Какие свойства положены в основу классификации белков

Какие свойства положены в основу классификации белков thumbnail

В основу классификации белков положены разные признаки. Так, простые белки отличаются от сложных разными продуктами гидролиза.

Простые белки (протеины) гидролизуются до аминокислот.
К ним относятся запасные, скелетные и ферментные белки.
По растворимости в отдельных растворителях выделяют главные:

ü альбумины – белки с относительно небольшой молекулярной массой, хорошо растворимы в воде и в слабых солевых растворах; нейтральны; трудно осаждаются солями. Содержаться в курином белке, молоке;

ü глобулины – нерастворимы в воде, но растворяются в растворах солей; имеют слабо кислую реакцию. Содержаться в сыворотке крови, мышечной ткани, молоке, курином яйце. Молекулярная масса от 69000 до 300000 у.е. В растительном мире глобулины составляют большую часть белка многих семян, особенно бобовых
и масленичных культур;

ü глютелины – растворяются только в растворах щелочей. Содержаться в рисе, в клейковинных белках пшеницы.

ü проламины – белки, не растворимые в воде, растворимы в 80% спирте, содержаться в зернах злаках: пшеницы, ржи, ячменя, кукурузы, овса.

Сложные белки (протеиды) гидролизуются до аминокислот
и веществ небелкового происхождения. Отметим только следующие:

ü фосфопротеиды – белки, гидролизующиеся до аминокислот
и фосфорной кислоты; это казеин молока и вителлин желтка куриного яйца;

ü нуклеопротеиды – белки, гдролизующиеся до аминокислот
и нуклеиновых кислот (ДНК, РНК);

ü липопротеиды – белки, гидролизующиеся до аминокислот, жиров, лецитинов и других фосфатидов. Принимают участие
в формировании клейковинных белков.

Белковую часть сложных белков называют апобелком, небелковую – простетической группой.

Синтез белков

В состав природных белков входят 23 -аминокислоты. Возникает вопрос: каким образом небольшое количество кислот дает такое разнообразие белков? Ответ находится в порядке построения аминокислот в молекуле белка, их последовательности в природном полимере. Человеку удалось синтезировать несколько белков, ничем не отличающихся
от аналогичных природных.

Для того, чтобы добиться результатов без участия ферментов, человек был вынужден проводить синтез по этапам, принимая определенные приемы: защищать в аминокислотах то одну, то другую реакционную группировку. Так, синтез простейшего дипептида (Гли-Ала) из глицина и аланина осуществляют по этапам по схеме:

1 Карбоксил глицина защищают этерификацией спиртом:

2 Аминогруппу аланина защищают ацетилированием:

3 Соединяют (конденсация) производные аминокислот в дипептид:

4 Снимают защитные группы гидролизом.

На основе трех аминокислот можно получить трипептид, четырех-, тетрапептид и т.д. Более совершенный способ синтеза полипептидов был предложен в 1960 году американским ученым Мерифильдом. Этот процесс идет с участием смолы в качестве твердофазного компонента, сорбирующего защитные аминокислоты одну за другой, тем самым процесс как бы автоматизируется. Таким способом в 1968 году была синтезирована рибонуклеаза в результате проведения 369 последовательных реакций.

Структура белков

Свойства макромолекул белка в значительной степени зависят
от структуры, молекулярной массы, от аминокислотного состава
и пространственной ориентации.

Главная особенность белка, которая имеет решающее значение
для их функционирования – способность самопроизвольно формировать пространственную структуру, свойственную только данному белку (так называемая самоорганизация структуры). Эта структура может быть компактной (глобулярные белки) или вытянутой (фибриллярные белки).

В глобулярных белках пространственно сближенные функциональные группы аминокислотных остатков образуют ансамбли, обладающие высокой реакционной способностью (каталитические центры ферментов) или способностью к образованию комплексов с другими молекулами. К глобулярным относятся большинство белков.

Фибриллярные белки (коллаген, кератины) – обычно выполняют
в организме структурообразующую функцию. От способа укладки полипептидных цепей в этих белках зависит их прочность, растяжимость
и другие функциональные свойства.

В белках выделяют 4 уровня организации: первичная, вторичная, третичная, четвертичная.

Первичная структура – это уникальная последовательность расположения аминокислотных остатков в молекуле белка.

Вторичная структура – это -спираль, образованная скручиванием полипептидной цепи и поддерживаемая в пространстве с помощью водородных связей.

Третичная структура – “упакованная” -спираль в глобулу. Кроме водородных связей в данной структуре значение имеют еще и ионное и гидрофобное взаимодействия.

Четвертичная структура – это образование из нескольких глобул единой “субъединицы” (это наиболее уязвимая структура, которая подвергается разрушению при любом вмешательстве в молекулу белка).

Не нашли, что искали? Воспользуйтесь поиском:

Источник

Существует несколько классификаций белков. В основе классификации лежат различные принципы:

1. По степени сложности (простые и сложные);

2. По форме молекул (глобулярные и фибриллярные);

3. По растворимости;

4. По функциям.

Классификация по степени сложности

1. Протеины – простые белки, содержат только полипептидную связь.

2. Протеиды – сложные белки.

Протеины:

1. Альбумины

2. Глобулины

3. Протамины

4. Гистоны

5. Проламины

6. Глютелины

7. Склеропротеины (протеиноиды)

Альбумины. Самая распространенная группа белков. Характеризуются высоким содержанием лейцина (15 %) и низким – глицина. Молекулярная масса – 25000-70000. Водорастворимые белки. Осаждаются при насыщении растворов нейтральными солями. Добавление одной соли обычно не приводит к осаждению белков, за исключением (NН4)2SО4, для осаждения обычно требуется смесь солей одно- и двухвалентных катионов (NaCl и MgSO4, Na2SO4 и MgCl2). (NН4)2SО4 начинает осаждать альбумины при 65 %-ом насыщении, а полное осаждение наступает при 100 % насыщении.

Альбумины составляют 50 % белков плазмы крови, 50 % белков яиц.

Примеры: лактоальбумин – белок молока, овоальбумин – яичный альбумин, сероальбумин – сыворотка крови.

Глобулины. Наиболее многочисленная группа белков в организме животных. По аминокислотному составу глобулины похожи на альбумины, но отличаются высоким содержанием глицина (3-4 %). Молекулярная масса – 9 × 105 – 1,5 × 106. Фракция, не растворимая в воде, поэтому выпадает в осадок при отделении солей диализом. Растворяются в слабых растворах нейтральных солей, однако, высокие концентрации последних осаждают глобулины. Например, (NН4)2SО4 высаливает глобулины при 50 %-ом насыщении (однако, полного разделения альбуминов и глобулинов не происходит).

Читайте также:  Какие химические свойства меди

К глобулинам относятся сывороточный, молочный, яичный, мышечный и другие глобулины.

Распространены в семенах масличных и бобовых растений. Легумин – горох (семена), фазеолин – семена фасоли, эдестин – семена конопли.

Протамины. Сильно основные белки с низкой молекулярной массой (до 12000), благодаря чему некоторые из них проходят через целлофан при диализе. Протамины растворимы в слабых кислотах, не осаждаются при кипячении; в их молекуле содержание диаминомонокарбоновых кислот составляет 50-80 %, особенно много аргинина и 6-8 других аминокислот. В протаминах нет цис, три и асп, часто отсутствуют тир, фен.

Протамины содержится в половых клетках животных и человека, составляют основную массу нуклеопротеидов хроматина этого типа. Протамины придают ДНК биохимическую инертность, что является необходимым условием сохранения наследственных свойств организма. Синтез протаминов происходит в процессе сперматогенеза в цитоплазме половой клетки, протамины проникают в клеточное ядро, по мере созревания спермы вытесняют гистоны из нуклеотидов, образуя прочный комплекс с ДНК, таким образом защищая наследственные свойства организма от неблагоприятных воздействий.

Протамины в большом количестве встречаются в сперме рыб (сальмин – лососевые рыбы, клупеин – сельдь). Протамины обнаружены у представителей растений – выделены из спор плауна.

Гистоны. Представляют собой щелочные белки с молекулярной массой 12000-30000, на долю диаминомонокарбоновых кислот приходится 20-30 % (аргинин, лизин).Растворимы в слабыхкислотах (0,2 н HCl), осаждаются аммиаком, спиртом. Гистоны являются белковой частью нуклеопротидов.

Гистоны входят в структуру хроматина, преобладают среди белков хромосом, то есть находятся в ядрах клеток.

Гистоны – консервативные в эволюционном плане белки. Гистоны животных и растений характеризуются близкими величинами отношения аргинина к лизину, содержат близкий набор фракций.

Проламины. Являются белками растительного происхождения. Слабо растворяются в воде, хорошо растворимы в 60-80 %-ом этиловом спирте. В их составе много аминокислоты пролина (отсюда название проламин), а также глутаминовой кислоты. В очень незначительном количестве в эти белки входят лиз, арг, гли. Проламины характерны исключительно для семян злаков, где выполняют роль запасных белков: в семенах пшеницы и ржи – белок глиадин, в семенах ячменя – гордеин, кукурузы – зеин.

Глютелины. Хорошо растворимы в щелочных растворах (0,2-2 % NаОН). Это белок растений, содержатся в семенах злаков и других культур, а также в зеленых частях растений. Комплекс щелочнорастворимых белков семян пшеницы получил название глютенин, риса – оризенин. Глиадин семян пшеницы в соединении с глютенином образует клейковину, свойства которой в значительной мере определяют технологические качества муки и теста.

Склеропротеины (протеиноиды). Белки опорных тканей (костей, хрящей, сухожилий, шерсти, волос). Отличительная особенность – нерастворимость в воде, солевых растворах, разведенных кислотах и щелочах. Не гидролизуются ферментами пищеварительного тракта. Протеиноиды – фибриллярные белки. Богаты глицином, пролином, цистином, нет фенилаланина, тирозина, триптофана, гистидина, метионина, треонина.

Примеры протеиноидов: коллаген, проколлаген, эластин, кератины.

Сложные белки (протеиды)

Включают два компонента – белковый и небелковый.

Белковая часть – простой белок. Небелковая часть – простетическая группа (от греч. рrostheto – присоединяю, прибавляю).

В зависимости от химической природы простетической группы протеиды подразделяются на:

1. Фосфопротеиды (фосфопротеины)

2. Гликопротеиды (гликопротеины)

3. Нуклеопротеиды (нуклеопротеины)

4. Хромопротеиды (хромопротеины)

5. Металлопротеиды (металлопротеины)

6. Липопротеиды (липопротеины)

7. Белки-ферменты

Фосфопротеиды. Характерной особенностью является присутствие в значительных количествах ортофосфорной кислоты, которая связана обычно с оксигруппой сер, реже тре сложноэфирной связью.

К фосфопротеидам относятся многие белки, играющие важную роль в питании молодых организмов. Это основной белок молока – казеин, осаждающийся при створаживании, яичного желтка – вителлин, вителлинин и фосвитин, икры рыб – ихтулин, ферменты – пепсин и фосфорилаза. Они содержат 1-10 % фосфора. Фосфопротеиды обнаружены в мозге.

Гликопротеиды. Сложные белки, в составе которых имеется углеводный компонент. Белок в данных соединениях является своеобразной основой, к нему прикрепляются углеводные группировки. В соответствии с особенностями химического строения гликопротеиды подразделяются на истинные гликопротеиды и протеогликаны.

Основное различие между ними заключается в том, что углеводные группировки истинных гликопротеинов содержат обычно до 15-20 моносахаридных компонентов, не образующих повторяющихся олигосахаридных фрагментов, в то время как у протеогликанов они построены из очень большого числа повторяющихся единиц, в основном имеющих своеобразный дисахаридный характер.

Гликопротеиды подразделяются на нейтральные и кислые. Нейтральные содержат в небольшом количестве аминосахара, не содержат гексуроновых кислот, сульфатов.

К нейтральным относятся фибриноген плазмы крови.

К кислым гликопротеидам относятся муцины и мукоиды.

Муцины – основа слизей организма (слюны, желудочного и кишечного сока). Защитная функция: ослабляют раздражение слизистой оболочки пищеварительного тракта. Муцины стойки к действию ферментов, которые гидролизуют белок.

Мукоиды – белки синовиальной жидкости суставов, хрящей, жидкости глазного яблока. Выполняют защитную функцию, являются смазочным материалом в аппарате движения.

Нуклеопротеиды. Все нуклеиновые кислоты делятся на два типа в зависимости от того, какой моносахарид входит в состав. Нуклеиновая кислота называется рибонуклеиновой (РНК), если в ее состав входит рибоза, или дезоксирибонуклеиновой (ДНК), если в ее состав входит дезоксирибоза.

С участием нуклеиновых кислот происходит образование белков, являющихся материальной основой всех жизненных процессов. Информация, определяющая особенности структуры белков, «записана» в ДНК и передается в ряду поколений молекулами ДНК. РНК являются обязательными и первостепенными участниками самого механизма биосинтеза белков. В связи с этим организм содержит РНК особенно много в тех тканях, в которых интенсивно образуются белки.

Нуклеопротеиды – сложные белки, которые содержат белковый компонент (протамины, гистоны) и небелковый компонент – нуклеиновые кислоты.

Читайте также:  На какие группы можно разбить вещества по их магнитным свойствам

Хромопротеиды. К хромопротеидам относятся сложные белки, у которых небелковой частью являются окрашенные соединения, принадлежащие к различным классам органических веществ: порфириновые структуры, флавинадениндинуклеотид (ФАД), флавинаденинмононуклеотид (ФМН) и др.

Порфириновое кольцо с координационно связанным с ним ионом железа входит в как простетическая часть в состав ряда окислительно-восстановительных ферментов (каталаза, пероксидаза) и группы переносчиков электронов – цитохромов. Хромопротеидами являются и флавиновые дегидрогеназы или «желтые дыхательные ферменты» – флавопротеины (ФП). Белковая часть их молекулы связана с ФАД или ФМН. Типичными хромопротеидами являются родопсин, гемоглобин крови.

Металлопротеиды. Комплексы ионов металлов с белками, в которых ионы металлов присоединены к белку непосредственно, являясь составной частью белковых молекул.

В составе металлопротеидов часто встречаются такие металлы, как Cu, Fe, Zn, Mo и др. Типичными металлопротеидами являются некоторые ферменты, содержащие перечисленные металлы, а также Mn, Ni, Se, Ca и др.

К металлопротеидам относятся цитохромы – белки дыхательной цепи, содержащие железо.

К медьсодержащим белкам относятся, например, цитохромоксидаза, пластоцианин (переносчики электронов), белок крови церулоплазмин; к железосодержащим – лактоферрин (белок молока), ферритин и др. В сыворотке крови найден специфический никельсодержащий белок класса макроглобулинов, названный никелеплазмином.

Обнаружены белки – селенопротеины, в которых селен, вероятнее всего, ковалентно присоединен к ароматической или гетероциклической группе. Один из селенопротеинов содержится в мышцах животных.

У некоторых морских животных обнаружен белок, содержащий ванадий – ванадохром, являющийся, вероятнее всего, переносчиком кислорода.

Липопротеиды. Простетической группой в этих сложных белках являются различные жироподобные вещества – липиды. Связь между компонентами липопротеидов может быть различной степени прочности.

В составе липопротеидов обнаружены как полярные, так и нейтральные липиды, а также холестерин и его эфиры. Липопротеиды являются обязательными компонентами всех клеточных мембран, где их небелковая часть представлена, в основном, полярными липидами – фосфолипидами, гликолипидами. Липопротеиды всегда присутствуют в крови. Инозитолдифосфатсодержащий липопротеид выделен из белого вещества мозга, в состав липопротеидов серого вещества мозга входят сфинголипиды. У растений значительная часть фосфолипидов в протоплазме находится также в форме липопротеидов.

Известны комплексы липидов и белков, белковая часть которых содержит много гидрофобных аминокислот, липидный компонент часто преобладает над белковым. В результате такие сложные белки растворимы, например в смеси хлороформа и метанола. Подобного рода комплексы называются протеолипидами. Они в большом количестве содержатся в миелиновых оболочках нервных клеток, а также в синаптических мембранах и внутренних мембранах митохондрий.

Функция липопротеидов – транспортируют липиды в организме.

Белки-ферменты. Большая группа протеидов, построенных из простых белков и простетических групп различной природы, выполняющих функции биологических катализаторов. Небелковые компоненты – витамины, моно- и динуклеотиды, трипептиды, фосфорные эфиры моносахаридов.

Источник

§ 10. КЛАССИФИКАЦИЯ  БЕЛКОВ

Существуют несколько подходов к классификации белков: по форме белковой молекулы, по составу белка, по функциям. Рассмотрим их.

Классификация по форме белковых молекул

По форме белковых молекул различают фибриллярные белки и глобулярные белки.

Фибриллярные белки представляют собой длинные нитевидные молекулы, полипептидные цепи которых вытянуты вдоль одной оси и скреплены друг с другом поперечными сшивками (рис. 18,б). Эти белки отличаются высокой механической прочностью, нерастворимы в воде. Они выполняют главным образом структурные функции: входят в состав сухожилий и связок (коллаген, эластин), образуют волокна шелка и паутины (фиброин), волосы, ногти, перья (кератин).

В глобулярных белках одна или несколько полипептидных цепей свернуты в плотную компактную структуру – клубок (рис. 18,а). Эти белки, как правило, хорошо растворимы в воде. Их функции многообразны. Благодаря им осуществляются многие биологические процессы, о чем подробнее будет изложено ниже.

Какие свойства положены в основу классификации белков

Рис. 18. Форма белковых молекул:

а – глобулярный белок, б – фибриллярный белок

Классификация по составу белковой молекулы

Белки по составу можно разделить на две группы: простые и сложные белки. Простые белки состоят только из аминокислотных остатков и не содержат других химических составляющих. Сложные белки, помимо полипептидных цепей, содержат другие химические компоненты.

К простым белкам относятся РНКаза и многие другие ферменты. Фибриллярные белки коллаген, кератин, эластин по своему составу являются простыми. Запасные белки растений, содержащиеся в семенах злаков, – глютелины, и гистоны – белки, формирующие структуру хроматина, принадлежат также к простым белкам.

Среди сложных белков различают металлопротеины, хромопротеины, фосфопротеины, гликопротеины, липопротеины и др. Рассмотрим эти группы белков подробнее.

Металлопротеины

К металлопротеинам относят белки, в составе которых имеются ионы металлов. В их молекулах встречаются такие металлы, как медь, железо, цинк, молибден, марганец и др. Некоторые ферменты по своей природе являются металлопротеинами.

Хромопротеины

В составе хромопротеинов в качестве простетической группы присутствуют окрашенные соединения. Типичными хромопротеинами являются зрительный белок родопсин,  принимающий участие в процессе восприятие света, и белок крови гемоглобин (Hb), четвертичная структура которого рассмотрена в предыдущем параграфе. В состав гемоглобина входит гем, представляющий собой плоскую молекулу, в центре которой расположен ион Fe2+ (рис. 19). При  взаимодействии гемоглобина с кислородом образуется оксигемоглобин.  В альвеолах легких  гемоглобин  насыщается кислородом.  В тканях, где содержание кислорода незначительно, оксигемоглобин распадается с выделением  кислорода,  который  используется клетками:

Какие свойства положены в основу классификации белков

Гемоглобин может  образовывать  соединение  с оксидом углерода (II), которое называется карбоксигемоглобином:

Какие свойства положены в основу классификации белков.

Карбоксигемоглобин не способен  присоединять  кислород. Вот почему происходит отравление угарным газом. 

Гемоглобин и другие гем-содержащие белки (миоглобин, цитохромы) называют еще гемопротеинами из-за наличия в их составе гема (рис. 19).

Какие свойства положены в основу классификации белков

Рис. 19. Гем

Фосфопротеины

Фосфопротеины в своем составе содержат остатки фосфорной кислоты, связанные с гидроксильной группой аминокислотных остатков сложноэфирной связью (рис. 20). 

Читайте также:  Каким из перечисленных свойств обладает мораль инвариантность

Какие свойства положены в основу классификации белков 

Рис. 20. Фосфопротеин 

К фосфопротеинам относится белок молока казеин. В его состав входят не только остатки  фосфорной кислоты, но и ионы кальция. Фосфор и кальций необходимы растущему организму в больших количествах, в частности, для формирования скелета. Кроме казеина, в клетках много и других фосфопротеинов. Фосфопротеины могут подвергаться дефосфорилированию, т.е. терять фосфатную группу:

фосфопротеин + Н2 Какие свойства положены в основу классификации белков протеин + Н3РО4

Дефосфорилированные белки могут при определенных условиях быть снова фосфорилированы. От наличия фосфатной группы в их молекуле зависит их биологическая активность. Одни белки проявляют свою биологическую функцию в фосфорилированном виде, другие – в дефосфорилированном. Посредством фосфорилирования – дефосфорилирования регулируются многие биологические процессы.

Липопротеины

К липопротеинам относятся белки, содержащие ковалентно связанные липиды. Эти белки встречаются в составе клеточных мембран. Липидный (гидрофобный) компонент удерживает белок в мембране (рис. 21). 

Какие свойства положены в основу классификации белков 

Рис. 21. Липопротеины в клеточной мембране 

К липопротеинам относят также белки крови, участвующие в транспорте липидов и не образующие  с ними ковалентную связь.

Гликопротеины

Гликопротеины содержат в качестве простетической группы ковалентно связанный углеводный компонент. Гликопротеины разделяют на истинные гликопротеины и протеогликаны. Углеводные группировки истинных гликопротеинов содержат обычно до 15 – 20 моносахаридных компонентов, у протеогликанов они построены из очень большого числа моносахаридных остатков (рис. 22).

Какие свойства положены в основу классификации белков 

Рис. 22. Гликопротеины

Гликопротеины широко распространены в природе. Они встречаются в секретах (слюне и т.д.), в составе клеточных мембран, клеточных стенок, межклеточного вещества, соединительной ткани и т.д. Многие ферменты и транспортные белки являются гликопротеинами.

Классификация по функциям

По выполняемым функциям белки можно разделить на структурные, питательные и запасные белки, сократительные, транспортные, каталитические, защитные, рецепторные, регуляторные и др.

Структурные белки

К структурным белкам относятся коллаген, эластин, кератин, фиброин. Белки принимают участие в формировании клеточных мембран, в частности, могут образовывать в них каналы или выполнять другие функции ( рис. 23).

Какие свойства положены в основу классификации белков 

 Рис. 23. Клеточная мембрана.

Питательные и запасные белки

Питательным белком является казеин, основная функция которого  заключается в обеспечении растущего организма аминокислотами, фосфором и кальцием. К запасным белкам относятся яичный белок, белки семян растений. Эти белки потребляются во время развития зародышей. В организме человека и животных белки в запас не откладываются, они должны систематически поступать с пищей, в противном случае может развиться дистрофия.

Сократительные белки

Сократительные белки обеспечивают работу мышц, движение жгутиков и ресничек у простейших, изменение формы клеток, перемещение органелл внутри клетки. Такими белками являются миозин и актин. Эти белки присутствуют не только в мышечных клетках, их можно обнаружить в клетках практически любой ткани животных.

Транспортные белки

Гемоглобин, рассмотренный в начале параграфа, является классическим примером транспортного белка. В крови присутствуют и другие белки, обеспечивающие транспорт липидов, гормонов и иных веществ. В клеточных мембранах находятся белки,  способные переносить через мембрану глюкозу, аминокислоты, ионы и некоторые  другие вещества. На рис. 24 схематически показана работа переносчика глюкозы.

 Какие свойства положены в основу классификации белков

Рис. 24. Транспорт глюкозы через клеточную мембрану

Белки-ферменты

Каталитические белки, или ферменты, представляют собой самую многообразную группу белков. Почти все химические реакции, протекающие в организме, протекают при участии ферментов. К настоящему времени открыто несколько тысяч ферментов. Более подробно они будут рассмотрены в следующих параграфах.

Защитные белки

К этой группе относятся белки, защищающие организм от вторжения других организмов или предохраняющие его от повреждений. Иммуноглобулины, или антитела, способны распознавать проникшие в организм бактерии, вирусы или чужеродные белки, связываться с ними и способствовать их обезвреживанию.

Другие компоненты крови, тромбин и фибриноген, играют важную роль в процессе свертывания крови. Они предохраняют организм от потери крови при повреждении сосудов. Под действием тромбина от молекул фибриногена отщепляются фрагменты полипептидной цепи, в результате этого образуется фибрин:

фибриноген Какие свойства положены в основу классификации белков фибрин.

Образовавшиеся молекулы фибрина агрегируют, формируя длинные нерастворимые цепи. Сгусток крови вначале является рыхлым, затем он стабилизируется за счет межцепочечных сшивок. Всего в процессе свертывания крови участвует около 20 белков. Нарушения в структуре их генов является причиной такого заболевания, как гемофилия – сниженная свертываемость крови.

Рецепторные белки

Клеточная мембрана является препятствием для многих молекул, в том числе и для молекул, предназначенных для передачи сигнала внутрь клеток. Тем не менее клетка способна получать сигналы извне благодаря наличию на ее поверхности специальных  рецепторов, многие из которых являются белками. Сигнальная молекула, например, гормон, взаимодействуя с рецептором, образует гормон-рецепторный комплекс, сигнал от которого передается далее, как правило, на белковый посредник. Последний запускает серию химических реакций, результатом  которых является биологический ответ клетки на воздействие внешнего сигнала (рис. 25).

Какие свойства положены в основу классификации белков 

 Рис.25. Передача внешних сигналов в клетку

Регуляторные белки

Белки, участвующие в управлении биологическими процессами, относят к регуляторным белкам. К ним принадлежат некоторые гормоны. Инсулин и глюкагон регулируют уровень глюкозы в крови. Гормон роста, определяющий размеры тела, и паратиреоидный гормон, регулирующий обмен фосфатов и ионов кальция, являются регуляторными белками. К этому классу белков принадлежат и другие протеины, участвующие в регуляции обмена веществ.

Интересно знать! В плазме некоторых антарктических рыб содержатся белки со свойствами антифриза, предохраняющие рыб от замерзания, а у ряда насекомых в местах прикрепления крыльев находится белок резилин, обладающий почти идеальной эластичностью. В одном из африканских растений синтезируется белок монеллин с очень сладким вкусом.

Источник