое пребывание в парилке или сауне,
  • процедуры в барокамере.

Об этом следует помнить тем, у кого слабое зрение.

Не перегружайте глаза

В месте, где расположен диск зрительного нерва, то есть место его выхода из глаза, сетчатка “слепая”. А самая большая острота зрения в центральной ямке желтого пятна — области, где расположено больше всего фоточувствительных колбочек — клеток, отвечающих за восприятие цвета и пространственных отношений предметов. Именно они позволяют нам наслаждаться созерцанием картин и пейзажей. Цвет предметов воспринимается лучше всего в центре желтого пятна.

Чтобы поберечь свои светочувствительные клетки, нужно защищать глаза от слишком яркого света солнцезащитными очками, не пытаться рассматривать мелкие предметы и читать при недостаточном освещении.

По мере удаления от желтого пятна острота зрения и способность различать цвет падает, так как колбочки заменяются палочками. Благодаря палочкам мы видим в сумерках и в темноте. Они менее чувствительны к свету и не способны воспринимать цвета. Поэтому нам кажется, что “ночью все кошки серы”.

Однако и эти клетки очень важны. Нарушение их работы приводит к “куриной слепоте”, невозможности видеть в сумерках. При поражении колбочек человек видит при слабом свете, но слепнет при ярком.

Для ясности зрения очень важна также чистота прозрачных оболочек, через которые проходит луч света, отраженный от предметов. Они омываются специальной влагой, поэтому мы хуже видим, когда глаза сухие.

Для остроты зрения немного поплакать даже полезно, кстати, и для нервной системы тоже. А если плакать не можете — подойдут специальные капли для глаз, по составу близкие к слезам.

Читайте также:

Выбираем очки, проверяя их центровку

Болезни глаз. Как правильно питаться?

Что такое рефракционная хирургия

Источник

Первую сою статью я начну с того, что расскажу вам о зрительном органе нашего организма это глаз.

Глаз – орган зрительной системы человека, обладающий способностью воспринимать свет и обеспечивать функцию зрения. У человека через глаз поступает 90% информации из окружающего мира.

Роговица – это природная линза, это передняя, наиболее выпуклая прозрачная часть глазного яблока. Роговица не содержит кровеносных сосудов, но имеет нервные окончания. Помимо защитной функции, она также выполняет функцию преломления света.

Склера – задняя, непрозрачная, белесоватая внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся глазодвигательные мышцы.

Радужная оболочка (радужка) – это «живая» диафрагма. Находится между роговицей и хрусталиком. Имеет вид фронтально расположенного диска с отверстием (зрачком) посередине. Своим наружным краем радужка переходит в ресничное тело, а внутренним ограничивает отверстие зрачка.

Хрусталик («живая линза») – прозрачное эластичное образование в капсуле, имеющее форму двояковыпуклой линзы. Хрусталик обладает интересной особенностью – с помощью связок и мышц вокруг, он может изменять свою кривизну, что, в свою очередь, изменяет направление световых лучей.

Цилиарная мышца – внутренняя парная мышца глаза, которая обеспечивает аккомодацию. С помощью цилиарной мышцы происходит изменение кривизны хрусталика и человек может четко видеть предметы на различных расстояниях.

Стекловидное тело – гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза, за хрусталиком. Поддерживает форму глазного яблока, принимает участие в преломлении световых лучей.

Сетчатка – рецепторная часть зрительного анализатора. Здесь происходят восприятие света и передача информации в центральную нервную систему.

В сетчатке мы можем найти главные для нас элементы:

· Фоторецепторы – палочки и колбочки. Представляют собой нейроны с отростками разной формы. Палочки отвечают за сумеречное и ночное зрение, колбочки – за остроту зрения и цветовосприятие (дневное зрение).

· Диск выхода зрительного нерва – место выхода из глаза зрительного нерва. Здесь нет ни палочек, ни колбочек, поэтому человек не видит этим местом. По зрительному нерву импульсы попадают в наш головной мозг, который и формирует изображение.

· Жёлтое пятно (макула) – находится на сетчатке, как правило, напротив зрачка. При нормальной работе глаза лучи света должны фокусироваться четко на макуле.

За счет чего же движется глаз ?

Он самый подвижный из всех органов человеческого организма.Различные движения глаза, повороты в стороны, вверх, вниз, обеспечивают глазодвигательные мышцы, расположенные в глазнице.Всего их 6: 4 прямые мышцы крепятся к передней части склеры и 2 косые, прикрепляются к задней части склеры.

Зрительные функции.

Зрение — это основная функция глаз, которая складывается из нескольких этапов.

Свет, который отражается от предметов, движется в глаз. Далее он проходит и преломляется через роговицу, хрусталик, стекловидное тело и попадает на сетчатку.

Бинокулярное зрение – это способность зрительной системы воспринимать изображения одновременно двумя глазами, как единый объёмный образ.

Нормальное бинокулярное зрение возможно при определённых условиях:

· согласованная работа всех глазодвигательных мышц, обеспечивающая параллельное положение глазных яблок при взгляде вдаль и соответствующее сведение зрительных осей (конвергенция) при взгляде вблизи, а также правильные ассоциированные движения глаз в направлении рассматриваемого объекта.

· расположение глаз в одной фронтальной и горизонтальной плоскости.

· острота зрения обоих глаз не менее 0,3-0,4, т.е. достаточная для формирования чёткого изображения на сетчатке.

равные величины изображений на сетчатке обоих глаз (при анизометропии до 2,0 Дптр).

Анизометропия – это когда у человека глаза имеют разную рефракцию, например, левый -2.0 Дптр, а правый -1.5 Дптр. В таком примере анизометропия составит 0,5 Дптр.

Конвергенция и дивергенция.

При рассматривании предметов, глаза человека движутся координированно. Такие движения глаз называются содружественными.

При рассматривании близко расположенных предметов зрительные оси глаз сближаются (сводятся) – этот процесс называется конвергенцией.

При рассматривании предметов вдалеке, положение зрительных осей приближается к параллельному – данное разведение осей называется дивергенция.

Аккомодация.

За счет изменения формы хрусталика происходит фокусировка изображения. Хрусталик меняет кривизну в зависимости от расстояния между глазом и предметом (аккомодация глаза).

Аккомодация – это способность глаза приспосабливаться к чёткому различению предметов, расположенных на разных расстояниях от глаза. Количественно аккомодацию характеризуют две величины: длина (расстояние между ближайшей и дальнейшей точками ясного зрения) и объём (разница в показателях рефракции глаз (в диоптриях) при установке к ближайшей и самой дальней точкам ясного видения). С возрастом, волокна хрусталика уплотняются, и эластичность уменьшается, вследствие чего способность к аккомодации снижается.

Поле зрения – пространство, воспринимаемое глазом при неподвижном взгляде. Это пространство и по горизонтали, и по вертикали!

Цветоощущение – способность человека различать цвет видимых объектов (дневное видение). За эту функцию отвечают колбочки, расположенные в сетчатке.

Светоощущение – это способность зрительного анализатора воспринимать свет и различать степени его яркости (ночное видение). Это функция, за которую отвечают палочки, расположенные в сетчатке.

Светоадаптация – это способность глаза проявлять световую чувствительность при различной освещённости. Принято различать:

· световую адаптацию, которая протекает в течение первых секунд, затем замедляется и заканчивается к концу 1-й минуты, но может увеличиваться до 3 – 5 минут в зависимости от яркости светового потока, после чего светочувствительность глаза уже не увеличивается;

темновую адаптацию – изменение световой чувствительности в процессе темновой адаптации происходит медленнее. При этом световая чувствительность нарастает в течение 20-30 мин, затем нарастание замедляется, и только к 50-60 мин достигается максимальная адаптация. Дальнейшее повышение светочувствительности наблюдается не всегда и бывает незначительным.

Длительность процесса световой и темновой адаптации зависит от уровня предшествующей освещенности: чем более резок перепад уровней освещенности, тем длительнее адаптация.

Острота зрения – это способность глаза распознавать минимальные по размеру объекты на расстоянии более 5 метров. Она, в первую очередь, зависит от правильного соотношения оптической силы глаза к его длине.

Дефекты зрения.

Миопия или близорукость – дефект зрения, при котором изображение формируется не на сетчатке, а перед ней. Коррекция миопии осуществляется рассеивающими (отрицательными) линзами.

Гиперметропия или дальнозоркость – дефект зрения, при котором изображение формируется за сетчаткой. Коррекция гиперметропии осуществляется собирающими (положительными) линзами.

Астигматизм – дефект зрения, возникающий вследствие неправильной (не сферичной) формы роговицы (реже – хрусталика). Коррекция осуществляется цилиндрическими очковыми линзами.

Пресбиопия – возрастное ослабление аккомодации глаза.

Коррекция, как правило, осуществляется офисными или прогрессивными линзами (самый удобный и современный способ). Как уже говорили выше, с возрастом волокна хрусталика уплотняются, а эластичность уменьшается, вследствие чего снижается способность к аккомодации.

P.S.

Материалы взяты из личной библиотеки.

Ставьте лайки и ждите новых статей про оптику.

Источник

В самом простом смысле зрение — это в первую очередь два глаза, которые получают и обрабатывают информацию об окружающем нас мире. На самом деле человеческое зрение, разумеется, устроено гораздо сложнее, и информация от органов чувств (то есть глаз) проходит несколько этапов обработки: как самим глазом, так и далее — мозгом. Вместе с офтальмологической клиникой 3Z рассказываем, как зрительная система человека формирует изображение действительности, и объясняем, почему мы не видим мир перевернутым, маленьким, трясущимся и разделенным на две части.

Из школьного курса физики вы можете помнить про линзы — приборы из прозрачного материала с преломляющей поверхностью, способные, в зависимости от своей формы, собирать или рассеивать попадающий на них свет. Именно линзам мы обязаны тому, что в мире существуют фотоаппараты, видеокамеры, телескопы, бинокли и, конечно, контактные линзы и очки, которые носят люди. Человеческий глаз — это точно такая же линза, а точнее — сложная оптическая система, состоящая из нескольких биологических линз.

Какие свойства предметов может определять человек с помощью зрения

Проекция объекта через двояковыпуклую линзу

Первая из них — роговица, внешняя оболочка глаза, наиболее выпуклая его часть. Роговица — это вогнуто-выпуклая линза, которая принимает лучи, исходящие из каждой точки предмета, и передает их дальше через переднюю камеру, заполненную влагой, и зрачок к хрусталику. Хрусталик, в свою очередь, представляет собой двояковыпуклую линзу, по форме напоминающую миндаль или сплющенную сферу.

Двояковыпуклая линза — собирающая: лучи, проходящие через ее поверхность, собираются за ней в одну точку, после чего формируется копия наблюдаемого предмета. Интересный момент состоит в том, что изображение объекта, сформированное на заднем фокусе такой линзы, — действительное (то есть соответствует тому самому наблюдаемому предмету), перевернутое и уменьшенное. Изображение, которое формируется за хрусталиком, поэтому, точно такое же.

То, что изображение уменьшенное, позволяет глазу видеть объекты, по величине в несколько десятков, сотен и тысяч раз превосходящие его по размеру. Другими словами, хрусталик компактно складывает изображение и в таком же виде отдает его сетчатке, выстилающей бо́льшую часть внутренней поверхности глаза — места заднего фокуса хрусталика. Вместе роговица и хрусталик, таким образом, — это компонент зрительной системы, который собирает рассеянные лучи, исходящие от объекта, в одну точку и формирует их проекцию на сетчатке. Строго говоря, никакой «картинки» на сетчатке на самом деле нет: это всего лишь следы фотонов, которые затем преобразуются рецепторами и нейронами сетчатки в электрический сигнал.

Какие свойства предметов может определять человек с помощью зрения

Внутреннее строение глаза

Этот электрический сигнал затем проходит в головной мозг, где обрабатывается отделами зрительной коры. Все вместе эти отделы отвечают за то, чтобы преобразовать сигналы о расположении фотонов — единственную информацию, которую получает сам глаз — в имеющие смысл образы. При этом мозг — система взаимосвязанная, и за то, как мы воспринимаем то, что происходит в действительности, отвечают не только наши глаза и зрительная система, но и другие органы чувств, способные получать информацию. Мы не видим мир перевернутым благодаря тому, что у нашего вестибулярного аппарата есть информация о том, что мы стоим ровно, двумя ногами на земле, и дерево, растущее из земли, соответственно, перевернутым быть не должно.

Подтверждение этому — эксперимент, который поставил на самом себе американский психолог Джордж Стрэттон (George Stratton) в 1896 году: ученый изобрел специальное устройство — инвертоскоп, чьи линзы также могут переворачивать изображение, на которое смотрит тот, кто их носит. В своем устройстве Стрэттон проходил неделю и при этом не сошел с ума от необходимости передвигаться в перевернутом пространстве. Его зрительная система быстро адаптировалась под измененные обстоятельства, и уже через пару дней ученый видел мир таким, каким привык видеть его с детства.

Другими словами, в мозге нет специального отдела, который переворачивает изображение, поступившее на сетчатку: за это отвечает вся зрительная система головного мозга, которая, с учетом информации от других органов чувств, позволяет нам точно определить ориентацию объектов в пространстве.

Клиники 3Z – крупнейшая в России сеть офтальмологических клиник, которая насчитывает 36 диагностических центров и клиник в восьми регионах России. За 15 лет работы офтальмохирурги 3Z провели более 210 тысяч операций, из них около 65 тысяч — по передовым технологиям коррекции зрения.

Что касается самой сетчатки, то для того, чтобы понять, как работает зрение, нужно также подробнее рассмотреть ее функционирование и строение.Сетчатка представляет собой тонкую многослойную структуру, в которой находятся нейроны, принимающие и обрабатывающие световые сигналы от оптической системы глаза и отправляющие их друг другу и в мозг для дальнейшей обработки. Всего в сетчатке выделяют три слоя нейронов и еще два слоя синапсов, получающих и передающих сигналы от этих нейронов.

Первые и главные нейроны, участвующие в обработке светового стимула, — это фоторецепторы (светочувствительные сенсорные нейроны). Два основных вида фоторецепторов в сетчатке — это палочки и колбочки, получившие свои название за палочко- и колбочкообразную форму, соответственно. Палочки и колбочки заполнены светочувствительными пигментами — родопсином и йодопсином соответственно. Родопсин в разы чувствительнее к свету, чем йодопсин, но только к свету с одной длиной волны (около 500 нанометров в видимой области) — именно поэтому палочки, содержащие родопсин, отвечают за зрение человека в темноте: они улавливают даже мельчайшие лучи, помогая нам различать очертания предметов, при этом не позволяя точно определить их цвет. А вот за цветовосприятие уже как раз отвечают «дневные» фоторецепторы — колбочки.

Светочувствительный йодопсин, входящий в состав колбочек, бывает трех видов в зависимости от того, к свету с какой длиной волны он чувствителен. В нормальном состоянии колбочки человеческого глаза реагируют на свет с длинной, средней и короткой волной, что примерно соответствует красно-желтому, желто-зеленому и сине-фиолетовому цветам (а если проще — красному, зеленому и синему). Колбочек, которые содержат тот или иной вид йодопсина, в сетчатке разное количество, и их баланс как раз и помогает различать все краски окружающего мира. В случае, когда колбочек с тем или иным видом йодопсина, недостаточно или просто нет, говорят о наличии дальтонизма — особенности зрения, при котором недоступно распознавание всех или некоторых цветов. Вид дальтонизма напрямую зависит от того, какие именно колбочки «не работают», но самым распространенным у человека считается дейтеранопия — при ней отсутствуют колбочки, чей йодопсин чувствителен к свету со средней длиной волны (то есть плохо воспринимают зеленый цвет или не воспринимают его вообще).

Какие свойства предметов может определять человек с помощью зрения

Красное яблоко при нормальном зрении и яблоко при дейтеранопии

При этом палочки и колбочки покрывают не весь соответствующий слой поверхности сетчатки: в ней присутствует так называемое слепое пятно, не содержащее светочувствительных рецепторов вообще. Так как их нет, свет в границах пятна обрабатывать нечему — именно поэтому те объекты, которые попадают в «поле зрения» слепого пятна, для человека невидимы. Зрение любого человека (к счастью или к сожалению) не позволяет увидеть эти слепые пятна, но некоторые заболевания приводят к появлению скотомы (то есть слепого участка в поле зрения) и вне соответствующего места на сетчатке.

Какие свойства предметов может определять человек с помощью зрения

Изображение яблока с центральной скотомой

Сигнал, получаемый и обрабатываемый фоторецепторами, затем переходит к другому слою нейронов — биполярным клеткам. Такие клетки — своеобразные посредники, которые связывают колбочки и палочки с ганглионарными клетками — нейронами сетчатки, которые генерируют нервные импульсы и затем передают их по зрительному нерву в зрительную кору головного мозга через латеральное коленчатое тело (небольшой бугорок на поверхности таламуса).

Латеральное коленчатое тело, принявшее сигналы от ганглионарных клеток сетчатки, сначала передает их первичной зрительной коре — наиболее эволюционно древней части зрительной системы головного мозга (для удобства и лаконичности ее также называют V1). В этом месте начинается формирование действительного изображения того, что происходит вокруг нас, — фотоны, принятые глазом, начинают обретать форму, и цвет, очертания, наличие движения и другие аспекты изображения превращаются в электрическую активность. В зависимости от того, что эти сигналы передают (движение объекта в пространстве или же его форму), они далее посылаются для обработки по вентральному и дорсальному пути в другие отделы зрительной коры. К примеру, средняя височная зрительная область (ее порядковый номер — пять, то есть кратко ее называют V5) считается частью дорсального пути, так как отвечает за обработку движения, а четвертая зона (V4) отвечает за обработку цвета, поэтому относится к вентральному пути.

Отделы, отвечающие за обработку информации от органов чувств и, как мы уже выяснили, помогающие воссоздавать картину реального мира зрительной системе, — не единственные участки мозга, которые участвуют в процессе зрения. Важную роль также играет и моторная кора головного мозга, отвечающая за обработку движений. Важна моторная кора потому, что глаза все время двигаются: перемещение взгляда помогает следить за движущимся изображением или рассмотреть то, что не попадает в поле зрения целиком. 

В спокойном состоянии (тогда, когда мы смотрим на статичный предмет или даже на фон) глаза все равно двигаются, совершая очень быстрые синхронные движения (до 80 миллисекунд) — саккады. Информация о том, что глазу нужно изменить положение, посылается к нему из моторной коры. Чуть раньше точно такой же (или, по крайней мере, похожий) сигнал посылается к зрительной коре в качестве так называемой «эфферентной копии». Благодаря этому зрительная кора получает информацию о том, что глаз будет двигаться, еще до того, как это движение начнется — это помогает зрительной коре игнорировать возможные мелкие движения. 

Примерное изображение статичного объекта без стабилизации с помощью эфферентной копии

Наконец, осталось разобраться еще с одним моментом — тем, почему картинка действительности, которую мы видим, не разделена на две части. У человека, как и других позвоночных, одна пара глаз. Расположены они достаточно близко друг к другу: отверстия в глазницах черепа обеспечивают расположение глаз таким образом, что у каждого из глаз, с одной стороны, свое поле зрения (около 90 градусов на каждый глаз — то есть чуть больше 180 всего), а с другой — по 60 градусов центрального поля зрения, которые пересекаются с каждого глаза. Благодаря этому пересечению, изображения, получаемые одним и другим глазом, складываются в одно изображение в центре общего поля зрения. То же пересечение полей зрения обеспечивает нам стереоскопическое (или бинокулярное) зрение и способность воспринимать глубину. Бинокулярность зрения теряется при некоторых формах косоглазия — и при них же теряется нормальная возможность воспринимать глубину.

Поэтому механизм того, как формируется в нашем мозге изображение действительности, — это не только оптика и химические реакции, происходящие на сетчатке. Важнейшую роль в создании этой картинки играет наш мозг — причем не только зрительная кора, которая делает фигуры объемными, отделяет их от фона и раскрашивает в нужные цвета, но и остальные отделы, которые отвечают за жизненно важные функции.

В клинике 3Z работают со всеми видами нарушения зрения, возникающими из-за неправильной формы глаза (близорукость и дальнозоркость) или чрезмерной кривизны роговицы (астигматизм). До 15 июля коррекцию зрения в 3Z можно сделать в рассрочку без предварительного взноса и переплат.

Акция действует на все виды лазерной коррекции зрения, а также на имплантацию факичных интраокулярных линз (ФИОЛ).

Елизавета Ивтушок

Источник