Какие свойства относят к эксплуатационными

Какие свойства относят к эксплуатационными thumbnail

Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях.

1. Износостойкость – способность материала сопротивляться поверхностному разрушению под действием внешнего трения.

2. Коррозионная стойкость – способность материала сопротивляться действию агрессивных кислотных, щелочных сред.

3. Жаростойкость – это способность материала сопротивляться окислению в газовой среде при высокой температуре.

4. Жаропрочность – это способность материала сохранять свои свойства при высоких температурах.

5. Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах.

6. Антифрикционность – способность материала прирабатываться к другому материалу.

7. Герметичность – способность изделия (корпуса), отдельных её элементов и соединений препятствовать газовому или жидкостному обмену между средами, разделёнными этой оболочкой

Эти свойства определяются специальными испытаниями в зависимости от условий работы изделий.

При выборе материала для создания конструкции необходимо полностью учитывать механические, технологические и эксплуатационные свойства.

Эти свойства оп­ределяют в зависимости от условий работы ма­шины специальными испытаниями. Одним из важнейших эксплуатационных свойств является износостойкость.

Износостойкость — свойство материала оказывать сопротивление износу, т. е. постепен­ному изменению размеров и формы тела вслед­ствие разрушения поверхностного слоя изделия при трении. Испытание металлов на износ проводят на образцах в лабораторных условиях, а деталей — в условиях реальной эксплуатации. При испытаниях образцов моделируются условия трения, близкие к реальным. Величину износа об­разцов или деталей определяют различными спо­собами: измерением размеров, взвешиванием об­разцов и другими методами.

На герметичность или плотность испытывают емкости для хранения жидкостей, сосуды и трубопроводы, работающие при избыточном давлении, путем гидравли­ческого и пневматического нагружений, с помощью течеискателей и керо­сином.

При гидравлическом испытании емкости наполняют водой, а в сосу­дах и трубопроводах создают избыточное давление жидкости, превышаю­щее в 1,5-2 раза рабочее давление. В таком состоянии изделие выдержива­ют в течение 5-10 мин. Изделие осматривают в целях обнаружения течи, ка­пель и отпотеваний. При пневматическом испытании в сосуды нагнетают сжатый воздух под давлением, которое на 0,01-0,02 МПа превышает атмо­сферное. Соединение смачивают мыльным раствором или опускают в воду. Наличие неплотности в изделии определяют по мыльным или воздушным пу­зырькам.

При испытании с помощью течеискателей внутри сосуда создают ва­куум, а снаружи изделие обдувают смесью воздуха с гелием. При наличии неплотностей гелий проникает в сосуд, откуда отсасывается в течеискатель со специальной аппаратурой для его обнаружения.

При испытании керосином изделие с одной стороны смазывают керосином, а с другой – мелом. При наличии неплотности на поверхности изделия, окрашенного мелом, появляются темные пятна керосина. Благодаря высокой проникающей способности керосина, можно обнаружить поры диаметром в несколько микрометров.

5. НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ

В зависимости от физических явлений, положенных в основу неразрушающего контроля подразделяет его на виды (ГОСТ 18353-79 “Контроль неразрушающий. Классификация видов и методов”):

– оптический;

– радиационный;

– акустический;

– магнитный;

– вихретоковый;

– электрический;

– радиоволновой;

– тепловой;

– проникающими веществами.

Вид контроля – это условная группировка методов неразрушающего контроля, объединенная общностью физических принципов, на которых они основаны. Методы каждого вида неразрушающего контроля классифицируются по определенным признакам:

– характеру взаимодействия физических полей с объектом;

– первичным информативным параметрам;

– способам получения первичной информации.

5.1. Визуально-оптический контроль (ВОК)

Задачи ВОК

Глаз человека исторически являлся основным контрольным прибором в дефектоскопии (РД 03-606-03. ИНСТРУКЦИЯ ПО ВИЗУАЛЬНОМУ И ИЗМЕРИТЕЛЬНОМУ КОНТРОЛЮ). Глазом контролируют исходные материалы, полуфабрикаты, готовую продукцию, обнаруживают отклонения формы и размеров, изъяны поверхности и другие дефекты в процессе производства и эксплуатации: остаточную деформацию, пористость поверхности, крупные трещины, подрезы, риски, надиры, следы наклёпа, раковины и т.д.

Однако возможности глаза ограничены, например, при осмотре быстро перемещающихся объектов или удалённых объектов, находящихся в условиях малой освещённости. Даже при осмотре предметов, находящихся в покое на расстоянии наилучшего зрения в условиях нормальной освещённости, человек может испытывать трудности из-за ограниченной разрешающей способности и контрастной чувствительности зрения.

Для расширения возможностей глаза используют оптические приборы. Они увеличивают угловой размер объекта, при этом острота зрения и разрешающая способность глаза увеличиваются примерно во столько же раз, во сколько увеличивает оптический прибор (ГОСТ 23479-79 Контроль неразрушающий. Методы оптического вида.). Это позволяет увидеть мелкие дефекты, невидимые невооружённым взглядом, или их детали. Однако при этом существенно сокращается поле зрения и глубина резкости, поэтому обычно используются оптические приборы с увеличением не более 20-30Х.

Оптические приборы эндоскопы позволяют осматривать детали и поверхности элементов конструкции, скрытые близлежащими деталями и недоступные прямому наблюдению (Рис.5.1.).

Читайте также:  Какие типы почв преобладают в россии расскажите об их свойствах

Какие свойства относят к эксплуатационными

Рис.5.1. Внешний вид эндоскопа

Визуальный контроль с использованием оптических приборов называют визуально-оптическим.

Визуально-оптический контроль и визуальный осмотр – наиболее доступный и простой метод обнаружения поверхностных дефектов деталей.

Основные преимущества этого метода – простота контроля, несложное оборудование, сравнительно малая трудоёмкость.

К недостаткам следует отнести низкую достоверность и чувствительность, поэтому такой метод контроля применяют в следующих случаях: для поиска поверхностных дефектов (трещин, пор, открытых раковин и т.п.) при визуально-оптическом контроле деталей, доступных для непосредственного осмотра, а также более мелких трещин при цветном, капиллярном, люминесцентном, магнитопорошковом и рентгенографическом контроле; для обнаружения крупных трещин, мест разрушения конструкций, течей, загрязнений, посторонних предметов внутри закрытых конструкций; для анализа характера и определения типа поверхностных дефектов, обнаруженных при контроле каким-либо другим методом дефектоскопии (акустическим, токовихревым, и т.д.).

Следует помнить, что дефекты даже относительно больших размеров, невидимые невооружённым глазом из-за малого контраста с фоном, при использовании оптических приборов, как правило, не обнаруживаются.

Современные методы оптического контроля основаны на взаимодействии светового излучения с поверхностью контролируемого объекта. При этом рассматриваются такие спектральные характеристики, как:

коэффициент спектрального излучения и поглощения;

Спектральный коэффициент поглощения α(λ) является отношением потока излучения, поглощенного внутри оптически прозрачной среды, к падающему потоку излучения.

спектральный коэффициент пропускания;

Спектральный коэффициент пропускания τ(λ) представляет собой отношение потока излучения, прошедшего через среду, к потоку энергии, упавшему на ее поверхность.

– отражения;

Спектральный коэффициент отражения ρ(λ) определяют для составляющих светового потока с параллельными и перпендикулярными колебаниями по отношению к плоскости падения

и показатель преломления.

Показатель преломления является отношением скорости распространения монохроматического электромагнитного излучения в вакууме к зависимой от длины волны скорости распространения его в какой-либо среде.

Спектральный коэффициент отражения, спектральный коэффициент пропускания и спектральный коэффициент поглощения связаны соотношением:

ρ(λ) + α(λ) + τ(λ) = 1 (5.1)

Источник

Технологические свойства — это свойства, которые определяют способность конструкционных материалов подвергаться различным видам обработки в холодном и горячем состоянии. В основе этих свойств лежат физико-механические особенности конструкционных материалов, которые и определяют технологичность заготовок в процессе изготовления различных деталей и инструмента. К технологическим свойствам относятся обрабатываемость резанием, деформируемость (ковкость, штампуе- мость, способность к загибу, перегибу, отбортовке, получению двойного кровельного замка и т.д.), свариваемость, литейные свойства, паяемость, упрочняемость и др. Технологические свойства характеризуют поведение материалов в процессе изготовления из них деталей.

Свариваемость — способность конструкционных материалов образовывать прочные, неразъемные соединения путем местного расплавления соединяемых деталей и их последующего охлаждения. Вид сварки зависит от источника нагрева. Сварка бывает газовая, дуговая, электроконтактная, ультразвуковая, электро- шлаковая, кузнечная и др.

Деформируемость — способность заготовок воспринимать пластическую деформацию в процессе технологических операций: гибки, ковки, штамповки, волочения, проката и прессования без нарушения ее целостности. Деформируемость зависит от химического состава, механических свойств, скорости деформации, а также температуры и величины деформации при каждой операции. Оценка деформируемости при различных видах операций давлением проводится методом технологических проб, испытаний.

Технологические испытания не дают числовых данных по качеству деформированности конструкционных материалов.

Литейные свойства — способность конструкционных материалов образовывать качественные отливки без трещин, коробления, усадочных раковин и т.д. К ним относятся жидкотеку- честь, усадка и ликвация.

Жидкотекучесть — способность конструкционного материала в жидком состоянии заполнять полости, узкие и тонкие места литейной формы и давать четкое объемное изображение очертаний отливок. Жидкотекучесть зависит от химического состава сплава, температуры заливки, вязкости и поверхностного натяжения. На жидкотекучесть влияет также качество полости формы, шероховатость ее стенок, их теплопроводность и характер атмосферы в самой форме. Например, жидкотекучесть металла в песчаных сухих формах значительно выше, чем в сырых и металлических формах.

Усадка — свойство конструкционных материалов уменьшаться в объемных и линейных размерах при затвердевании отливок. Величина усадки выражается в процентах. Усадка зависит от химического состава конструкционных материалов и температуры их заливки. При повышении температуры сплава усадка отливки увеличивается. Усадка различных конструкционных материалов колеблется в пределах 1…2 %. Например, литейный серый чугун имеет величину усадки 1 %, сталь — 2 %, сплавы цветных металлов — 1,5 %. Усадка сопровождается образованием в отливках усадочных раковин и рыхлости. Для компенсации усадки, предотвращения усадочных раковин и рыхлости литейную форму конструируют таким образом, чтобы ее полость постоянно подпитывалась жидким металлом, т.е. делают дополнительные устройства — прибыли.

Ликвация — неоднородность по химическому составу в отливках, образуемая в процессе кристаллизации сплава. Химическая неоднородность наблюдается как в отдельных частях отливки (зональная ликвация), так и внутри отдельных зерен (внутри – кристаллическая ликвация).

Читайте также:  Какую воду талая вода свойства

Внутрикристаллическая ликвация устраняется путем термической обработки, а зональная — механическим перемешиванием жидкого металла в процессе его заливки в форму. Большое влияние на ликвацию оказывает также скорость охлаждения отливки. При быстром равномерном охлаждении отливки ликвация не наблюдается. Кроме того, практикуют охлаждение жидкого металла и его затвердевание по направлению прибыли. Разнородность по химическому составу в этом случае образуется в прибыли. Таким образом, прибыль является универсальным устройством, которое предотвращает явный брак в отливках, образуемый усадкой, короблением и ликвацией.

Паяемость — способность конструкционных материалов образовывать прочные и герметичные соединения путем паяния. В необходимых случаях (например, в радиотехнике и электротехнике) спаянные соединения должны обладать определенными физическими свойствами: электропроводностью, индуктивностью и т. д.

Упрочняемость — способность конструкционных материалов улучшать механические свойства в процессе термической и химико-термической обработки. К упрочняемости относятся закаливаемость, прокаливаемость и незакаливаемость.

Закаливаемость — способность конструкционных материалов воспринимать закалку. Этой способностью обладают все углеродистые и легированные стали с массовой долей углерода свыше 0,3 %, а также чугуны, сплавы цветных металлов, латуни, бронзы, силумины и другие сплавы.

Прокаливаемостъ — это способность конструкционных материалов воспринимать закалку на определенную глубину. Прокаливаемое™ характеризуется глубиной закалки, которая определяется на стандартных образцах по ГОСТ 5657—69. Испытанию подвергают цилиндрические образцы диаметром 25 мм, длиной 120 мм с заплечиками. Их закаливают с торца и через определенные размерные интервалы по методу Роквелла замеряют твердость. Прокаливаемое™ зависит от химического состава конструкционного материала, температуры нагрева и способа охлаждения. Например, углерод в конструкционных сталях, начиная от массовой доли 0,3 %, способствует увеличению прокаливаемое™. Хром, кремний и марганец также способствуют увеличению прокаливаемое™ легированных сталей. Высокую прокаливаемость имеют углеродистые инструментальные стали с массовой долей углерода 0,7… 1,3 %.

Примеры прокаливаемое™ стали в зависимости от их химического состава представлены на рис. 3.6 (заштрихованные элементы показывают глубину прокаливаемое™).

Незакаливаемость — способность конструкционных материалов в процессе термической обработки не воспринимать закалку (например, углеродистые и другие стали с массовой долей углерода менее 0,3 %). Свойство незакаливаемости отдельных конструкционных материалов широко используется при сварке. Чем выше незакаливаемость металла соединяемых деталей и электродов, тем выше качество сварного соединения. Если отдельные стали обладают устойчивым свойством незакаливаемости, то как бы их ни нагревали и ни охлаждали, детали из этих сталей закалку вообще не воспринимают.

Эксплуатационные свойства — это свойства, которые определяют долговечность и надежность работы изделий в процессе их эксплуатации. К ним относятся износостойкость, циклическая вязкость, жаропрочность, хладностойкость, антифрикционное™, прирабатываемое™ и др., которые определяются специальными испытаниями в зависимости от условий работы машин и механизмов. В основу эксплуатационных свойств положены физико-механические и химические свойства конструкционных материалов. Физико-химическая природа этих материалов определяет надежность и долговечность работы деталей и механизмов.

Износостойкость — способность конструкционных материалов сопротивляться абразивному износу трущихся поверхностей деталей и инструмента во время работы. Например, передняя

Глубина прокаливаемости стали в зависимости от ее химического состава

Рис. 3.6. Глубина прокаливаемости стали в зависимости от ее химического состава:

а — углеродистые стали (низкая прокаливаемость); б — хромоникелевые стали (средняя прокаливаемость); в — легированные стали (высокая прокаливаемость); г — хромоникелевые стали с повышенным содержанием хрома (повышенная прокаливаемость) поверхность режущих инструментов, по которой сходит стружка, при механической обработке (точении, сверлении, фрезеровании и т.д.) постоянно подвергается высокому трению, вследствие чего происходит изнашивание этой поверхности и режущей кромки резца. Режущие элементы затупляются. Чем выше износостойкость материала резца, тем выше стойкость режущего инструмента, т.е. непосредственное машинное время работы данным инструментом.

Требования высокой износостойкости предъявляются ко всем трущимся поверхностям деталей, инструменту и механизмам в процессе работы. Поверхности зацепления зубчатых передач, фрикционных муфт, кулачковых механизмов, зеркало цилиндров двигателей внутреннего сгорания и т.д., как правило, должны иметь высокую износостойкость. Высокая износостойкость деталей, инструмента и механизмов достигается путем термической и химико-термической обработки.

Циклическая вязкость — способность конструкционных материалов выдерживать динамические знакопеременные нагрузки, не разрушаясь. Примером высокой циклической вязкости могут служить рессоры автомобиля, торсионы и пружины. Эти детали работают при высоких динамических нагрузках в сложных условиях и длительное время не разрушаются.

Постоянные толчки на стыках рельсов, неровностях автодорог и неравномерное движение поездов деформируют рессоры и пружины в прямом и обратном направлениях. Благодаря высокой циклической вязкости рессоры и пружины длительное время не разрушаются, что определяет их надежность.

Читайте также:  Какие свойства живого вам известны

Разновидностью циклической вязкости являются демпферные свойства некоторых конструкционных материалов.

Демпфирование — способность гасить, рассеивать колебания и направленные нагрузки. Особенно высокими демпферными свойствами обладают серые литейные и ковкие чугуны, благодаря чему они широко применяются в производстве высоко- нагруженных деталей машин и конструкций (станины станков, кронштейны, кожухи и т.д.).

Жаропрочность — способность конструкционных материалов выдерживать высокие механические нагрузки в процессе работы при температурах, начиная с 0,3 Тш и выше. Жаропрочность зависит от тугоплавкости химических компонентов конструкционных материалов. Многие детали современных двигателей, турбин, металлургических печей и силовых установок при высоких температурах несут большие нагрузки. При этом в конструкционных материалах ослабевают межатомные связи, уменьшаются упругость, твердость, вязкость, и детали постепенно разрушаются. Углеродистые стали практически не имеют жаропрочности. С добавлением в них алюминия, магния и титана в небольших объемах жаропрочность повышается до 300…600 °С. С добавлением в сплав никеля и кобальта жаропрочность повышается до 700… 1000 °С.

Жаростойкость (окалиностойкость) — способность металлов и сплавов противостоять образованию коррозии под действием температуры в среде воздуха, газа и пара. В практике принята эксплуатационная жаростойкость — стойкость при длительной работе деталей и конструкций при температуре 600…650 °С. Углеродистые стали и чугуны имеют низкую жаростойкость. Легированные стали, чугуны, сплавы, содержащие хром, никель, титан, вольфрам и ванадий, имеют жаростойкость 800… 1000 °С и выше. Жаростойкость определяют глубиной коррозии (окалиной). Кроме того, стандартом устанавливается продолжительность работы деталей и конструкций в газовой среде (воздухе) при повышенной температуре. Жаростойкость металлов и сплавов определяют по специальной методике согласно ГОСТ 6130-71.

Хладностойкостъ — свойство конструкционных материалов сохранять вязкость при отрицательных температурах от 0 до —269 °С. Воздействию низких температур подвергаются газо- и нефтепроводы, мосты, рельсы и другие сооружения, эксплуатируемые в северных районах, где температура может достигать —60 °С; летательные аппараты, работающие при температурах от 0 до —183 °С; детали, узлы и механизмы холодильной и криогенной техники, эксплуатируемые в условиях температур до —269 °С.

Хладноломкость — свойство материала хрупко разрушаться при пониженных температурах и терять вязкость. Понижение температуры приводит к хрупкому разрушению конструкционных материалов. Высокой хладноломкостью обладают углеродистые конструкционные стали и чугуны. Алюминий, титан и их сплавы, никелевые стали обладают более высокой хладностой- костью. Для деталей и конструкций, работающих при отрицательных температурах, с целью уменьшения хладноломкости и получения высокой хладностойкости применяют специальные легированные стали и новые материалы — композиты.

Антифрикционностъ — способность конструкционных материалов образовывать низкое трение соприкасающихся (трущихся) поверхностей деталей в процессе их работы. Низкий коэффициент трения и высокое скольжение обеспечивают анти- фрикционность конструкционных материалов. В практике выпускаются специальные материалы, которые идут на изготовление узлов трения. Эти материалы называются антифрикционными. Они широко применяются для изготовления подшипников скольжения в современных машинах, механизмах и приборах. Антифрикционные материалы обладают устойчивостью к вибрации, бесшумностью в работе и прирабатываемостъю. В качестве антифрикционных материалов широкое применение нашли чугуны, бронзы и баббиты. В целях устранения нагрева при трении и увеличения антифрикционности в механизмах используются смазывающие материалы.

Фракционность — способность конструкционных материалов к образованию высокого трения соприкасающихся поверхностей деталей в процессе их работы. Фрикционность используется в тормозных устройствах и механизмах и для передачи крутящего момента (фрикционные муфты, диски сцепления, тормозные барабаны и системы и т.д.).

Материалы, предназначенные для изготовления тормозных устройств, должны обладать высоким коэффициентом трения, минимальным износом, теплостойкостью, прирабатываемостью и высокой прочностью. В качестве фрикционных материалов применяются многокомпонентные металлические и неметаллические пластины, диски и накладки, спеченные или спрессованные с асбестом, графитом, металлической стружкой или проволокой.

Прирабатываемостъ — способность конструкционных материалов пластически деформироваться в процессе работы в узлах трения, увеличивать площадь контакта, снижать давление и температуру на трущихся поверхностях в узлах трения и сохранять граничную смазку.

Хорошая прирабатываемостъ обеспечивает надежную работу подшипников скольжения и качения при работе в паре с сырым или закаленным валом и других трущихся деталей и механизмов, повышая их долговечность. С целью обеспечения надежности и долговечности работы машин и механизмов после их изготовления проводится обкатка на холостом ходу. А после сдачи станка в эксплуатацию в первый период (рекомендуют для машин) осуществляют работу на малых оборотах или скоростях. В этих случаях происходит плавная прирабатываемостъ всех узлов и агрегатов машин, станков и механизмов.

Эксплуатационные свойства в технике еще получили название «триботехнические характеристики».

Источник