Какие свойства понятий прямоугольник и сложение изучают в начальной школе

Какие свойства понятий прямоугольник и сложение изучают в начальной школе thumbnail

1. Краткая характеристика геометрического содержания курса математики начальной школы

2. Геометрические понятия в начальной школе

3. Задания на измерение и вычисление

4. Задания на построение.

5. Краткая характеристика геометрического содержания курса математики начальной школы

Одной из основных задач изучения геометрического содержа­ния в курсе математики начальной школы является развитие про­странственного воображения у ребенка, умения наблюдать, срав­нивать, обобщать, анализировать и абстрагировать. Второй важной задачей является формирование у ребенка практических умений измерения и построения геометрических фигур с помощью цир­куля, угольника и линейки. Задания на вычисления различных па­раметров геометрических фигур (длин отрезков, периметра и пло­щади прямоугольника и квадрата) позволяют показать ребенку взаимосвязь количественных и пространственных характеристик объектов материального мира, а также показать еще одно прило­жение понятия «натуральное число» —”как результата измерения величин.

В соответствии с последней редакцией Обязательного мини­мума содержания образования по математике для начальных классов список изучаемых геометрических понятий значительно расширился по отношению к предыдущим вариантам стабильной программы. Общая тенденция геометризации курса школьной ма­тематики коснулась и начальных классов. В соответствии с этой тенденцией насыщение курса математики начальной школы геометрическим содержанием является перспективной линией развития математического образования начального звена.

Обязательный минимум содержания образования по математике содержит следующий перечень понятий геометрического характера:

Точка. Линии: прямые, кривые. Отрезок. Угол. Прямой угол. Мно­гоугольники: треугольник, прямоугольник, квадрат. Вершины и сто­роны многоугольника. Окружность и круг. Куб. Шар.

Измерение длин.

Измерение площади. Вычисление площади прямоугольника.

По отношению к этому перечню, определяющему минимум содержания, сегодняшний традиционный учебник математики со­держит намного больше геометрических понятий. Можно отметить, что сегодня стабильный учебник математики содержит даже боль­ше геометрических понятий, чем многие альтернативные учебники развивающих систем.

В 1 классе различные геометрические фигуры используются как материал для построения заданий на распознавание, сравнение, обобщение и классификацию. Цель этих заданий — формирова­ние и развитие наблюдательности ребенка; формирование и раз­витие умения выделять существенные (важные) признаки пред­мета, умения сравнить два или несколько предметов, отмечая при этом сходные и различные признаки и свойства; умения сделать несложное обобщение на основе выделенных общих свойств пред­метов; умения распределять предметы на группы (классификация) в соответствии с выделенным признаком.

Такие задания являются основными для формирования и развития мыслительных операций (анализ, синтез, сравнение, классификация и др.), а также умения строить обоснованные (логические) рассуждения. Необходимость обучать детей всем этим умениям оговорена в Обязательном ми­нимуме содержания образования для начальной школы в разделе «Требования к уровню подготовки выпускников начальных клас­сов» (М., 2001).

Геометрические понятия, с которыми дети знакомятся в 1 классе:

Точка. Линия — кривая и прямая. Отрезок. Ломаная. Звенья ло­маной. Вершина ломаной. Замкнутая и незамкнутая ломаная. Мно­гоугольники. Треугольники и четырехугольники.

Точка — неопределяемое понятие геометрии. С точкой обычно знакомят методом показа — рисуют или прокалывают стержнем ручки в листочке бумаги. Считается, что точка не имеет ни длины, ни ширины, ни площади.

Линия — неопределяемое понятие геометрии. С линией знако­мят методом показа — моделируют из шнура, или рисуют на доске или на листе бумаги.

Прямую линию удобно моделировать, сгибая любой лист бума­ги — линия сгиба всегда прямая. Основное свойство прямой ли­нии: прямая линия бесконечна.

Кривую линию удобно моделировать из шнура. Кривая линия также бесконечна (если она не замкнутая).

Ломаную линию удобно моделировать, используя счетные па­лочки или складной металлический метр. Ломаная линия содер­жит конечное число звеньев. Звено ломаной — отрезок. Точки со­единения концов звеньев называют — вершинами ломаной. Звенья ломаной должны быть соединены последовательно.

Например:

В программе 1 класса линии рассматривают только на плоскости.

Основные взаимоотношения точки и прямой или кривой ли­нии, с которыми знакомятся дети в 1 классе:

1. Через одну точку можно провести множество прямых.

2. Через одну точку можно провести множество кривых.

3. Через две точки можно провести только одну прямую.

4. Через две точки можно провести множество кривых.

Отрезок — часть прямой, заключенная между двумя точками.

Отрезок имеет определенную длину, которую можно измерить.

Линейка — инструмент для измерения длин отрезков.

Ломаная и кривая линии могут быть замкнутыми и незамк­нутыми. На рисунке ломаная 1 — незамкнутая, ломаная 3 — замк­нутая.

Замкнутая ломаная на плоскости ограничивает многоугольник.

Многоугольник — плоская фигура, ограниченная замкнутой ломаной.

Треугольник — ограничен ломаной из трех звеньев. Соответст­венно имеет три стороны и три вершины.

Четырехугольник — ограничен ломаной из четырех звеньев. Со­ответственно имеет четыре стороны и четыре вершины.

Геометрические понятия, с которыми дети знакомятся во 2 классе: Длина ломаной. Прямой угол. Непрямой угол. Прямоугольник. Квадрат.

Длина ломаной — сумма длин звеньев ломаной. Для нахожде­ния длины ломаной следует измерить длину каждого звена и ре­зультаты сложить.

Прямой угол — это угол, который по определению содержит 90°. Поскольку в начальной школе при обучении по стабильной программе дети не знакомятся с градусной мерой углов, понятие прямого угла дается методом показа:

Для получения модели прямого угла дети используют лист бу­маги, сгибая его соответствующим образом:

Прямой угол

Методом проб дети учатся находить прямой угол среди рисун­ков других углов и на различных геометрических фигурах: при­кладывают к ним свою модель, выделяя углы, с ней совпадающие. Модель прямого угла служит средством проверки такого выбора. В дальнейшем бумажная модель прямого угла заменяется уголь­ником, который является основным инструментом для распозна­вания и построения прямых углов.

Прямоугольник — четырехугольник, у которого все углы пря­мые. Основное свойство прямоугольника: противолежащие сто­роны прямоугольника имеют равные длины.

Это свойство дети определяют опытным путем: перегибают бу­мажные модели прямоугольников, совмещая противолежащие сто­роны.

При невозможности применить этот метод, его заменяют изме­рением длин противолежащих сторон.

Используя это свойство, дети должны уметь чертить прямо­угольник по известным длинам двух его сторон, понимая, что две другие стороны имеют такие же длины, а углы его — прямые.

Квадрат — прямоугольник, у которого все стороны равны.

Используя это определение, дети должны уметь чертить квад­рат по известной длине одной стороны, понимая, что все осталь­ные стороны квадрата имеют такую же длину, а углы его — прямые.

Геометрические понятия, с которыми знакомятся в 3 классе:

Периметр многоугольника. Площадь прямоугольника. Круг. Ок­ружность. Радиус. Диаметр. Треугольники равносторонние, рав­нобедренные и разносторонние.

В 3 классе дети знакомятся с обозначением фигур заглавными латинскими буквами.

Чтобы назвать отрезок, обозначают точки, которые являются его концами.

Например: отрезок М N. М————————–N

Чтобы назвать многоугольник, обозначают буквами его вершины. Например: квадрат АВСD.

Чтобы назвать ломаную, также обозначают буквами ее вершины. Например: ломаная РКЕB.

Периметр многоугольника — сумма длин всех его сторон. Для нахождения периметра многоугольника измеряют длины его сто­рон и складывают полученные результаты.

Периметр квадрата находят умножением на 4 длины его сто­роны, поскольку стороны квадрата имеют равные длины.

Периметр прямоугольника находят, складывая суммы длин двух его непротиволежащих сторон, и умножая результат на 2.

Площадь плоской фигуры измеряется количеством стандарт­ных мер площади, укладывающихся внутрь фигуры. Стандартные меры площади: мм²; см²; дм²; м²; км².

В 3 классе дети знакомятся с см².

Читайте также:  Какими лечебными свойствами обладает вишня

Инструмент для определения площади всех фигур — палетка.

Палетка — лист кальки (или прозрачного пластика), на который нанесена сетка квадратов размером 1 см х 1 см. Для измерения пло­щади фигуры с помощью палетки, ее накладывают на фигуру

и подсчитывают примерное число полных квадратных сантимет­ров в измеряемой фигуре. Для получения приближенного значения площади фигуры, число неполных квадратных сантиметров обычно рекомендуется разделить на 2.

Способ нахождения площади прямоугольника: Чтобы вычис­лить площадь прямоугольника, измеряют его длину и ширину (в оди­наковых единицах) и находят произведение полученных чисел.

Например:

От прямоугольного листа со сторонами 5 см и 3 см отреза­ли полоску со сторонами 3 см и 1 см. Найди площадь остав­шейся части.

Решение:

1. Найдем площадь данного листа: 5 см • 3 см = 15 см².

2. Найдем площадь полоски: 3 см • 1 см = 3 см².

3. Найдем разницу площадей: 15 см² – 3 см² =12 см². Используя чертеж, данную задачу можно решить другим спо­собом:

Зсм

Анализ рисунка сразу показывает, что оставшаяся часть имеет площадь: 3 см • 4 см = 12 см².

Окружность и круг образованы замкнутой кривой линией. Круг — часть плоскости, ограниченная окружностью. Граница круга — окружность.

Поскольку в начальных классах не знакомят детей с классиче­ским определением окружности (множество точек, равноудален­ных от центра), знакомство с окружностью проводят методом по­каза, связывая его с непосредственной практической деятельностью по вычерчиванию окружности при помощи циркуля. Замкнутая кривая линия, которую рисует грифель циркуля — это окружность. Окружность (круг) имеет центр: точка О -центр окружности (круга).

Радиус окружности — отрезок, соединяющий центр окружности с какой-нибудь ее точкой. Например: ОМ — радиус окружности (круга). Основное свойство радиусов одной окружности: Радиусы одной окружности (круга) равны.

Диаметр окружности (круга) — отрезок, про­ходящий через центр окружности (круга) и соеди­няющий две любые ее точки.

Например: диаметр АО.

Основное свойство диаметров одной окружно­сти (круга): Диаметры одной окружности (круга) равны.

Отношения между радиусом и диаметром од­ной окружности (круга): Диаметр равен двум ра­диусам.

Треугольники, имеющие стороны разной дли­ны, называют разносторонними.

Треугольники, у которых равны две стороны, называют равно­бедренными.

Среди равнобедренных треугольников есть такие, у которых рав­ны все три стороны. Эти треугольники называют равносторонними.

Геометрические понятия, с которыми дети знакомятся в 4 классе:

Диагонали прямоугольника. Свойства диагоналей прямоугольника.

Луч. Числовой луч.

Угол. Элементы угла. Прямой, острый и тупой угол. Треугольни­ки остроугольные, прямоугольные и тупоугольные.

Диагональ многоугольника — отрезок, соединяющий противоле­жащие вершины многоугольника.

С диагоналями прямоугольника детей знакомят методом показа:

Например:

Отрезки АЕ и С — диагонали прямоугольника АВDС.

Точка Е — точка пересечения диагоналей.

Основные свойства диагоналей прямоугольника:

Диагонали АD и В С имеют равные длины.

Отрезки, получаемые при пересечении диагоналей прямоуголь­ника, равны.

Данные свойства определяются эмпирическим (опытным) пу­тем — измерением длин соответствующих отрезков.

Поскольку квадрат является прямоугольником, то его диагона­ли обладают теми же свойствами. Кроме того, диагонали квадрата пересекаются под прямым углом.

Например:

Непосредственное измерение углов с помо­щью угольника показывает, что углы, получаю­щиеся при пересечении диагоналей квадрата, прямые.

Луч — часть прямой, ограниченная с одной стороны.

Луч имеет начало, но не имеет конца.

Изображение луча:

Точка А — начало луча.

В математике луч обычно обозначается двумя буквами, напри­мер: луч АС. Такая запись обозначает, что луч имеет началом точку А и «идет» в сторону , обозначенную буквой С:

Числовой луч — луч, на котором точками обозначены натураль­ные числа. Расстояние между точками равно 1 единице измерения (единичный отрезок), которая задается условно. Чаще всего это 1 или 2 клетки.

Каждой точке ставится в соответствие число, начиная с числа 1. Началу луча ставится в соответствие число 0.

Числовой луч играет большую роль при иллюстрации понятия натуральный ряд чисел, позволяет сравнивать натуральные числа, ориентируясь на их расположение на числовом луче, позволяет вы­полнять приемы присчитывания и отсчитывания по частям с опо­рой на числовой луч. В связи с этим некоторые альтернативные учебники (Н.Б. Истомина) знакомят детей с этим понятием еще в 1 классе.

Другая роль числового луча состоит в том, что используя это понятие, можно познакомить детей с прямоугольной системой ко­ординат (числовой или координатный угол), отрицательными чис­лами (числовая прямая).

Например:

Объясни с помощью числового луча, в какую сторону от точки, соответствующей точке 8, надо двигаться, чтобы найти все числа, которые меньше числа 8, и те числа, которые боль­ше, чем 8.

Ответ: Чтобы найти все числа, которые меньше, чем 8, нужно двигаться влево от числа 8. Чтобы найти числа, которые больше, чем число 8, нужно двигаться от него вправо.

Угол — это фигура, образованная двумя лучами, имеющими об­щее начало.

Стороны угла — это лучи, образующие угол.

Вершина угла — это общее начало лучей, образующих угол.

Обозначение угла: угол может быть назван по его вершине -угол М; угол может быть назван тремя буквами — угол МАР, при этом буква, стоящая в вершине угла, должна быть средней.

Например:

Остроугольный треугольник — треугольник, все углы которого острые.

Прямоугольный треугольник имеет один прямой угол. Тупоугольный треугольник имеет один тупой угол. Например:

В треугольнике не может быть более одного прямого угла.

В треугольнике не может быть более одного тупого угла.

Равносторонний треугольник может быть только остро­угольным.

Прямоугольный и тупоугольный треугольники могут быть рав­нобедренными.

Разносторонними могут быть и остроугольный, и прямоуголь­ный, и тупоугольный треугольники.

Источник

Лекции.Орг

Нас окружают объекты. С первых дней ребенка в школе мы изучаем окружающий мир, в том числе и на уроках математики.

Учебник 1 кл. 1 часть. Что мы видим? Мы изучаем объекты. Что такое понятие об объекте? (это совокупность существенных свойств объекта)

В начальных классах много математических понятий сначала усваиваются поверхностно, расплывчато. При первом ознакомлении школьники узнают только о некоторых свойствах понятий, очень узко представляют их объем. И это закономерно. Не все понятия легко усвоить. Но бесспорно, что понимание и своевременное использование учителем тех или других видов определений математических понятий – одна из условий формирования у учеников твердых знаний об этих понятиях.

При усвоении научных знаний учащиеся начальной школы сталкиваются с разными видами понятий. Неумение ученика дифференцировать понятия приводит к неадекватному их усвоению.

Понятие – это совокупность суждений, мыслей, в которых что-либо утверждается об отличительных признаках исследуемого объекта. Что подразумеваем под объемом понятия? (совокупность объектов, обозначенных одним и тем же термином)

Так, программа обучения «Школа России» исходит из того, что базовыми понятиями начального курса математики являются понятия «числа» и «величины», параллельно рассматриваются алгебраический и геометрический материал, решаются текстовые задачи.

В начальной школе мы начинаем давать первые определения понятий: отрезок, квадрат, луч и т.д. Что такое определение понятия? (логическая операция, раскрывающая содержание понятия)

По объему математические понятия делятся на единичные и общие. Если в объем понятия входит только один предмет, оно называется единичным.

Примеры единичных понятий: «наименьшее двузначное число», «цифра 5», «квадрат, длина стороны которого 10 см», «круг радиусом 5 см».

Читайте также:  Какие свойства информации существуют

Общие понятие отображает признаки определенного множества предметов. Объем таких понятий всегда будет больше объема одного элемента.

Примеры общих понятий: «множество двузначных чисел», «треугольники», «уравнения», «неравенства», «числа кратные 5», «учебники математики для начальной школы».

В обучении младших школьников наиболее часто встречаются контекстуальные и остенсивные определенияпонятий.

Любой отрывок из текста, будь какой контекст, в котором случается понятие, которое нас интересует есть, в некотором понимании, неявным его определением. Контекст ставит понятие в связь с другими понятиями и тем самим раскрывает ее содержание.

Например, употребляя в работе с детьми такие выражения, как «найти значения выражения», «сравнить значение выражений 5 + а и (а – 3) × 2, если а = 7», «прочитать выражения, которые являются суммами», «прочитать выражения, и потом прочитать уравнения», мы раскрываем понятие «математическое выражение» как запись, которая складывается из чисел или переменных и знаков действий.

Почти все определения, с которыми мы встречаемся в повседневной жизни – это контекстуальные определения. Услышав, неизвестное слово, мы стараемся сами установить его значение на основании всего сказанного.

Подобное имеет место и в обучении младших школьников. Много математических понятий в начальной школе определяются через контекст. Это, например, такие понятия, как «большой — маленький», «какой-нибудь», «любой», «один», «много», «число», «арифметическое действие», «уравнение», «задача» и т.д.

Контекстуальные определения остаются большей частью неполными и незавершенными. Они применяются в связи с неподготовленностью младшего школьника к усвоению полного и тем более научного определения.

Остенсивные определения – это определения путем демонстрации. Они напоминают обычные контекстуальные определения, но контекстом здесь есть не отрывок какого-либо текста, а ситуация, в которой оказывается объект, обозначенный понятием.

Например, учитель показывает квадрат (рисунок или бумажную модель) и говорит «Смотрите – это квадрат». Это типичное остенсивное определение.

В начальных классах остенсивные определения применяются при рассмотрении таких понятий как «красный (белый, черный и т.д.) цвет», «левый – правый», «слева направо», «цифра», «предшествующее и следующее число», «знаки арифметических действий», «знаки сравнения», «треугольник», «четырехугольник», «куб» и т.д.

На основе усвоения остенсивным путем значений слов есть возможность вводить в словарь ребенка уже вербальное значение новых слов и словосочетаний. Остенсивные определения – и только они – связывают слово с вещами.

Заметим, что в начальных классах допустимые определения наподобие «Словом «пятиугольник» мы будем называть многоугольник с пятью сторонами». Это так называемое «номинальное определение».

Какую структуру имеет понятие? (определяемое понятие = родовое + видовое) Приведите пример. В следствии этой формулы и построено изучение математического материала в начальной школе. Например, рассмотрим понятия «квадрат» и «прямоугольник». Объем понятия «квадрат» есть частью объема понятия «прямоугольник». Поэтому первое называют видовым, а второе – родовым. В родо-видовых отношениях следует различать понятие ближайшего рода и следующие родовые ступени.

Например, для вида «квадрат» ближайшим родом будет род «прямоугольник», для прямоугольника ближайшим родом будет род «параллелограмм», для «параллелограмма» – «четырехугольник», для «четырехугольника» – «многоугольник», а для «многоугольника»- «плоская фигура».

В начальных классах впервые каждое понятие вводится наглядно, путем наблюдения конкретных предметов или практического оперирования (например, при счете их). Учитель опирается на знание и опыт детей, которые они приобрели еще в дошкольном возрасте. Ознакомления с математическими понятиями фиксируется с помощью термина или термина и символа.

Особое внимание следует уделить понятию число.

Число – это отношение того, что подвергается количественной оценке (длина, вес, объем и др.) к эталону, который используется для этой оценки. Очевидно, что число зависит как от измеряемой величины, так и от эталона. Чем больше измеряемая величина, тем больше будет число при одном и том же эталоне. Наоборот, чем больше будет эталон (мера), тем меньше будет число при оценке одной и той же величины. Следовательно, учащиеся с самого начала должны понять, что сравнение чисел по величине можно производить только тогда, когда за ними стоит один и тот же эталон. В самом деле, если, например, пять получено при измерении длины сантиметрами, а три – при измерении метрами, то три обозначают большую величину, чем пять. Если учащиеся не усвоят относительной природы числа, то они будут испытывать серьезные трудности и при изучении системы счисления.

Натуральное число рассматривается как общее свойство класса эквивалентных конечных множеств. Первые представления о числе связаны с количественной характеристикой предметов.

(Множество – совокупность некоторых объектов, эквивалентные = равночисленные)

Количественная характеристика множества осознается учащимися в процессе установления взаимно однозначного соответствия между элементами непустого конечного множества и отрезком натурального числового ряда. Такое взаимно однозначное соответствие называется счетом элементов конечного множества. В этом случае количественная характеристика непустых конечных множеств находит выражение в таких отношениях, как «больше», «меньше», «равно», обозначаемых соответствующими символами.

На основе использования предметной наглядности устанавливается, например, что число кругов больше, чем квадратов, а квадратов меньше, чем кругов.

4, следовательно 5 б 4, 4 м 5

Число «нуль» в нач. школе рассматривается как характеристика пустого множества на основе практической деятельности с множеством предметов. Для этой цели используются рисунки типа:

3 2 1 0

Или на основе результат арифметического действия при рассмотрении примеров вида: 3-1=2, 2-1=1, 1-1=0.

Рассматриваются целые неотрицательные числа в курсе математики начальной школы по концентрам: «Числа от 0 до 10», «Числа от 10 до 100», «Числа от 100 до 1000», «Числа, которые больше 1000».

Основными понятиями в каждом концентре является устная и письменная нумерация.

Рассматриваются целые неотрицательные числа в курсе математики начальной школы по концентрам: «Числа от 0 до 10», «Числа от 10 до 100», «Числа от 100 до 1000», «Числа, которые больше 1000».

Основными понятиями в каждом концентре является устная и письменная нумерация.

Устная нумерация – способ называния каждого из чисел, встречающихся в жизненной практике, с помощью слов-числительных: один, девять, сто два и т.д.

Письменная нумерация – способ записи каждого из чисел, встречающихся в жизненной практике, с помощью цифр: 1, 2, 3…9, 0 на основе принципа поместного значения цифр (каждая цифра в зависимости от места, занимаемого им в записи числа, имеет свое определенное значение). Например, в записи числа 999 цифра 9, стоящая на первом месте справа налево, означает в данном числе 9 единиц. Эта же цифра, стоящая на втором месте справа налево, означает, что в числе 9 десятков и т.д.

Арифметические действия +, -, х, : рассматриваются в н.ш. на теоретико-множественной основе.

Сложение целых неотрицательных чисел связано с операцией объединения конечных попарно непересекающихся множеств.

Вычитание натуральных чисел рассматривается на наглядной основе как удаление части конечного множества, являющего подмножеством данного множества.

Умножение целых неотрицательных чисел рассматривается как число элементов в объединении равночисленных попарно непересекающихся множеств.

Деление с теоретико-множественной точки зрения связано с разбиением конечного множества на равночисленные попарно непересекающиеся подмножества. С его помощью решаются две задачи на деление: отыскание числа элементов в каждом подмножестве разбиения (деление на равные части) (пр.: 15 яблок лежало на 3 тарелках. Сколько яблок на каждой тарелке?) и отыскивание числа таких подмножеств (деление по содержанию) (пр.: 15 яблок лежало на тарелках. На каждой тарелке лежало по 5 яблок. Сколько тарелок стояло на столе?).

Читайте также:  Какой металл обладает бактерицидным свойством

Формирование у учащихся представлений о числе и десятичной системе счисления тесно связано с изучением величин.

Величина – это некоторое свойство множества предметов или явлений.

Величина – это такое свойство предметов или явлений, которое позволяет сравнить и установить пары объектов, обладающих этим свойством в равной или неравной мере.

В н.ш. рассматриваются такие величины, как длина, площадь, время, объем, масса.

Длина – величина, характеризующая протяженность, удаленность и перемещение тел или их частей вдоль заданной линии. Длина отрезка или прямой – это расстояние между его концами, измеренное каким-либо отрезком, принятым за единицу измерения длины.

Площадь – величина, характеризующая геометрические фигуры на плоскости и определяемая числом заполняющих плоскую фигуру единичных квадратов, т.е. квадратов со стороной, равной единицы длины. Измерить площадь фигуры – значит установить, столько квадратных единиц длины (кв. см, кв.дм, кв.м и т.д.) она содержит.

Объем, вместимость – это величина, характеризующая геометрические тела и определяемая в простейших случаях числом умещающихся в тело единичных кубов, т.е. кубов с ребром, равным единице длины. Тела могут иметь одинаковые (т.е. тела равновеликие) и разные объемы.

Масса – это физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные и гравитационные свойства. Сравнение масс тел, действий над ними сводится к сравнению и действиям над числовыми значениями масс при одной и той же единице измерения массы.

Время – величина, характеризующая последовательную смену явлений и состояний материи, длительность бытия. Календарь – система счета дней, месяцев, годов. В математике время рассматривают как скалярную величину (величина, каждое значение которой может быть выражено одним действительным числом), т.к. промежутки времени обладают свойствами, похожими на свойства длины, площади, массы. Промежутки времени так же, как и другие скалярные величины, можно сравнивать, складывать, вычитать, умножать и делить на положительное действительное число. Между величинами одного рода имеют место отношения: «больше», «меньше», «равно».

На наглядной основе вводятся понятия о доле величины и дроби. Доля рассматривается как одна из равных частей целого. Дробь определяется как пара натуральных чисел (а, n), характеризующая множество А одинаковых долей единицы; первое из них а показывает, сколько «n-ых» долейсодержит А и называется числителей дроби, второе n – на сколько одинаковых долей разделена единица и называется знаменателем дроби.

Параллельно с арифметическим материалом и изучением величин рассматривается теоретический материал: коммутативное свойство сложения и умножения (переместительное); сочетательное свойство умножения и сложения (ассоциативное), распределительное свойство деления относительно суммы и разности; распределительное свойство деления относительно суммы и разности; дистрибутивное свойство умножения относительно сложения и вычитания – рассматриваются как правила умножения суммы (разности) на число (a + b) x c = a x c + b x c. Кроме того, рассматривается зависимость между компонентами и результатом арифметического действия. Позднее на основе этой зависимости рассматривается решение уравнений.

В школьной практике многие учителя добиваются от учеников заучивания определений понятий и требуют знания их основных доказываемых свойств. Однако результаты такого обучения обычно незначительны. Это происходит потому, что большинство учащихся, применяя понятия, усвоенные в школе, опираются на малосущественные признаки, существенные же признаки понятий ученики осознают и воспроизводят только при ответе на вопросы, требующие определения понятия. Часто учащиеся безошибочно воспроизводят понятия, то есть обнаруживают знание его существенных признаков, но применить эти знания на практике не могут, опираются на те случайные признаки, выделенные благодаря непосредственному опыту. Процессом усвоения понятий можно управлять, формировать их с заданными качествами.

Более подробно остановимся на поэтапном формировании понятий.

После выполнения пяти-восьми заданий с реальными предметами или моделями учащиеся без всякого заучивания запоминают и признаки понятия, и правило действия. Затем действие переводится во внешнеречевую форму, когда задания даются в письменном виде, а признаки понятий, правило, и предписание называются или записываются учащимися по памяти. На этом этапе учащиеся могут работать парами, поочередно выступая то в роли исполнителя, то в роли контролера.

В том случае, когда действие легко и верно выполняется во внешнеречевой форме, его можно перевести во внутреннюю форму. Задание дается в письменном виде, а воспроизведение признаков, их проверку, сравнение полученных результатов с правилом учащийся совершает про себя. Учащийся все еще получает указания типа «Назови про себя первый признак», «Проверь, есть ли он» и т.д. Вначале контролируется правильность каждой операции и конечного ответа. Постепенно контроль осуществляется лишь по конечному результату и производится по мере необходимости.

Если действие выполняется правильно, то его переводят на умственный этап: учащийся сам и выполняет, и контролирует действие. В программе обучения на этом этапе предусматривается контроль со стороны обучающего только за конечным продуктом действия; обучаемый получает обратную связь при наличии затруднений или неуверенности в правильности результата. Процесс выполнения теперь скрыт, действие стало полностью умственным, идеальным, но содержание его известно обучающему, так как он сам его строил и сам преобразовал из действия внешнего, материального.

Так постепенно происходит преобразование действия по форме. Преобразование действия по обобщенности обеспечивается специальным подбором заданий. При этом учитывается как специфическая, так и общелогическая часть ориентировочной основы действия.

Для обобщения специфической части, связанной с применением системы необходимых и достаточных признаков, даются для распознавания все типичные виды объектов, относящихся к данному понятию. Так, при формировании понятия угол важно, чтобы учащиеся поработали с углами, отличающимися по величине (от 0° до 360° и больше), по положению в пространстве и т.п. Кроме того, важно взять и такие объекты, которые имеют лишь некоторые признаки данного понятия, но к нему не относятся.

Для обобщения логической части действия распознавания даются для анализа все основные случаи, предусмотренные логическим правилом подведения под понятие, т.е. задания с положительным, отрицательным и неопределенным ответами. Можно включать также задания с избыточными условиями. Характерно, что в практике обучения, как правило, дается лишь один тип задач: с достаточным составом условий и положительным ответом. В результате учащиеся усваивают действие распознавания в недостаточно обобщенном виде, что, естественно, ограничивает пределы его применения. Задачи с избыточными, неопределенными условиями дают возможность научить учащихся не только обнаруживать те или иные признаки в предметах, но и устанавливать достаточность их для решения стоящей задачи. Последние в жизненной практике часто выступают как самостоятельная проблема.

Преобразование действия по двум другим свойствам достигается повторяемостью однотипных заданий. Делать это целесообразно, как было указано, лишь на последних этапах. На всех других этапах дается лишь такое число заданий, которое обеспечивает усвоение действия в данной форме. Задерживать действие на переходных формах нельзя, так как это приведет к автоматизации его в данной форме, что препятствует переводу действия в новую, более позднюю форму.

Дата добавления: 2017-04-14; просмотров: 5994 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org – Контакты – Последнее добавление

Источник