Какие свойства называются физическими
У любого из материалов имеются физические, механические, теплофизические, прочностные, химические, гидрофизические и многие другие свойства. Но в этой статье мы конкретно разберем именно первые – физические свойства материала. Дадим определение, перечислим конкретно, что под ними скрывается, а также подробно охарактеризуем каждое из свойств.
Определение
Физические свойства материала – все свойства, которые присущи веществам без химического воздействия на них.
Любой материал остается неизменным (самим собой) при одном условии – до тех пор, пока неизменен его состав, а также строение его молекул. Если вещество немолекулярное – пока сохраняется одинаковым его состав и связь между атомами. А уже различия в физических свойствах и иных характеристиках материала помогают разделять смеси, состоящие из него.
Важно знать и то, что физические свойства материала могут быть различными для различных его агрегатных материалов. Скажем, тепловые, электрические, механические, физические, оптические свойства вещества зависят от избранного направления в кристалле.
Наполнение термина
Физические свойства вещества включают такие как:
- Вязкость.
- Температура плавления.
- Плотность.
- Температура кипения.
- Теплопроводность.
- Цвет.
- Консистенция.
- Проницаемость диэлектрическая.
- Абсорбция.
- Теплоемкость.
- Эмиссия.
- Радиоактивность.
- Индуктивность.
- Текучесть.
- Электропроводность.
А физические свойства материала представлены в основном следующим:
- Плотность.
- Пустотность.
- Пористость.
- Гигроскопичность.
- Водопроницаемость.
- Влагоотдача.
- Водопоглощение.
- Воздухостойкость.
- Морозостойкость.
- Термическое сопротивление.
- Теплопроводность.
- Огнестойкость.
- Огнеупорность.
- Радиационная стойкость.
- Химическая стойкость.
- Долговечность.
И физические, и химические, и технологические свойства материалов одинаково важны. Но мы разберем подробнее первую категорию. Представим характеристику самых важных физических свойств конструкционных материалов.
Плотность
Одно из важнейших свойств в материаловедении. Плотность разделяется на три категории:
- Истинная. Масса единицы объема материала, признанного абсолютно плотным.
- Средняя. Это уже масса единицы объема при естественном состоянии материала (с порами и пустотами). Таким образом, средняя плотность изделий из одного и того же материала может быть разной – в зависимости от пустотности и пористости.
- Насыпная. Используется для сыпучих материалов – это песок, щебень, цемент. Так называется отношение массы порошкообразных и зернистых материалов к ко всему занимаемому ими объему (включается в расчеты и пространство между частицами).
Плотность материала влияет на его технологические характеристики – прочность, теплопроводность. Она будет прямо зависеть от пористости и влажности. С увеличением влажности, соответственно, плотность будет повышаться. Это и характерный показатель для определения экономичности материала.
Пористость
Среди физических, технологических и механических свойств материалов не последнее место занимает и пористость. Это степень заполнения объема изделия порами.
В данном контексте поры – это мельчайшие ячейки, заполненные водой или воздухом. Они могут быть крупными и мелкими, открытыми и закрытыми. Если мелкие поры, к примеру, заполнены воздухом, это повышает теплоизоляционные свойства материала. Величина пористости помогает судить и о других важных характеристиках – долговечности, прочности, водопоглощении, плотности.
Открытые поры сообщаются как с окружающей средой, так и между собой, могут искусственно заполняться водой при погружении материала в жидкость. Обычно чередуются с закрытыми. В звукопоглощающих материалах, к примеру, искусственно создается открытая пористость и перфорация – для более интенсивного поглощения звуковой энергии.
Закрытые поры по распределению и размеру характеризуется следующим:
- Интегральная кривая распределения объема пор в единице объема по их радиусам.
- Дифференциальная кривая распределения по радиусам объема пор.
Пустотность
Продолжаем рассматривать физические свойства материалов (плотность, морозостойкость и прочие). Следующее здесь – пустотность. Так именуется количество пустот, которые образуются между отдельными зернами рыхлого, рассыпчатого материала. Это щебень, песок и проч.
Водопроницаемость
Водопроницаемостью называется способность материала отдавать жидкость при его высушивании и поглощать воду при увлажнении.
Во время исследования физических свойств материалов нужно обратить внимание на то, что насыщение водой может проходить двумя путями: при воздействии вещества в жидком состоянии или при воздействии только его пара.
Отсюда выходят и два других важных свойства – это гигроскопичность и водопоглощение.
Гигроскопичность
Как определяется данное физическое свойство материалов в материаловедении? Гигроскопичность – способность поглощать водяные пары и удерживать их внутри себя как следствие капиллярной конденсации. Напрямую зависит от относительной влажности и температуры воздуха, размера, разновидности и количества пор вещества, его природы.
Если материал активно притягивает своей поверхностью молекулы воды, то он называется гидрофильным. Если материал, напротив, отталкивает их от себя, то он носит имя гидрофобного. Помимо этого, отдельные гидрофильные материалы отлично растворяются в воде, в то время как гидрофобные стойко сопротивляются воздействию водных сред.
Водопоглощение
Если рассказывать кратко о физических свойствах строительных материалов, то нельзя не упомянуть о водопоглощении – способности удерживать и впитывать жидкость. Свойство характеризуется объемом воды, впитываемым сухим материалом при его полном погружении в воду. Выражается в процентах от массы (материала).
Водопоглощение будет меньше истинной пористости изделия, так как определенное количество пор в нем остается закрытыми. Поэтому оно будет изменяться от их количества, объема, степени открытости. На величину будет влиять и природа материала, его гидрофильность.
В результате насыщения материала водой остальные его физические свойства порой значительно изменяются: возрастает теплопроводность и плотность, увеличивается объем (характерно для глины, древесины), понижается прочность из-за нарушения связей между отдельными частицами.
Влагоотдача
Это способность материала отдавать влагу в окружающую среду. Находясь на воздухе, сырье и изделия сохраняют свою влажность только в определенных условиях – при относительной равновесной влажности воздуха. Если показатель ниже этой величины, то материал начинает отдавать влагу в атмосферу, высушиваться.
Скорость этого процесса зависит от нескольких факторов: от разности между влажностью самого материала и влажностью воздуха (чем она больше, тем интенсивнее высушивание), от свойств самого материала – его пористости, природы, гидрофобности. Так, сырье с крупными порами, гидрофобное будет легче отдать жидкость, нежели материал гидрофильный, с мелкими порами.
Воздухостойкость
Воздухостойкостью называется способность материала в течение длительного времени выдерживать многократное систематическое высушивание и увлажнение без потерь своей механической плотности, а также без значительных деформаций.
Какие-то материалы при периодическом увлажнении начинают разбухать, какие-то – дают усадку, какие-то – слишком коробятся. Древесина, например, подвергается знакопеременным деформациям. Цемент при частом увлажнении-высыхании склонен разрушаться, осыпаться.
Водопроницаемость
Это физическое свойство – способность материалов пропускать через себя жидкость под давлением. Характеризуется объемом воды ,которая за 1 час проходит через 1 кв. м материала под давлением в 1 МПа.
Важно отметить, что встречаются и полностью водонепроницаемые материалы. Это сталь, битум, стекло, основные разновидности пластмасс.
Морозостойкость
Важное физическое свойство в российских реалиях. Так зовется способность материала, насыщенного водой, выдерживать многократные попеременные замораживания и оттаивания без значительного уменьшения прочности, появления видимых признаков разрушения.
Разрушение при этом процессе нередко из-за того, что при замораживании вода увеличивается в своем объеме примерно на 9 %. При этом наибольшее ее расширение при переходе в лед наблюдается при отметке -4 °С. При заполнении пор материала водой, ее расширении и и замерзании, поровые стенки испытывают значительные повреждения, которые и ведут к разрушению материала.
Соответственно, морозостойкость будет определять степень насыщения пор водой, его плотность. Морозостойкими считаются именно плотные материалы. Из пористых в эту категорию можно отнести только те, которые отличаются большим присутствие закрытым пор. Или чьи поры вода заполняет не более чем на 90 %.
Физические свойства способны представить важные способности материалов. Некоторые из них мы уже подробно разобрали в статье. Это способность выдерживать холод, многократные наполнения водой и высушивания, удерживать, впитывать, отдавать жидкость и другие важные характеристики.
Источник
Ê ôèçè÷åñêèì ñâîéñòâàì âåùåñòâà ïðèíÿòî îòíîñèòü òå, êîòîðûå ôèêñèðóþòñÿ íàáëþäåíèåì ëèáî èçìåðåíèåì, áåç ïåðåõîäà â èíîå âåùåñòâî.
Íàèáîëåå ñóùåñòâåííûå ôèçè÷åñêèå ñâîéñòâà âåùåñòâà:
– àãðåãàòíîå ñîñòîÿíèå ïðè îïðåäåëåííûõ òåìïåðàòóðå è äàâëåíèè;
– çàïàõ (èëè åãî îòñóòñòâèå);
– öâåò, áëåñê (èëè èõ îòñóòñòâèå);
– ïëîòíîñòü;
– òåïëîïðîâîäíîñòü;
– ýëåêòðîïðîâîäíîñòü (èëè íå ýëåêòðîïðîâîäíîñòü).
– ðàñòâîðèìîñòü (èëè íåðàñòâîðèìîñòü) â âîäå;
– òåìïåðàòóðà ïëàâëåíèÿ;
– òåìïåðàòóðà êèïåíèÿ;
Ñïèñîê ôèçè÷åñêèõ ñâîéñòâ òâåðäûõ âåùåñòâ ìîæíî óâåëè÷èòü äîáàâèâ òâåðäîñòü, ïëàñòè÷íîñòü (èëè õðóïêîñòü), à äëÿ êðèñòàëëè÷åñêèõ — äîïîëíèòåëüíî è ôîðìó êðèñòàëëîâ. Îïèñûâàÿ ñâîéñòâà æèäêîñòè, óêàçàòü ïîäâèæíàÿ îíà ëèáî ìàñëÿíèñòàÿ.
Âèçóàëüíî ïîëó÷èòñÿ îöåíèòü ñëåäóþùèå ôèçè÷åñêèå õàðàêòåðèñòèêè: öâåò, çàïàõ, âêóñ, ôîðìó êðèñòàëëîâ. Ïëîòíîñòü, ýëåêòðîïðîâîäíîñòü, òåìïåðàòóðó ïëàâëåíèÿ è êèïåíèÿ ôèêñèðóþò, âûïîëíèâ çàìåðû. Äàííûå î ôèçè÷åñêèõ ñâîéñòâàõ áîëüøèíñòâà âåùåñòâ ñèñòåìàòèçèðîâàíû â ïðîôèëüíûõ ñïðàâî÷íèêàõ.
Ôèçè÷åñêèå ñâîéñòâà âåùåñòâà îáóñëîâëåíû àãðåãàòíûì ñîñòîÿíèåì. Ê ïðèìåðó, ïëîòíîñòü ëüäà, âîäû è âîäÿíîãî ïàðà ðàçíûå âåëè÷èíû. Ó ãàçîîáðàçíîãî êèñëîðîäà öâåò îòñóòñòâóåò, à ó æèäêîãî îí ãîëóáîé.
Çíàíèå ôèçè÷åñêèõ ñâîéñòâ ñïîñîáñòâóåò îïðåäåëåíèþ íåìàëîãî ÷èñëà âåùåñòâ. Ê ïðèìåðó, óíèêàëüíîñòü ìåäè â òîì, ÷òî îíà åäèíñòâåííûé ìåòàëë êðàñíîãî öâåòà. Èñêëþ÷èòåëüíîñòü ïîâàðåííîé ñîëè – åå ñîëåíûé âêóñ. Öâåò òâåðäîãî éîäà áëèçîê ê ÷åðíîìó, ïðè íàãðåâå îí ñòàíîâèòüñÿ òåìíî-ôèîëåòîâûì ïàðîì.  ïðåîáëàäàþùåì ÷èñëå ñèòóàöèé äëÿ òîãî ÷òîáû «óãàäàòü» âåùåñòâà òðåáóåòñÿ àíàëèçèðîâàòü ñîâîêóïíîñòü õàðàêòåðíûõ îñîáåííîñòåé.
Êàëüêóëÿòîðû ïî ôèçèêå | |
Ðåøåíèå çàäà÷ ïî ôèçèêå, ïîäãîòîâêà ê ÝÃÅ è ÃÈÀ, ìåõàíèêà òåðìîäèíàìèêà è äð. | |
Êàëüêóëÿòîðû ïî ôèçèêå |
Êàëüêóëÿòîðû ïî õèìèè | |
Õèìèÿ îíëàéí íà íàøåì ñàéòå äëÿ ðåøåíèÿ çàäà÷ è óðàâíåíèé. | |
Êàëüêóëÿòîðû ïî õèìèè |
Õèìè÷åñêèå âåùåñòâà | |
Ìîëåêóëÿðíîå ñòðîåíèå âåùåñòâ, ôèçè÷åñêèå è õèìè÷åñêèå ñâîéñòâà âåùåñòâ, ñòðîåíèå âåùåñòâà. | |
Õèìè÷åñêèå âåùåñòâà |
Ôèçèêà 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ | |
Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ôèçèêè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ | |
Ôèçèêà 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ |
Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ | |
Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó õèìèè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ | |
Õèìèÿ 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ |
Âåùåñòâî. Õèìè÷åñêèå ñâîéñòâà. | |
Õèìè÷åñêèå ñâîéñòâà — óìåíèå âåùåñòâ ( õèìè÷åñêèõ ýëåìåíòîâ , ïðîñòûõ âåùåñòâ è õèìè÷åñêèõ ñîåäèíåíèé ) âçàèìîäåéñòâîâàòü ñ èíûìè âåùåñòâàìè ëèáî âèäîèçìåíÿòüñÿ ïîä âîçäåéñòâèåì íåêîòîðûõ ôàêòîðîâ. | |
Âåùåñòâî. Õèìè÷åñêèå ñâîéñòâà. |
Источник
Физические свойства – внутренние, присущие данному материалу или веществу особенности, обусловливающие их различие или общность с другими веществами или материалами и проявляющиеся как ответная реакция на воздействие внешних физических полей или сред.
Физические свойства, определенные стандартными методами с указанием состава, строения и структур, представляют собой стандартные справочные данные веществ и материалов. Порядок разработки и аттестации стандартных справочных данных о физико-химических константах и свойствах веществ и материалов установлен в Правилах по межгосударственной стандартизации (ПМГ 28-99).
Наиболее важными физическими свойствами, значения которых учитывают при практическом использовании материалов, являются плотность, теплоемкость, теплопроводность, тепловое расширение, электропроводность. Особые магнитные свойства железа, никеля, кобальта и их сплавов, а также ферритов выделили их в группы материалов исключительной ценности — ферро- и ферримагнетики.
Физические свойства определяются типом межатомных и межмолекулярных связей, химическим составом материалов, температурой и давлением. Для большинства процессов обработки материалов давления не превышают 500 МПа. Такие давления практически не влияют на значения физических свойств. Различают зависимые и независимые от структуры материала физические свойства. Значения последних определяются только химическим составом материала и температурой.
При нагреве физические свойства изменяются нелинейно. Приближенно они характеризуются соответствующими температурными коэффициентами. Например, удельное электросопротивление r при нагреве на ΔТ определяется зависимостью:
rТ = r0 (1 + b ΔТ), (4.1)
где r0, rТ− удельное электросопротивление на нижней и верхней границе интервала температур ΔТ; b − температурный коэффициент.
Так как значения температурных коэффициентов малы, то аналогичные линейные зависимости свойств от температуры применимы в широких интервалах температур с достаточной для практических целей точностью.
Плотность− мера количества вещества (m) в единице объема (V) кг/м3
ρ= т/V. (4.2)
Плотность, определенная для однородных веществ, может рассматриваться как теоретическая. Плотностью, близкой к теоретической, обладают, как правило, металлы, жидкости, некоторые полимеры и др. Для неоднородных веществ используют понятие «объемная плотность».
Объемная плотность − величина, определяемая отношением массы неоднородного вещества ко всему занимаемому им объему, включая имеющиеся в нем поры и пустоты.
Объемную плотность ρср. вычисляют по формуле:
ρср.= m/Ve , (4.3)
где Ve− объем вещества в естественном состоянии.
Для инженерных расчетов используются понятия «относительная плотность» и «насыпная плотность».
Относительная плотность представляет собой отношение плотности вещества ρ к плотности эталонного вещества ρэтпри определенных внешних условиях:
ρот = ρ / ρэт.. (4.4)
Плотность твердых и жидких материалов обычно сравнивают с плотностью воды при температуре 4°С (1000 кг/ м3).
Насыпная плотность ρн — масса единицы объема свободно насыпанных дисперсных материалов (например, цемент, песок, минеральная вата и др.)
Плотностьсущественно зависит от типа межатомной связи. Максимальную плотность имеют материалы с ненаправленными металлическими или ионными связями. Направленная ковалентная связь предопределяет менее плотное расположение атомов.
У металлов плотность изменяется от 22,5 г/см3 − у осмия до 0,534 г/см3 − у лития. Легирование сплава более тяжелыми элементами, чем основа, увеличивает, а более легкими − уменьшает его плотность. Масштабы легирования ограничены техническими и экономическими соображениями Плотность основы является определяющей для группы сплавов разного химического состава на основе данного металла.
Пористость уменьшает плотность. Для порошковых сплавов и других пористых материалов она является одним из критериев качества. Пористость оценивают по фактической плотности материала и определяют методом гидростатического взвешивания или другими способами.
Уменьшение расхода конструкционных материалов и снижение массы металлоконструкций и машин является тенденцией современного машиностроения. Чем меньше плотность материалов, тем ниже динамические нагрузки на детали и меньше расход энергии на эксплуатацию машины.
Преимущество легких материалов над тяжелыми становится более наглядным при сравнении материалов по их удельной прочности и удельной жесткости. По этим характеристикам первое место занимают композиционные материалы, а сплавы алюминия (дуралюмины) не уступают более прочным легированным конструкционным сталям.
При нагреве плотность материалов уменьшается из-за теплового расширения.
Тепловое расширение− это изменение объёма (линейных размеров тела) при повышении температуры при постоянном давлении. В основе теплового расширения лежит несимметричность тепловых колебаний атомов, поэтому при повышении температуры увеличиваются средние межатомные расстояния.
Для практических целей пользуются средними значениями коэффициентов объемного αV и линейного αl расширения:
(4.5)
где V, l — объем и длина образца соответственно; ΔV, Δl изменения объёма и длины при повышении температуры на ΔТ.
В общем случае
b = a1 + a2 + a3, (4.6)
где a1, a2 и a3 — соответственно коэффициенты линейного расширения по трем осям симметрии кристалла (табл. 4.1).
Таблица 4.1
Значение коэффициента линейного расширения a • 106 , К-1
Материал | a1 | a2 | a3 |
Be | 8,6 | 11,7 | 11,7 |
Графит | 17,2 | -1,5 | -1,5 |
Со | 16,1 | 12,6 | 12,6 |
Mg | 26,4 | 25,6 | 25,6 |
SiO2 | 8,0 | 14,4 | 14,4 |
SiC | 12,2 | 20,9 | 20,9 |
Sb |
Для кристаллов кубической системы, а также для стекла и других изотропных материалов с аморфной структурой b = 3a. В кристаллах с низкой симметрией отдельные слагаемые коэффициента объемного расширения могут принимать отрицательные значения. При поляризации атомов и появлении дальнодействующих составляющих межатомного взаимодействия коэффициент b становится отрицательным. Например, германий при нагреве от 15 до 40К не расширяется, а сжимается. Среди полимеров самое большое тепловое расширение имеют неполярные полимеры, у которых силы Ван-дер-Ваальса малы.
Создание текстур в металлических сплавах, ориентация макромолекул в полимерах отражаются на значениях коэффициента линейного расширения: они существенно различаются в направлении преимущественной ориентации и в поперечном направлении.
Тепловое расширение полимеров уменьшается при усилении межмолекулярного притяжения благодаря взаимодействию диполей, наличию водородных и химических связей между молекулами.
Тепловое расширение стекол по мере повышения содержания щелочных оксидов Ме2О возрастает от a =0,56 · 10-6 К-1 − у кварцевого стекла до a < 6 ·10-6 К-1 − у так называемых твердых стекол и a > 6 · 10-6 К-1 − у так называемых мягких стекол, к которым относится большая часть промышленных стекол (a = (6 … 9) · 10-6 К-1).
Различие значений коэффициента теплового расширения двух соединяемых материалов является причиной появления значительных термических напряжений. Согласование значений a при соединении стекол с металлами необходимо при впаивании металлических проводников в стекла. Получаемые спаи отличаются простотой конструкции и надежностью в эксплуатации.
Тепловое расширение учитывают при расчете прессовых посадок, сварке и пайке разнородных материалов, изготовлении аппаратуры из двухслойных сталей и ее эксплуатации, при выборе клеев и эксплуатации машин и приборов в изменяющихся температурных полях. У большинства материалов при повышении температуры коэффициенты теплового расширения увеличиваются. При термоциклировании или частых колебаниях температур в изделиях и деталях создаются неоднородные температурные поля и возникают напряжения. Работа материала при повышенных температурах и меняющихся напряжениях сопровождается появлением трещин и разрушением даже, если эти материалы являются высокопластичными. Наиболее стойки к термической усталости и разрушению при термических ударах материалы, в которых малое тепловое расширение сочетается с высокой теплопроводностью.
Теплопроводностьюназывается перенос энергии в форме теплоты в твердых телах, жидкостях и газах при макроскопической неподвижности среды. Основным законом передачи тепла в неподвижной среде (молекулярной теплопроводностью или кондукцией) является закон Фурье:
, (4.7)
где q — плотность теплового потока, Дж/м2 ·с; l — теплопроводность, Вт/(м·К).
Теплопроводность зависит от типа межатомной связи, температуры, химического состава и структуры материала.
Тепловая энергия в твердых телах переносится электронами и фононами, т.е.
l = lэ + lф. (4.8)
Механизм передачи энергии в первую очередь определяется типом связи: в металлах энергию переносят электроны; в материалах с ковалентным или ионным типом связи — фононы. Самым теплопроводным является алмаз. В полупроводниках при весьма незначительной концентрации носителей заряда теплопроводность осуществляется в основном фононами. Чем совершеннее кристаллы, тем выше их теплопроводность. Монокристаллы лучше проводят тепловую энергию, чем поликристаллы, так как границы зерен и другие дефекты кристаллической структуры рассеивают фононы и увеличивают электросопротивление.
Кристаллическая решетка создает периодическое энергетическое пространство, в котором передача энергии электронами или фононами облегчена по сравнению с аморфным состоянием (табл. 4.2).
Таблица 4.2
Теплопроводность кварцевого стекла, кварца, поликристаллических
и жидких металлов
Материал | t, °С | l, Вт/(м·К) |
Кварцевое стекло | -200 | 0,93 |
-100 | 1,56 | |
1,90 | ||
2,08 | ||
Кварц* | -200 | 39,8/100,3 |
-100 | 17,3/34,5 | |
10,4/19,0 | ||
6,9/12,1 | ||
Алюминий** | ~ 650 | 85/225 |
Свинец** | -327 | 15/31 |
Цинк** | ~ 419 | 60/93 |
_______________________________________________________________________
* В числителе − в перпендикулярном, а в знаменателе − в параллельном оси направлении. ** В числителе − в расплавленном, а в знаменателе − в поликристаллическом состоянии.
Чем больше примесей содержит металл, мельче зерна и больше искажена кристаллическая решетка, тем меньше теплопроводность. Легирование вносит искажение в кристаллические решетки твердых растворов и понижает теплопроводность по сравнению с чистым металлом — основой сплава. Структурные составляющие, представляющие дисперсные смеси нескольких фаз (эвтектики, эвтектоиды), снижают теплопроводность. Структуры с равномерным распределением частиц фаз имеют меньшую теплопроводность, чем основа сплава. Предельным видом подобной структуры является пористый материал. По сравнению с твердыми телами газы являются теплоизоляторами.
Теплопроводность пористых керамических и металлических материалов независимо от типа межатомной связи можно оценить по формуле:
lпор @ l(1 – р), (4.9)
где l — теплопроводность беспористого материала, Вт/(м·К); р — доля пор в объёме пористого материала (пористость).
Графит имеет высокую теплопроводность. При передаче теплоты параллельно слоям атомов углерода базисной плоскости теплопроводность графита превышает теплопроводность меди более чем в 2 раза (табл. 4.3).
Разветвленные пластины графита в сером чугуне имеют структуру монокристалла, и поэтому он имеет высокую теплопроводность (50-70 Вт/(м·К)). Высокопрочный чугун с шаровидным графитом при той же объемной доле графита имеет теплопроводность 25…40 Вт/м·К, что почти вдвое меньше по сравнению с серым чугуном.
При нагреве теплопроводности сталей разных классов сближаются (рис. 4.1).
Стекло имеет низкую теплопроводность. Полимерные материалы плохо проводят теплоту, теплопроводность большинства термопластов не превышает 1,5 Вт/(м·К).
Таблица 4.3
Физические свойства материалов с металлической, ковалентной
иионной межатомной связью
Материал | g, г/см3 | a·106, К-1 | l, Вт/(м·К) |
Металлическая связь | |||
Сu | 8,93 | 16,7 | |
Be | 1,84 | 12,8 | |
Mg | 1,71 | 25,9 | |
Al | 2,7 | ||
Ti | 4,5 | 7,5 | |
Zr | 6,44 | 6,3 | 21,4 |
Fe | 7,87 | 12,1 | |
Ni | 8,7 | 14,0 | |
Ковалентная связь | |||
Алмаз | 3,52 | 1,2 | |
Графит | 2,25 | 8,1 | |
SiC | 3,22 | 4,3 | |
Si3N4 | 3,19 | 2,75 | 17,1 |
Поливинилхлорид | 1,38-1,43 | 0,16 | |
Полиэтилен | 0,92-0,96 | 0,4 | |
Полистирол | 1,05 | 0,16 | |
Поликарбонат | 1,2 | 60-70 | 0,24 |
Фторопласт-4 | 2,14- 2,25 | – | 0,24 |
BN | 2,29 | 7,5 | 15,1 |
AlN | 3,05 | 4,03 | |
Ионная связь | |||
ВеО | 2,7-2,86 | 10,6 | 152,4 |
MgO | 3,3-3,5 | 15,6 | 58,6 |
Аl2Оз | 3,7-3,8 | 8,4 | 28,9 |
SiO2 | 2,3-2,6 | 0,5 | 12,6 |
ТiО2 | 4,0-5,1 | 7,1 | 34,7 |
ZrO2 | 5,2-5,35 | 7,6 | 1,6 |
Рис. 4.1.Зависимость теплопроводности нелегированных (I), низколегированных (II) и высоколегированных (III) сталей от температуры |
Теплоемкость− это способность вещества поглощать теплоту при нагреве. Ее характеристикой является удельная теплоемкость − количество энергии, поглощаемой единицей массы при нагреве на один градус.
У металлических сплавов удельная теплоемкость находится в пределах 100…2000 Дж/(кг·К). Тугоплавкие металлы характеризуются низкими значениями, например, W (134 Дж/(кг·К) и Мо (254 Дж/(кг·К) , а легкие металлы, напротив − высокими значениями теплоемкости, например, Al, Mg и Be (896, 1017 и 1750 Дж/(кг·К), соответственно. У большинства металлов теплоемкость составляет 300-400 Дж/(кг·К). Теплоемкость металлических материалов растет с повышением температуры.
Полимерные материалы, как правило, имеют удельную теплоемкость 1000 Дж/(кг·К) и более.
Электрические свойства материалов характеризуются наличием носителей зарядов — электронов или ионов — и свободой их передвижения под действием электрического поля. Высокие энергии ковалентной и ионной связи сообщают материалам с этими типами связи свойства диэлектрика. Их слабая электрическая проводимость обусловлена влиянием примесей, причем под влиянием влаги, образующей с примесями проводящие растворы, электропроводность таких материалов возрастает.
Материалы с разными типами связи имеют различные температурные коэффициенты электросопротивления: у металлов он положителен, у материалов с ковалентным и ионным типом связи — отрицателен. При нагреве металлов концентрация носителей зарядов — электронов не увеличивается, а сопротивление их движению возрастает из-за увеличена амплитуд колебаний атомов. В материалах с ковалентной или ионной связью при нагреве концентрация носителей зарядов повышается настолько, что нейтрализуется влияние помех от увеличения колебаний атомов. По этой причине удельное электросопротивление таких материалов при нагреве снижается. Начиная с (0,8 — 0,9)Тпл концентрация носителей заряда становится большой, а сами материалы делаются проводящими.
Источник