Какие свойства относятся к химическим

Какие свойства относятся к химическим thumbnail

Объектом химии считается вещество и влияние на него звуковых и магнитных полей. Само понятие имеет массу и бывает в трёх агрегатных состояниях — твёрдом, газообразном и жидком. Для каждого компонента характерны определённые химические свойства. При их вступлении в реакцию получается новое образование, например, нагретый сахар превращается в уголь и воду.

Виды и характеристики химических свойств

На уроках химии школьники изучают особенности превращения одних веществ в другие. К задачам предмета относится определение, с какими химическими компонентами при определённых условиях реагирует то либо иное вещество, что при этом образуется. Дополнительно изучаются условия, при которых протекают подобные превращения, и методы получения нужного состояния.

Под химсвойствами подразумевается совокупность информации о том, с какими иными компонентами и при каких условиях вступает во взаимодействие данное вещество. Атомы — частицы, которые участвуют в превращениях. При реакции они перегруппировываются. Старые связи между ними разрушаются, но возникают новые.

На уроках химии

Для каждого вида атома характерен конкретный химический элемент (ХМ) — совокупность атомов с близкими либо одинаковыми характеристиками. В природе известно до 90 разных ХМ. Учёные в области физики способны создать новые виды атомов, которые отсутствуют на Земле. Такие компоненты называются искусственными. Их число превышает два десятка. У ХМ имеется латинское название и символ из 1−2 букв. От класса соединения зависит, какие химические свойства (ХС) характерны: кислоты, галогены, спирт.

Под ХС понимается способность взаимодействовать с иными компонентами, а также распадаться и диссоциироваться. Главное свойство — электроотрицательность. Чтобы описать реакционную способность, используются некоторые численные значения. Каждое из них зависит от определённых условий измерения.

ХС зависит от структуры молекул, степени их пространственности. Для веществ с одним составом и структурой характерны одинаковые виды химических свойств, кроме реакций с ХМ иной пространственной конфигурации.

Электролиты и галогены

Кислоты участвуют в реакциях с переходом электрона. Химические характеристики, свойственные для образования, зависят от его названия. Электролиты появляются в результате диссоциации водорода, который легко замещается металлами с последующим формированием соли.

Электролиты и галогены

Для кислот характерно сообразование гидратированных ионов, которые придают соответствующий вкус и способность изменять цвет. Другое химическое вещество — галоген. В переводе с греческого означает «рождение, происхождение». Компоненты относятся к основной подгруппе VII группы таблицы Менделеева. Им свойственно реагировать с любым простым элементом, кроме неметаллов.

Галогены считаются энергетическими окислителями, поэтому в природе встречаются в качестве соединений. При увеличении номера уменьшается активность галогенов:

  1. фтор;
  2. бром;
  3. хлор.

Взаимодействуя с металлами, формируется ионная связь, образуется соль. Все представители группы, кроме фтора, взаимодействуя с электроотрицательными компонентами, проявляют восстановительные свойства. Для них характерна высокая окислительная активность. Она уменьшается в процессе перехода от фтора к астату.

Фтор (F) считается самым активным галогеном

Сам фтор (F) считается самым активным галогеном. Он реагирует с любым металлом. Без нагрева он реагирует с неметаллами. Облучение способствует образованию инертного газа. Энергично протекает взаимодействие фтора со сложным веществом. Таким методом окисляется вода, а реакция приобретает взрывной характер.

Аналогичное явление наблюдается при освещении хлора (Cl) с водородом. Первый компонент быстро реагирует со сложными ХМ. При нагреве легко вытесняется йод либо бром из соединения хлора с металлом. При взаимодействии с водой наблюдаются следующие явления:

  1. растворение хлора;
  2. частичная реакция;
  3. образование равновесной смеси веществ.

Cl легко диспропорционируется со щелочами. Бром (Br) способен быстро растворяться в воде, частично реагируя с Н2О, образуя бромную воду.

Йод в воде не растворяется и не окисляется при нагревании. При этом он способен расщепляться в иодидных растворах, образуя комплексные анионы, включая раствор Люголя.

Йод в воде не растворяется

Йод отличается от других ХМ своей активностью. Он не вступает в реакцию со многими неметаллами, а с металлами при нагревании реагирует медленно. Для реакции водорода и йода характерна эндотермичность и сильнообратимость. Учёные доказали, что химическая активность галогенов уменьшается последовательно от F к астату (At). Каждый компонент из ряда вытесняет последующий из его соединений с металлом либо водородом. Любой галоген окисляет галогенид-ион любого из последующих галогенов. В процессе диссоциации формируются протоны, ионы.

Взаимодействие со спиртами

К химическим элементам относятся спирты

К химическим элементам относятся спирты. Они легко вступают в реакцию с иными компонентами и относятся к гидроксильной группе, для которой характерно наличие углеводородной цепи. Чем она больше, тем сильнее влияет на функциональную группу. При этом снижается полярность связи О-Н.

При разрыве связи реакция протекает медленно. На основе гидроксильной группы наблюдается отрицательный индуктивный эффект. В основе классификации спиртов на группы лежат их химические свойства. Специалисты выделяют воду либо оксид водорода, металлы, простые вещества. Первый компонент представлен в виде прозрачной жидкости без цвета, вкуса и запаха. Его свойства:

  1. возможность преобразовываться в разные состояния (лёд, пар);
  2. сильная полярность;
  3. в природе содержит в себе газы, соли.

Н2О считается самым распространённым растворителем на Земле. Химически вода активна. Её полярные молекулы способствуют образованию гидратов и кристаллогидратов. Н2О при комнатной температуре реагирует со следующими компонентами:

  1. Активные металлы (натрий, кальций, калий).
  2. Фтор.
  3. Соли из слабой кислоты.
  4. Бор.

При нагревании она вступает в реакцию с магнием и железом, метаном и углём. На основе катализаторов образуется ацетилен, алкен, амидам.

К простым ХМ относятся металлы. Для них характерны следующие свойства: высокие электро- и теплопроводность, пластичность, блеск, положительное сопротивление. Внешний электронный уровень представлен в виде незначительного числа электронов (максимум три). Вступая в реакцию, они выполняют функции восстановителей, отдавая свои электроны.

С кислородом взаимодействуют все элементы группы, кроме платины и золота. Реакция с серебром возможна, если достигнута высокая температура. Из-за термической неустойчивости оксид серебра не образуется. Перечень элементов, которые появляются на выходе (зависит от названия металла, который участвует в реакции):

Читайте также:  Какие свойства информации необходимо защищать

Свойства металлов

  1. пероксиды;
  2. оксиды;
  3. надпероксиды.

Для получения пероксида используется металл. С малоактивным и средним компонентом реакции возникает при нагревании. Взаимодействие с азотом осуществляется на основе максимально активных металлов (АМ). При комнатной температуре взаимодействует только литий, который способствует появлению нитридов. При нагревании серы и железа получается сульфид.

С водородом и углеродом взаимодействуют наиболее АМ. С кислотами металл реагирует по-разному. ХМ, которые находятся в таблице до водорода, взаимодействуют с любой кислотой. Неокисляющие вещества с металлами участвуют в реакции замещения, для которой свойственно окисление и восстановление.

Окисляющая кислота, вступая в реакцию с металлом, расположенным после водорода, образует следующие продукты:

  1. водород;
  2. магний.

При взаимодействии железа и HNO3 различной концентрации получается Cu, NO. Больше вариантов реакций характерно для взаимодействия с АМ. Современные химики разработали технологию легирования, с помощью которой осуществляется ввод в расплав дополнительных ХМ. Они легко модифицируют физические, механические и химические свойства главного материала.

Загрузка…

Источник

Разнообразие веществ

За последние 200 лет человечество изучило свойства веществ лучше, чем за всю историю развития химии. Естественно, количество веществ так же стремительно растет, это связано, прежде всего, с освоением различных методов получения веществ.

В повседневной жизни мы сталкиваемся с множеством веществ. Среди них – вода, железо, алюминий, пластмасса, сода, соль и множество других. Вещества, существующие в природе, например, кислород и азот, содержащиеся в воздухе, вещества, растворенные в воде, и имеющие природное происхождение, называются природными веществами. Алюминия, цинка, ацетона, извести, мыла, аспирина, полиэтилена и многих других веществ в природе не существует.

Их получают в лаборатории, и производит промышленность. Искусственные вещества не встречаются в природе, их создают из природных веществ. Некоторые вещества, существующие в природе, можно получить и в химической лаборатории.

Так, при нагревании марганцовки выделяется кислород, а при нагревании мела – углекислый газ. Ученые научились превращать графит в алмаз, выращивают кристаллы рубина, сапфира и малахита. Итак, наряду с веществами природного происхождения существует огромное множество и искусственно созданных веществ, не встречающихся в природе.

Вещества, не встречающиеся в природе, производятся на различных предприятиях: фабриках, заводах, комбинатах и т.п.

В условиях исчерпания природных ресурсов нашей планеты, сейчас перед химиками стоит важная задача: разработать и внедрить методы, при помощи которых можно искусственно, в условиях лаборатории, или промышленного производства, получать вещества, являющиеся аналогами природных веществ. Например, запасы топливных ископаемых в природе на исходе.

Может настать тот момент, когда нефть и природный газ закончатся. Уже сейчас ведутся разработки новых видов топлива, которые были бы такими же эффективными, но не загрязняли окружающую среду. На сегодняшний день человечество научилось искусственно получать различные драгоценные камни, например, алмазы, изумруды, бериллы.

Агрегатное состояние вещества

Вещества могут существовать в нескольких агрегатных состояниях, три из которых вам известны: твердое, жидкое, газообразное. Например, вода в природе существует во всех трех агрегатных состояниях: твердом (в виде льда и снега), жидком (жидкая вода) и газообразном (водяной пар). Известны вещества, которые не могут существовать в обычных условиях во всех трех агрегатных состояниях. Например, таким веществом является углекислый газ. При комнатной температуре это газ без запаха и цвета. При температуре –79°С данное вещество «замерзает» и переходит в твердое агрегатное состояние. Бытовое (тривиальное) название такого вещества «сухой лед». Такое название дано этому веществу из-за того, что «сухой лед» превращается в углекислый газ без плавления, то есть, без перехода в жидкое агрегатное состояние, которое присутствует, например, у воды.

Это интересно:  Химические свойства кислорода

Таким образом, можно сделать важный вывод. Вещество при переходе из одного агрегатного состояния в другое не превращается в другие вещества. Сам процесс некоего изменения, превращения, называется явлением.

Физические явления. Физические свойства веществ.

Явления, при которых вещества изменяют агрегатное состояние, но при этом не превращаются в другие вещества, называют физическими. Каждое индивидуальное вещество обладает определенными свойствами. Свойства веществ могут быть различными или сходными друг с другом. Каждое вещество описывают при помощи набора физических и химических свойств. Рассмотрим в качестве примера воду. Вода замерзает и превращается в лед при температуре 0°С, а закипает и превращается в пар при температуре +100°С. Данные явления относятся к физическим, так как вода не превратилась в другие вещества, происходит только изменение агрегатного состояния. Данные температуры замерзания и кипения – это физические свойства, характерные именно для воды.

Свойства веществ, которые определяют измерениями или визуально при отсутствии превращения одних веществ в другие, называют физическими

Испарение спирта, как и испарение воды – физические явления, вещества при этом изменяют агрегатное состояние. После проведения опыта можно убедиться, что спирт испаряется быстрее, чем вода – это физические свойства этих веществ.

К основным физическим свойствам веществ можно отнести следующие: агрегатное состояние, цвет, запах, растворимость в воде, плотность, температура кипения, температура плавления, теплопроводность, электропроводность. Такие физические свойства как цвет, запах, вкус, форма кристаллов, можно определить визуально, с помощью органов чувств, а плотность, электропроводность, температуру плавления и кипения определяют измерением. Сведения о физических свойствах многих веществ собраны в специальной литературе, например, в справочниках. Физические свойства вещества зависят от его агрегатного состояния. Например, плотность льда, воды и водяного пара различна.

Газообразный кислород бесцветный, а жидкий – голубой Знание физических свойств помогает «узнавать» немало веществ. Например, медь – единственный металл красного цвета. Соленый вкус имеет только поваренная соль. Иод – почти черное твердое вещество, которое при нагревании превращается в фиолетовый пар. В большинстве случаев для определения вещества нужно рассматривать несколько его свойств. В качестве примера охарактеризуем физические свойства воды:

  • цвет – бесцветная (в небольшом объеме)
  • запах – без запаха
  • агрегатное состояние – при обычных условиях жидкость
  • плотность – 1 г/мл,
  • температура кипения – +100°С
  • температура плавления – 0°С
  • теплопроводность – низкая
  • электропроводность – чистая вода электричество не проводит
Читайте также:  Какими свойствами обладает бинарное отношение на множестве x y

Кристаллические и аморфные вещества

При описании физических свойств твердых веществ принято описывать структуру вещества. Если рассмотреть образец поваренной соли под увеличительным стеклом, можно заметить, что соль состоит из множества мельчайших кристаллов. В соляных месторождениях можно встретить и весьма крупные кристаллы. Кристаллы – твердые тела, имеющие форму правильных многогранников Кристаллы могут иметь различную форму и размер. Кристаллы некоторых веществ, таких как поваренная сольхрупкие, их легко разрушить. Существуют кристаллы довольно твердые. Например, одним из самых твердых минералов считается алмаз. Если рассматривать кристаллы поваренной соли под микроскопом, можно заметить, что все они имеют похожее строение. Если же рассмотреть, например, частицы стекла, то все они будут иметь различное строение – такие вещества называют аморфными. К аморфным веществам относят стекло, крахмал, янтарь, пчелиный воск. Аморфные вещества – вещества, не имеющие кристаллического строения

Химические явления. Химическая реакция.

Если при физических явлениях вещества, как правило, лишь изменяют агрегатное состояние, то при химических явлениях происходит превращение одних веществ в другие вещества. Приведем несколько простых примеров: горение спички сопровождается обугливанием древесины и выделением газообразных веществ, то есть, происходит необратимое превращение древесины в другие вещества. Другой пример: со временем бронзовые скульптуры покрываются налетом зеленого цвета. Дело в том, что в состав бронзы входит медь. Этот металл медленно взаимодействует с кислородом, углекислым газом и влагой воздуха, в результате на поверхности скульптуры образуются новые вещества зеленого цвета Химические явления – явления превращений одних веществ в другие Процесс взаимодействия веществ с образованием новых веществ называют химической реакцией. Химические реакции происходят повсеместно вокруг нас. Химические реакции происходят и в нас самих. В нашем организме непрерывно происходят превращения множества веществ, вещества реагируют друг с другом, образуя продукты реакции. Таким образом, в химической реакции всегда есть реагирующие вещества, и вещества, образовавшиеся в результате реакции.

  • Химическая реакция – процесс взаимодействия веществ, в результате которого образуются новые вещества с новыми свойствами
  • Реагенты – вещества, вступающие в химическую реакцию
  • Продукты – вещества, образовавшиеся в результате химической реакции

Химическая реакция изображается в общем виде схемой реакции РЕАГЕНТЫ -> ПРОДУКТЫ

  • реагенты – исходные вещества, взятые для проведения реакции;
  • продукты – новые вещества, образовавшиеся в результате протекания реакции.

Любые химические явления (реакции) сопровождаются определенными признаками, при помощи которых химические явления можно отличить от физических. К таким признакам можно отнести изменение окраски веществ, выделение газа, образование осадка, выделение тепла, излучение света.

Многие химические реакции сопровождаются выделением энергии в виде тепла и света. Как правило, такими явлениями сопровождаются реакции горения. В реакциях горения на воздухе вещества реагируют с кислородом, содержащимся в воздухе. Так, например, металл магний вспыхивает и горит на воздухе ярким слепящим пламенем. Именно поэтому вспышку магния использовали при создании фотографий в первой половине ХХ века. В некоторых случаях возможно выделение энергии в виде света, но без выделения тепла. Один из видов тихоокеанского планктона способен испускать ярко-голубой свет, хорошо заметный в темноте. Выделение энергии в виде света – результат химической реакции, которая протекает в организмах данного вида планктона.

Итог статьи:

  • Существуют две большие группы веществ: вещества природного и искусственного происхождения
  • В обычных условиях вещества могут находиться в трех агрегатных состояниях
  • Свойства веществ, которые определяют измерениями или визуально при отсутствии превращения одних веществ в другие, называют физическими
  • Кристаллы – твердые тела, имеющие форму правильных многогранников
  • Аморфные вещества – вещества, не имеющие кристаллического строение
  • Химические явления – явления превращений одних веществ в другие
  • Реагенты – вещества, вступающие в химическую реакцию
  • Продукты – вещества, образующиеся в результате химической реакции
  • Химические реакции могут сопровождаться выделением газа, осадка, тепла, света; изменением окраски веществ
  • Горение – сложный физико-химический процесс превращения исходных веществ в продукты сгорания в ходе химической реакции, сопровождающийся интенсивным выделением тепла и света (пламени)

Источник

Сайт строителя

Химические свойства строительных материалов характеризуют способность материалов реагировать на внешние воздействия, ведущие к изменению химической структуры, а также воздействовать в этом отношении на другие материалы.

Основные химические свойства:

растворимость и стойкость к коррозии

  • кислотостойкость
  • щелочестойкость
  • газостойкость

Растворимость. Растворимость – это способность материала растворяться в жидких растворителях: воде, керосине, бензине, масле и других, образовывая новые растворы. Растворимость зависит от химического состава веществ, давления и температуры. Показателем растворимости является произведение растворимости, представляющее собой предельное содержание растворенного вещества в граммах на 100 мл раствора при нормальном давлении и заданной температуре.

Стойкость к коррозии. Стойкость к коррозии является свойством материала сохранять свои качества в условиях агрессивной среды. Такой средой могут быть вода, газы, растворы солей, щелочей, кислот, органические растворители, а также биологические организмы (бактерии, водоросли и т.п.). Древесина, пластмассы, битумы и некоторые другие органические материалы при обычных температурах относительно стойки к действию кислот и щелочей средней и слабой концентрации.

Читайте также:  Какие свойства степени с целым показателем

Адгезия. Адгезия представляет собой соединение, сцепление твердых и жидких материалов по поверхности. Это свойство обусловлено межмолекулярным взаимодействием. Адгезионные силы сцепления очень важны при получении строительных материалов, состоящих из многих компонентов, например железобетон.

Кристаллизация. Кристаллизация представляет собой процесс образования кристаллов из паров, растворов, расплавов при электролизе и химических реакциях, который сопровождается выделением тепла.

Долговечность. Долговечность представляет собой способность материала сопротивляться комплексному действию атмосферных и других факторов в условиях эксплуатации. Старение – это процесс постепенного изменения, ухудшения свойств материалов в условиях эксплуатации.

Знание этих и других свойств позволяет сравнивать материалы между собой и определять область их применения с учетом технико-экономической целесообразности. Так, в условиях эксплуатации гидротехнических сооружений строительные материалы, изделия и конструкции, из которых они построены, подвергаются периодическому или постоянному воздействию воды и агрессивных сред, поэтому к ним предъявляются повышенные требования по водостойкости, морозостойкости, водонепроницаемости, коррозионной стойкости и др.

Многие материалы под влиянием водопоглощения ярко проявляют повышенные пластические свойства. Практика строительства показывает, что выбор технически целесообразного материала обосновывают не только его прочностные характеристики, но стойкость к воздействию внешней среды, в которой работает конструкция. Обычно эта стойкость материала во времени (долговечность) неразрывно связана с его химическими и физико-химическими свойствами. Физико-химические в свою очередь тесно связаны со структурой материала и зависят от ее изменения под влиянием внешних и внутренних факторов.

Вследствие проникновения химических реагентов из внешней среды внутренние химические реакции с образованием новых соединений могут значительным образом отразиться на структуре. Изменение структуры (микроструктуры и макроструктуры) в первый период может привести к псевдоупрочнению, а в дальнейшем – к сокращению долговечности материала. Применяемый в строительстве материал обычно подвергают технологической обработке.

Способность поддаваться такой обработке является порой решающим показателем при выборе материала. Так, при массовой заготовке щебня для бетонных работ учитывается способность горной породы дробиться без образования плоских щебенок, поэтому при выборе материалов всегда учитывают его способность реагировать на отдельные или взятые в совокупности следующие факторы: физические, механические, внешнюю среду, температуру и ее колебания, химические реагенты, технологические операции и т.д. Эта способность материала реагировать на указанные факторы определяется его свойствами.

Оценить технические свойства и сравнить материалы между собой возможно по показателям, которые получают при испытании материалов в полевых, производственных или лабораторных условиях. Полученные знания основных технических свойств строительных материалов и изделий дают возможность рационально их использовать в строительстве. Например, по известным значениям истинной и средней плотности строительных материалов можно рассчитать, какой плотностью (или пористостью) обладают эти материалы, и составить достаточно полное представление о прочности, теплопроводности, водопоглощении и других важных характеристиках строительных материалов, чтобы в дальнейшем на этом основании решать вопрос об их применении в тех или иных сооружениях и конструкциях.

Для расчета нагрузок при определении массы сооружений для транспортных расчетов и выбора емкости складских помещений необходимо знать величину средней плотности строительных материалов. Без данных о прочности применяемых материалов невозможны расчеты прочности и устойчивости сооружений и конструкций. Прогноз их долговечности невозможен без знания таких свойств материала, как отношение к влаге, воздействию окружающей среды, смене температур и др.

Свойства строительных материалов не остаются постоянными, а изменяются во времени в результате механических, физико-химических и биохимических воздействий среды, в которой эксплуатируется строительная конструкция или изделие. Эти изменения могут протекать и медленно (разрушение горных пород), и быстро (вымывание из бетона растворимых веществ). Следовательно, каждый материал должен обладать не только свойствами, позволяющими применять его по назначению, но и определенной стойкостью, обеспечивающей долговечную эксплуатацию изделия или конструкции.

Знание основных свойств строительных материалов необходимо также для выполнения расчетов, позволяющих оценить их качество, соответствие техническим требованиям, возможность применения в конкретных условиях эксплуатации.

Употребляемые в строительстве материалы должны удовлетворять определенным требованиям, которые устанавливаются государственными стандартами (ГОСТами). В строительстве соответствие поступающих материалов требованиям ГОСТа проверяют специальные лаборатории.

Любой вид продукции обладает определенными свойствами, представляющими интерес для потребителей. Для строительных материалов важны такие качества, как прочность, плотность, теплопроводность, морозостойкость, стойкость по отношению к действию воды, агрессивных сред и др. Качеством называется сумма свойств, определяющих пригодность материала и изделия для использования по назначению. Так, для кровельных материалов оценка их качества производится по сумме таких свойств, как водостойкость, водонепроницаемость, термостойкость, прочность на изгиб, атмосферостойкость и др.

Контроль качества строительных материалов и изделий проводят по разработанным нормам, требованиям и правилам. В зависимости от контролируемого производственного этапа различают контроль входной, технологический и приемочный.

Входной контроль включает проверку соответствия поступающих материалов и изделий установленным требованиям. Например, на предприятиях сборного железобетона проверяют качество поступающих исходных материалов: заполнителей и цемента для бетона, арматурной стали, закладных деталей, отделочных и других материалов.

Технологический контроль состоит в проверке соответствия установленным требованиям температуры, давления, времени выдерживания, тщательности перемешивания и других показателей технологического процесса.

Приемочный контроль заключается в проверке соответствия готовых изделий требованиям стандартов или технических условий.

Все материалы и изделия выпускают по государственным и межгосударственным стандартам – ГОСТ, СТ СЭВ, ИСО, СТБ, СНБ. Деятельность стандартизации существует для повышения качества продукции, безопасности ее получения и безопасности. Методы испытаний также стандартизированы. Кроме этого, в строительстве существуют «Строительные нормы» и «Технические нормативные правовые акты», представляющие собой объединенные нормативные документы по проектированию, строительству и строительным материалам.

Свойства строительных материалов.

Источник