Какие свойства относятся к технологическим

Какие свойства относятся к технологическим thumbnail

К технологическим свойствам металлов относятся такие свойства, кото-рые требуются при разработке технологических процессов их обработки раз-личными способами и получения из них художественных изделий на практи-ке.

Ковкость – свойство металла изменять свою форму в больших пределах при действии динамических или статических нагрузок. Ковкость металлов требуется собственно при ковке, а также других видах обработки давлением (прокатке, волочении, прессовании, штамповке). Ковкость определяется двумя показателями – пластичностью, то есть способностью металла подвергаться деформации под давлением без разрушения и сопротивлением деформации – то есть уровнем внешних нагрузок, которые надо приложить для осуществле-ния деформации. У ковких металлов (сталь, латунь, дюралюминий и некото-рые другие – медные, алюминиевые, магниевые, никелевые сплавы) относи-тельно высокая пластичность сочетается с низким сопротивлением деформа-ции. Степень ковкости зависит от собственно пластичности металла, степени его нагрева, величины прикладываемого усилия и скорости с которой это уси-лие прилагается, наличия примесей в металле, способствующих его хрупкости и т.д. Некоторые металлы показывают хорошую ковкость и в холодном состо-янии: медь, алюминий, свинец, олово и т.д. Другие (сталь) имеют высокую ко-вкость в горячем состоянии. Последний факт широко используется при изго-товлении художественных кованых изделий из малоуглеродистых марок ста-ли, которые ранее называли ковочным железом.

Свариваемость – способность металлов (и не только!) образовывать сварное соединение, свойства которого близки к свойствам основного/основ-ных металлов (материалов). При изготовлении художественных изделий из металлов иногда требуется сваривать их части, полученные методами обработ-ки давлением. Поэтому требуется, чтобы металлы хорошо сваривались станда-ртными способами (электросварка, пайка и т.д.). Кроме того, в процессе обра-ботки давлением, особенно в нагретом состоянии «свежие» (т.е. еще неокис-ленные на воздухе) поверхности металлов при соприкосновении также облада-ют свойством свариваемости (поверхностные слои атомов активно проникают друг в друга), образуя очень прочное соединение. Чистые металлы сваривают-ся легче, чем сложные сплавы. Отметим, что чем выше содержание углерода в стали, тем хуже ее свариваемость.

Закаливаемость – свойствометаллов значительно повышать свою тве-рдость и износостойкость после нагрева и последующего быстрого охлажде-ния в различных средах. В зависимости от скорости охлаждения, например, у стали можно получать различные структуры (см. далее), а следовательно и свойства. В качестве охлаждающих сред, как правило, используют воду и тра-нсформаторное масло. При температуре воды, равной 18 0С, а исходной темпе-ратуре металла 750 – 850 0С скорость охлаждения может достигать 600 0С/сек. При использовании масла скорость охлаждения существенно ниже – до 150 0С/сек. Естественно и структура и свойства получаются после этих видов зака-лки разными.

Жидкотекучесть – способность металлов и сплавов в расплавленном состоянии заполнять литейную форму, воспроизводя в отливке контуры ее поверхности. При низкой жидкотекучести движение расплава в форме может прекратиться раньше, чем она будет заполнена. Таким образом, жидкотеку-честь сказывается на заполняемости формы расплавом, четкости воспроизве-дения рельефа полости формы.

Густоплавкость – свойство обратное жидкотекучести. Металлы и спла-вы, обладающие густоплавкостью, даже при высоком их нагреве остаются гус-тыми и при заливке форм плохо их заполняют. К густоплавким относятся чис-тое серебро, красная медь, сталь.

Литейная усадка – уменьшение объема при переходе из жидкого состо-яния в твердое. При охлаждении металла отливка сокращается по объему и как бы отходит от стенок формы. Т.е. отливка всегда меньше модели, по кото-рой сделана форма. Величина усадки для разных металлов различна. В табл. 4 приведены литейные усадки некоторых металлов и сплавов. Зная величину усадки можно рассчитать размеры модели с ее учетом, чтобы получить на выходе требуемые размеры изделия – отливки.

Спекаемость. Иногда изделия (и художественные, в частности) изготав-ливаются из металлического порошка. При этом металлы, предварительно из-мельченные в порошок, смешиваются и запрессовываются в специальные фор-

мы и подвергаются воздействию высокой температуры и давления до спека- ния. В конечном итоге из порошка получается твердое и прочное изделие. Ра-

зличные металлические порошки спекаются по разному – одни хуже, а другие лучше. Таким образом, желательно, чтобы порошок металла, в случае необхо-

димости, хорошо «спекался», как правило, при высокой температуре и доста-чном давлении. Такое технологическое свойство называют «спекаемостью».

Табл. 4. Величины усадки (%) для некоторых металлов и сплавов при

различных способах литья.

Обрабатываемость резанием на различных станках (токарном, фрезер-ном и пр.), а также способность шлифоваться и полироваться – свойства, иг-рающие важную роль при изготовлении художественных изделий и особенно в отделке. Хорошо режутся бронзы, латуни, некоторые марки сталей, алюми-ния и даже чугуна. Особенно плохо обрабатываются на станках красная медь и свинец и его сплавы.

Читайте также:  Какими свойствами обладает конституция

Контрольные вопросы для самопроверки.

1. К какому виду искусства относится памятник Петру I в Санкт-Петербур-ге и из каких материалов он изготовлен?

2.Какие материалы используются для изготовления художественных изделий прикладного искусства?

3. Какие этапы в создании и внедрении художественных изделий можно выделить?

4. Классификация металлов для художественных изделий.

5. Классификация художественных изделий.

6. Перечислите физические свойства металлов.

7. Перечислите механические свойства металлов.

8. Какой способ определения твердости наиболее предпочтителен для художественных изделий и почему?

9. Перечислите технологические свойства металлов.

10. В каких случаях нужна хорошая свариваемость металлов?

11. В каких случаях нужна хорошая жидкотекучесть металлов?

12.В каких случаях надо учитывать усадку металла при его затвердевании?

13.Окисление металла – это хорошо или плохо?

14.Что такое спекаемость металлических порошков и для чего она необходима?

15. Приведите пример художественного изделия, для материала которого нужна высокая выносливость.

16. Почему для определения механических свойств материалов применяют стандартные образцы?

Источник

Технологические свойства материалов – это качества, влияющие на пригодность металлов для различных технологических операций или процессов. Перечислим технологические свойства материалов.

1. Обрабатываемость

Это  легкость, с которой данный материал может
быть разрезан, что позволяет удалять лишнее при более низких затратах. Хорошая
обрабатываемость связана с:

  • Высокой скоростью
    резки.
  • Низким
    энергопотреблением.
  • Хорошей отделкой
    поверхности.
  • Удалением материала
    с умеренной силой.
  • Средней степенью
    истирания инструмента (более длительный срок службы инструмента).
  • Формированием
    мелких чипсов.

Обрабатываемость
зависит от следующих факторов:

  • Химический состав
    материала заготовки.
  • Микроструктура.
  • Механические
    свойства.
  • Физические
    свойства.
  • Условия резки.
  • Свойства
    хладагента.
  • Подача и глубина
    резки.
  • Вид и форма
    режущего инструмента.
  • Размер и форма
    разреза.
  • Коэффициент трения
    между стружкой и материалом инструмента.
  • Материал
    инструмента.
  • Тип используемой
    машины.
  • Тип операции
    обработки.

Для
оценки обрабатываемости основные факторы, которые будут выбраны, зависят от
типа операции и производственных требований.

При
оценке обрабатываемости могут учитываться следующие критерии:

  • Соотношение сил
    резки.
  • Срок службы
    инструмента между двумя последовательными шлифовальными станками.
  • Качество отделки
    поверхности.
  • Форма и размер
    чипсов.
  • Температура чипсов.
  • Скорость удаления
    металла.
  • Скорость резки при
    стандартной силе.
  • Усилие резки и
    энергопотребление.

Следующие
факторы увеличивают обрабатываемость:

  • Маленькие
    неискаженные зерна.
  • Однородная
    микроструктура.
  • Пластинчатая
    структура в низко- и среднеуглеродистых сталях.
  • Меньшая твердость,
    меньшая пластичность и меньшая прочность при разрыве.
  • Холодная обработка
    низкоуглеродистой стали.
  • Операции отжига,
    нормализации и отпуска.
  • Добавление
    небольших количеств серы, свинца, фосфора и марганца.

Обрабатываемость
может быть улучшена путем добавления небольшого процента определенных
элементов, таких как свинец, селен, сера, марганец и т. д.

Индекс
обрабатываемости

Обрабатываемость
различных металлов, подлежащих обработке, можно сравнивать с использованием
индекса обрабатываемости каждого материала, который можно определить следующим
образом:

Стандартная
сталь имеет содержание углерода не более 0,13% и может быть сравнительно легко
обработана; ее индекс обрабатываемости произвольно фиксируется как 100%.

2. Свариваемость

Еще одним видом является свариваемость. Она определяется, как способность металла свариваться в производственных условиях, предъявляемых к конкретной конструкции. Настоящим критерием при определении свариваемости металла является качество сварного шва и легкость, с которой его можно получить.

На
свариваемость металла влияют следующие факторы:

  • Состав металла.
  • Хрупкость металла.
  • Термические
    свойства.
  • Сварочная техника.
  • Наполнители.
  • Прочность металла
    при высокой температуре.
  • Стабильность
    микрокомпонентов до температуры сварки.
  • Сродство кислорода
    и других газов до и при температуре сварки.
  • Экранирующая
    атмосфера.
  • Правильная
    термическая обработка до и после осаждения металла.

Легирующие
элементы влияют на свариваемость следующими способами:

  • Улучшение
    механических свойств.
  • Увеличение или
    уменьшение прокаливаемости в зоне термического влияния.
  • Обеспечение
    измельчения зерна.
  • Обеспечение
    раскисления расплавленного металла.
  • Формируют
    возрастные осадки.
  • Контроль
    температуры превращения пластичного материала в хрупкое.

3. Литье

К основным технологическим свойствам материалов относится и литье. Это легкость, с которой металл может быть отлит в форму, известна как литейная способность металла. Он основан на таких факторах, как скорость затвердевания, газовая пористость, сегрегация, усадка и т. д.

Следующие
факторы являются благоприятными для литейности металла:

  • Текучесть металла.
  • Низкая степень усадки (это уменьшение объема металла, когда он переходит из расплавленного в твердое состояние).
  • Очень низкая или незначительная сегрегация.
  • Низкая газовая пористость.

4. Формируемость

Формируемость
– способность металлов приобретать различные формы.

Различные
факторы, которые в значительной степени определяют текучесть или пластичность
материала:

  • Металлическая
    конструкция.
  • Размер зерна.
  • Горячая и холодная
    обработка.
  • Легирующие
    элементы.
  • Смягчающие
    термообработки (отжиг и нормализация).

Небольшой
размер зерна рекомендуется для мелкой вытяжки металлов, тогда как для тяжелой
вытяжки рекомендуется относительно крупное зерно.

Горячая и холодная обработка вызывает искажение зерна. Обычно обработанные холодом кристаллы более искажены, чем обработанные горячим способом. Поэтому обработанные холодом металлы обычно менее пластичны, чем обработанные горячим способом.

Читайте также:  Какое свойство воды позволяет людям любоваться рыбками в аквариуме

Большинство
легирующих элементов в чистом металле снижают его пластичность, например,
пластичность стали уменьшается с увеличением количества углерода в железе.

При
смягчающих термообработках, таких как отжиг и нормализация, пластичность
металла восстанавливается. Деформированный и искаженный кристалл реформируется,
и, следовательно, сила, необходимая для того, чтобы вызвать проскальзывание,
уменьшается.

5. Податливость

Подобная характеристика технологического свойства материала определяется как  легкость, с которой металл претерпевает слишком сильное изменение формы при сжимающем напряжении без разрыва.

Такие
материалы, как мягкая сталь, кованое железо, медь и алюминий, обладают хорошей
пластичностью. Их можно забить или свернуть в нужную форму без разрыва.

Степень податливости измеряется толщиной листа или фольги, которая может быть изготовлена.

Вы можете обсудить технологические свойства материалов на нашем форуме, достаточно нажать на кнопку ниже.

Источник

Лекции.Орг

При разработке и создании различных изделий особое внимание уделяется технологическим свойствам материалов из которых изготавливаются эти изделия. Технологические свойства определяют пригодность материала для изготовления из него детали тем или иным способом. К числу этих свойств относятся:

Обрабатываемость резанием — способность металла изменять свою форму под действием режущего инструмента (резца, фрезы, сверла и т. д.) при различных Операциях механической обработки (обтачивании, фрезеровании, сверлении).

Ковкость— (деформируемость) — возможность менять форму изделия в горячем состоянии или при нормальной температуре под воздействием давления.

Свариваемость—способность металлов образовывать прочные соединения при нагреве свариваемых частей до расплавленного или до пластичного состояния. Хорошей свариваемостью обладают стали с низким содержанием углерода. Плохо свариваются чугун, медные и алюминиевые сплавы.

Жидкотекучесть(литейность) — способность металла в расплавленном состоянии заполнять литейную форму, без оставления пустот. Металл должен обладать способностью давать отливки с резко очерченными контурами, т. е. иметь хорошую литейность. При недостаточной литейности форма заполняется не полностью и в тонких сечениях отливки образуются недоливы. Повышение температуры заливки улучшает жидкотекучесть сплавов.

Величину жидкотекучести определяют по технологической пробе, т. е. по длине спирального канала, заполненного металлом в контрольной форме. Чем больше жидкотекучесть сплава, тем большей длины участок спирали он заполнит до затвердевания.

Усадка —сокращение объема расплавленного металла при его застывании и охлаждении до комнатной температуры по сравнению с размерами модели, по которой она была отформована. Соответствующее изменение линейных размеров, выраженное в процентах, называется линейной усадкой.

Величина усадки отливок зависит от химического состава сплава, конфигурации детали и других факторов. При большой усадке металла во время его кристаллизации и охлаждения возникают значительные внутренние напряжения и образуются усадочные раковины. Для удобства усадку отливок выражают в процентах по отношению к размерам модели и называется линейной усадкой..

Ликвация — свойство сплавов образовывать при охлаждении и кристаллизации отливки с неоднородным химическим составом. Это объясняется тем, что сплав в форме охлаждается неравномерно. Чем больше разница в температуре внешних и внутренних частей отливки при ее охлаждении, тем больше компонентов, плавящихся при более низкой температуре, скапливается в середине сечения.

Различают два вида ликвации:

· Внутрикристаллическая ликвация характерна для фасонных отливок, изготовляемых из сплавов, образующих твердые растворы. В большинстве случаев скорость затвердевания отливки превышает скорость диффузии, которая необходима для выравнивания химического состава. Последнее является основной причиной развития внутрикристаллической ликвации в отливках.

· Зональная ликвация наблюдается в толстостенных отливках, слитках, которые медленно охлаждаются в формах. Зональная ликвация может происходить по двум основным причинам: в связи с расслоением жидкого сплава из-за различной плотности, которое происходит при недостаточном перемешивании сплава при плавке и заливке, или при выпадении из жидкого сплава легких и тяжелых кристаллизующихся фаз.

Прокаливаемость — способность улучшения различных свойств металла путем закалки на различную глубину.

Все эти технологические свойства металлов и сплавов в комплексе и определяют дальнейшую сферу их применения.

Сталь наряду с бетонами — главнейший конструкционный материал. Широкому использованию сталь обязана высоким физико-механическим и технологическим свойствам. Одним из самых широко используемых технологических свойств стали является ее хорошая свариваемость. При нагреве сталь постепенно размягчается, а при температуре 1300—1400° С становится тестообразной. Если два куска стали, нагретых до тестообразного состояния, сложить вместе и сжать под прессом или молотом, то они соединятся в одно целое или, как говорят, сварятся

Другим свойством стали является ее хорошая прокаливаемость. Сталь, нагретая до температуры 750—900° (температура нагрева зависит от состава стали) и быстро охлажденная в воде или масле, становится более твердой и хрупкой. Процесс, сопровождающийся изменением структуры (т. е. строения) стали, называется закалкой.
Чем больше в стали содержание углерода, тем лучше она закаливается. Сталь с содержанием углерода до 0,15% не закаливается и, наоборот, лучше закаливается сталь с содержанием углерода более 0,5%. Отдельные элементы, входящие в состав стали, влияют на свойства ее следующим образом.

Читайте также:  Алоэ какие лечебные свойства и противопоказания

Углерод (С). С увеличением в стали содержания углерода увеличиваются ее твердость, прочность и закаливаемость, но понижаются ковкость и теплопроводность. Чем больше в стали углерода, тем медленнее ее надо нагревать. Сталь с содержанием углерода до 1,4% хорошо куется и прокатывается.
Кремний (Si) повышает прочность и упругость стали, но понижает вязкость и свариваемость. В стали машиностроительных сортов кремния обычно содержится от 0,2 до 0,4%’. Заметного влияния на ковкость кремний не оказывает.
Марганец (Мn). В обычных сортах углеродистых сталей марганца содержится от 0,2 до 1 %, а в специальных сортах до 14%. Марганец повышает сопротивляемость удару, прочность, уменьшает истирание, понижает вредное влияние серы. С увеличением содержания марганца понижается теплопроводность и свариваемость. Марганец способствует перегреву стали и появлению трещин. Чем больше в стали марганца, тем медленнее ее нужно греть; чтобы избежать перегрева и пережога марганцовой стали, необходимо тщательно следить за температурой нагрева и выдержкой при высоких температурах. Правильно нагретые заготовки или слитки из марганцовой стали куются хорошо.
Никель (Ni) увеличивает пластичность, вязкость и прочность стали. Никель не влияет на ковкость стали, но при нагреве никелевых сталей образуется окалина, которая прочно удерживается на поверхности заготовки. Окалина может заковываться в деталь и тем самым понижать ее механические качества.
Хром (Сr) повышает твердость, прочность и упругость стали, но понижает вязкость и теплопроводность. При ковке литого слитка структура хромистой стали плохо поддается разрушению. Для получения в поковке мелкозернистой структуры нужна большая проковка при высокой температуре. Хромистая сталь при температуре 1150—850° С куется удовлетворительно, а при низких температурах (ниже 850° С) твердость поверхности ее резко возрастает, отчего могут появляться трещины.
Молибден (Мо) добавляется в сталь вместе с никелем sr хромом. В сталях различных марок молибдена содержится до 0,45% и редко до 1%. В сплаве с хромом и никелем молибден повышает прочность и вязкость стали, но понижает теплопроводность. Чем больше в стали молибдена, тем медленнее ее надо греть, так как наличие молибдена сильно повышает чувствительность стали к перегреву. Молибденовые стали требуют интенсивной проковки на более мощных, прессах или молотах, чем прессы и молоты, на которых куются углеродистые стали. Охлаждать поковки из молибденовой стали нужно медленно, строго по-технологическому процессу, так как молибденовая сталь принимает воздушную закалку и предрасположена к образованию трещин.
Ванадий (V). В сталях, применяемых в машиностроении,, ванадия обычно содержится до 0,3% и редко до 1%. Ванадий повышает прочность и упругость стали, способствует образованию мелкозернистой структуры слитков. Содержание ванадия в стали улучшает ее ковкость и препятствует перегреву.
Вольфрам (W) повышает твердость и прочность стали, незначительно понижает вязкость и уменьшает теплопроводность. Ковка вольфрамовой стали при низких температурах вызывает трещины. Вольфрамовые стали нужно греть медленнее, чем углеродистые, а ковать при более высоких температурах.
Сера (S) — вредная примесь в стали, но в то же время является таким элементом, который переходит в сталь при ее плавке. Серы в стали должно быть как можно меньше. В сталях, применяемых, для изготовления особо ответственных деталей, содержание серы не должно превышать 0,02—0,03%, а в обычных сталях 0,045—0,055%. Повышенный процент серы в стали приводит к красноломкости. Если такую сталь нагреть до красного каления, то она становится хрупкой, во время ковки дает трещины и разрушения. При обычной температуре сера, содержащаяся в стали, понижает ее прочность.
Фосфор (Р). В отличие от серы фосфор сообщает стали холодноломкость, т. е. вызывает хрупкость при комнатной температуре. Фосфора в сталях, из которых изготовляются ответственные детали, не должно быть больше 0,03—0,04%. Чем больше сталь содержит углерода, тем больше может быть фосфора. Холодноломкость стали часто обнаруживается при правке и гибке изделий во время морозов в неотапливаемом помещении.

Дата добавления: 2016-12-31; просмотров: 2476 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org – Контакты – Последнее добавление

Источник