Какие свойства называют окислительными
Окисли́тель — вещество, в состав которого входят атомы, присоединяющие к себе во время химической реакции электроны. Иными словами, окислитель — это акцептор электронов.
В зависимости от поставленной задачи (окисление в жидкой или в газообразной фазе, окисление на поверхности) в качестве окислителя могут быть использованы самые разные вещества.
- Электрохимическое окисление позволяет окислять практически любые вещества на аноде, в растворах или в расплавах. Так, самый сильный неорганический окислитель, элементарный фтор, получают электролизом расплавов фторидов.
Распространённые окислители и их продукты[править | править код]
Окислитель | Полуреакции | Продукт | Стандартный потенциал, В |
---|---|---|---|
O2кислород | Разные, включая оксиды, H2O и CO2 | +1,229 (в кислой среде) +0,401 (в щелочной среде) | |
O3озон | Разные, включая кетоны и альдегиды | +2,07 (в кислой среде) | |
Пероксиды | Разные, включая оксиды, окисляет сульфиды до сульфатов | ||
Hal2галогены | Hal−; окисляет металлы, P, C, S, Si до галогенидов | F2: +2,87 Cl2: +1,36 | |
ClO−гипохлориты | Cl− | ||
ClO3−хлораты | Cl− | ||
HNO3азотная кислота | с активными металлами, разбавленная с активными металлами, концентрированная с тяжёлыми металлами, разбавленная c тяжёлыми металлами, концентрированная | NH3, NH4+ NO NO NO2 | |
H2SO4, конц. серная кислота | c неметаллами и тяжёлыми металлами с активными металлами | SO2; окисляет металлы до сульфатов с выделением сернистого газа или серы S H2S | |
Шестивалентный хром | Cr3+ | +1,33 | |
MnO2оксид марганца(IV) | Mn2+ | +1,23 | |
MnO4−перманганаты | кислая среда нейтральная среда сильнощелочная среда | Mn2+ MnO2 MnO42− | +1,51 +1,695 +0,564 |
Катионы металлов и H+ | Me0 H2 | См. Электрохимический ряд активности металлов |
Зависимость степени окисления от концентрации окислителя[править | править код]
Чем активнее металл, реагирующий с кислотой, и чем более разбавлен её раствор, тем полнее протекает восстановление.
В качестве примера — реакция азотной кислоты с цинком:
- Zn + 4HNO3(конц.) = Zn(NO3)2 + 2NO2 + 2H2O
- 3Zn + 8HNO3(40 %) = 3Zn(NO3)2 + 2NO + 4H2O
- 4Zn + 10HNO3(20 %) = 4Zn(NO3)2 + N2O + 5H2O
- 5Zn + 12HNO3(6 %) = 5Zn(NO3)2 + N2 + 6H2O
- 4Zn + 10HNO3(0.5 %) = 4Zn(NO3)2 + NH4NO3 + 3H2O
Сильные окислители[править | править код]
Сильными окислительными свойствами обладает «царская водка» — смесь одного объёма азотной кислоты и трёх объёмов соляной кислоты.
HNO3 + 3HCl ↔ NOCl + 2Cl + 2H2O
Образующийся в нём хлористый нитрозил распадается на атомарный хлор и монооксид азота:
NOCl=NO + Cl
Царская водка является сильным окислителем благодаря атомарному хлору, который образуется в растворе.
Царская водка окисляет даже благородные металлы — золото и платину.
Селеновая кислота — одна из немногих неорганических кислот, в концентрированном виде способная окислять золото. Более сильный окислитель даже в умеренно разбавленном растворе, чем серная кислота. Способна к окислению соляной кислоты по уравнению:
При этом продуктами реакции являются селенистая кислота, свободный хлор и вода. В то же время концентрированная серная кислота не способна окислять HCl.
Ещё один сильный окислитель — перманганат калия. Он способен окислять органические вещества и даже разрывать углеродные цепи:
С6H5-CH2-CH3 + [O] → C6H5COOH + …
C6H6 + [O] → HOOC-(CH2)4-COOH
Сила окислителя при реакции в разбавленном водном растворе может быть выражена стандартным электродным потенциалом: чем выше потенциал, тем сильнее окислитель.
К сильным окислителям относятся также оксид меди(III), озонид цезия, надпероксид цезия, все фториды ксенона.
Очень сильные окислители[править | править код]
Условно к «очень сильным окислителям» относят вещества, превышающие по окислительной активности молекулярный фтор. К ним, например, относятся: гексафторид платины, диоксидифторид, дифторид криптона, фторид серебра(II), катионная форма Ag2+, гексафтороникелат(IV) калия. Перечисленные вещества, к примеру, способны при комнатной температуре окислять инертный газ ксенон, что неспособен делать фтор (требуется давление и нагрев) и тем более ни один из кислородсодержащих окислителей.
См. также[править | править код]
- Окислительно-восстановительные реакции
Источник
Определение
Окислительно -восстановительные реакции (ОВР) – реакции, протекающие с изменением степени окисления одного или нескольких элементов.
Окислительно-восстановительные реакции играют важную роль в природе и технике. Фотосинтез, дыхание, брожение, накопление энергии в клетках сопровождаются переносом электронов. Разделяя процессы окисления и восстановления, удается превращать энергию химических реакций в электрическую. Этот принцип лежит в основе работы гальванических элементов и аккумуляторов.
К числу ОВР принадлежат все реакции между простыми и сложными веществами, между двумя простыми веществами, а также некоторые случаи взаимодействия сложных веществ:
$overset{0}{Fe} + overset{+2}{Cu}overset{+6}{S} overset{-2}{O_4} = overset{+2}{Fe}overset{+6}{S} overset{-2}{O_4} +overset{0}{Cu}$
$2overset{0}{Mg} + overset{0}{O_2} = 2overset{+2}{Mg}overset{-2}{O}$
$2overset{+1}{K} overset{-1}{I} + 4overset{+1}{H}overset{+5}{N}overset{-2}{O_3} = overset{0}{I_2} + 2overset{+4}{N}overset{-2}{O_2} + 2overset{+1}{K} overset{+5}{N}overset{-2}{ O_3} + 2overset{+1}{H_2}overset{-2}{O}$
При окислительно-восстановительных реакциях происходит переход электронов от одних атомов к другим.
Определение
Атом, отдающий электрон, то есть повышающий свою степень окисления, называют восстановителем, а атом, принимающий электрон (его степень окисления понижается) – окислителем.
Часто термины окислитель и восстановитель переносят и на вещества, в состав которых входят соответствующие атомы. В результате реакции окислитель восстанавливается, а восстановитель окисляется.
Определение
Процесс отдачи атомом электронов называется окислением, а процесс принятия атомом электронов – восстановлением.
Запомни! Нельзя путать название процесса передачи электронов с функцией атома, которую он проявляет в этом процессе.
Восстановителем может быть атом элемента, а восстановление – это процесс принятия электронов.
$underline{O}$кислитель | $underline{textrm{В}}$осстановитель |
---|---|
$underline{textrm{В}}$зял электроны | $underline{O}$тдал электроны |
$underline{textrm{В}}$осстановился | $underline{O}$кислился |
$S^{+6} + 2bar{e} rightarrow S^{+4}$ | $S^{-2} -2bar{e} rightarrow S^{0}$ |
степень окисления $downarrow$ | степень окисления $uparrow$ |
процесс восстановления | процесс окисления |
Типичные окислители: | Типичные восстановители: |
|
|
Есть ряд мнемонических правил, которые позволяют лучше запомнить разницу между этими понятиями:
По первым буквам слов можно составить следующие сокращения:
ОВВ: окислитель – взял $bar{e}$ – восстановился
ВОО: восстановитель – отдал – окислился
2. Или использовать словосочетание “окислитель-грабитель”.
3. Запомнить стихотворение:
Восстановитель — это тот, кто электроны отдает.
Сам отдает грабителю, злодею-окислителю.
Отдает — окисляется, сам восстановителем является.
КЛАССИФИКАЦИЯ ОВР
Определение
Окислительно-восстановительные реакции в которых окислитель и восстановитель входят в состав разных соединений называют межмолекулярными, а ОВР, в которых и окислитель, и восстановитель входят в состав одного и того же соединения – внутримолекулярными.
К числу внутримолекулярных принадлежат реакции термического разложения некоторых веществ, например, сульфата меди(II):
$2CuSO_4 stackrel{700^circ C}{=} 2CuO + 2SO_2 + O_2$
$mathrm{S^{+6} + 2e^– rightarrow S^{+4}}$ |2 2 окислитель, процесс восстановления
$mathrm{2O^{–2} – 4e^– rightarrow O_2^0}$ |4 1 восстановитель, процесс окисления
__________________________________________________________________________________________
$mathrm{2S^{+6} + 2O^{–2} rightarrow 2S^{+4} + O_2^0}$
Внутримолекулярные ОВР, в свою очередь, также делятся на два типа: реакции диспропорционирования и сопропорционирования.
Определение
Внутримолекулярные окислительно-восстановительные реакции, в которых окислителем и восстановителем является один и тот же элемент, который в начале реакции находится в одной степени окисления, называют диспропорционированием.
К числу таких реакций принадлежит, например, разложение пероксида водорода на воду и кислород.
$2H_2overset{-1}{O_2} rightarrow 2H_2overset{-2}{O} + overset{0}{O_2}$.
Определение
Внутримолекулярные окислительно-восстановительные реакции, в результате которых атомы одного и того же элемента, находящиеся в разных степенях окисления, приобретают одну промежуточную, называют сопропорционированием.
Примером служит взаимодействие сернистого газа с сероводородом, приводящее к образованию серы:
$2H_2overset{-2}{S} + overset{+4}{S}O_2 = 3overset{0}{S} + 2H_2O$.
Источник
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 декабря 2017; проверки требуют 33 правки.
Окисли́тельно-восстанови́тельные реа́кции (ОВР), также редокс (сокр. англ. redox, от reduction-oxidation — восстановление-окисление) — встречно-параллельные химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ (или ионов веществ), реализующимся путём перераспределения электронов между атомом-окислителем (акцептором) и атомом-восстановителем
.
Историческая справка[править | править код]
Издавна учёные полагали, что окисление — потеря флогистона (особого невидимого горючего вещества, термин которого ввел Иоганн Бехер), а восстановление — его приобретение. Но, после создания А. Лавуазье в 1777 году кислородной теории горения, к началу XIX века химики стали считать окислением взаимодействие веществ с кислородом, а восстановлением их превращения под действием водорода. Тем не менее в качестве окислителя могут выступать и другие элементы, например
В этой реакции окислитель — ион водорода[1] — H+, а железо выступает в роли восстановителя.
В соответствии с электронно-ионной теорией окисления-восстановления, разработанной Л. В. Писаржевским в 1914 г., окисление — процесс отщепления электронов от атомов или ионов элемента, который окисляется; Восстановлением называется процесс присоединения электронов к атомам или ионам элемента, каковой восстанавливается. Например, в реакции
атом цинка теряет два электрона, то есть окисляется, а молекула хлора присоединяет их, то есть восстанавливается.
Описание[править | править код]
В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется; окислитель присоединяет электроны, то есть восстанавливается. Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений — окисления и восстановления, происходящих одновременно и без отрыва одного от другого.[2]
Окисление[править | править код]
Окисление — процесс отдачи электронов с увеличением степени окисления.
При окисле́нии у веществ в результате отдачи электронов увеличивается степень окисления. Атомы окисляемого вещества называются донорами электронов, а атомы окислителя — акцепторами электронов.
В некоторых случаях при окислении молекула исходного вещества может стать нестабильной и распасться на более стабильные и более мелкие составные части (см. Свободные радикалы). При этом некоторые из атомов получившихся молекул имеют более высокую степень окисления, чем те же атомы в исходной молекуле.
Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель (сам процесс называется окислением):
восстановитель — e− ↔ сопряжённый окислитель.
Несвязанный, свободный электрон является сильнейшим восстановителем.
Восстановление[править | править код]
Восстановле́ние — процесс присоединения электронов атомом вещества, при этом его степень окисления понижается.
При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Примеры: восстановление оксидов металлов до свободных металлов при помощи водорода, углерода, других веществ; восстановление органических кислот в альдегиды и спирты; гидрогенизация жиров и др.
Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель (сам процесс называют восстановлением):
окислитель + e− ↔ сопряжённый восстановитель.
Окислительно-восстановительная пара[править | править код]
Окислитель и его восстановленная форма, либо восстановитель и его окисленная форма составляет сопряжённую окислительно-восстановительную пару, а их взаимопревращения являются окислительно-восстановительными полуреакциями.
В любой окислительно-восстановительной реакции принимают участие две сопряжённые окислительно-восстановительные пары, между которыми имеет место конкуренция за электроны, в результате чего протекают две полуреакции: одна связана с присоединением электронов, то есть восстановлением, другая — с отдачей электронов, то есть окислением.
Виды окислительно-восстановительных реакций[править | править код]
Межмолекулярные — реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных
веществ, например:
Внутримолекулярные — реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах одного и того же вещества, например:
Диспропорционирование (самоокисление-самовосстановление) — реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например:
Репропорционирование (конпропорционирование) — реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления:
Примеры[править | править код]
Окислительно-восстановительная реакция между водородом и фтором
Разделяется на две полу-реакции:
1) Окисление:
2) Восстановление:
Процесс присоединения электронов — восстановление. При восстановлении степень окисления понижается:
Атомы или ионы, которые в данной реакции присоединяют электроны, являются окислителями, а атомы или ионы, которые отдают электроны — восстановителями.
Для нахождения пропорции веществ, вступающих в химическую реакцию, часто требуется уравнять ОВР. Уравнивание ОВР сводится к нахождению стехиометрических коэффициентов (то есть, количества молей каждого соединения). Стехиометрические коэффициенты могут принимать только значения целых величин от 1 и выше, дробные стехиометрические коэффициенты допускаются лишь в некоторых случаях записи термохимических уравнениях из курса физической химии. Различают два метода уравнивания ОВР: метод полуреакций и метод электронного баланса. Метод электронного баланса более прост и используется в случае протекания реакции в газообразной среде (например, процессы горения или термического разложения соединений). Метод полуреакций более сложен и используется в случае протекания реакции в жидкой среде. Метод полуреакций оперирует не свободными атомами и одноатомными ионами, а реально существующими в растворе частицами, образовавшимися в результате процессов растворения и/или диссоциации реагирующих веществ. Оба метода занимают важное место в базовом курсе общей и неорганической химии, изучаемом студентами различных учебных заведений[3].
Примечания[править | править код]
- ↑ В этом, как и во многих других случаях водород рассматривают как помещённый в VII группе периодической системы химических элементов над галогенами-окислителями.
- ↑ Несущественно, переходят ли электроны с одного атома на другой вполне (ионная связь) или же только более или менее оттягиваются (полярная ковалентная связь). Поэтому в данном случае мы будем говорить об отдаче или присоединении электронов независимо от действительного типа валентной связи. В общем, окислительно-восстановительные процессы можно определить как реакции, связанные с переходом электронов от одних атомов к другим. То есть валентности [ковалентных молекулярных соединений] в этих реакциях выступают как степени окисления. Более строго, в узком смысле под степенью окисления имеется в виду в том числе и валентности.
- ↑ ОВР методом полуреакций (недоступная ссылка). Химия и химическая технология в жизни (10.07.2013). Дата обращения: 19 января 2015. Архивировано 19 января 2015 года.
Литература[править | править код]
- Хомченко Г. П., Севастьянова К. И., Окислительно-восстановительные реакции, 2 изд., М., 1980;
- Кери Ф., Сандберг Р., Углублённый курс органической химии, пер. с англ., кн. 2, М., 1981, с. 119-41, 308-43;
- Марч Дж., Органическая химия, пер. с англ., т. 4, М., 1988, с. 259—341;
- Турьяи Я. И., Окислительно-восстановительные реакции и потенциалы в аналитической химии, М., 1989;
- Тодрес 3. В., Электронный перенос в органической и металлоорганической химии, в сб.: Итоги науки и техники. Сер. Органическая химия, т. 12, М., 1989. С. И. Дракин, З. В. Тодрес.
См. также[править | править код]
- Кислотно-основные реакции
Источник
Окислительно-восстановительной реакцией (редокс) называют взаимодействие двух атомов, при котором они обмениваются электронами.
Естественно, атомы не перекидывают между собой электроны, как футбольные мячи, иначе это было бы слишком просто.
Исходя из названия понятно, что во время реакции одновременно происходят окисление и восстановление.
Окислители и восстановители
Окисление или повышение степени — это процесс отдачи электронов одного атома другому. При этом элемент, отдающий электроны, называют восстановителем.
Восстановление или понижение степени — это процесс принятия электронов, отданных атомом. Элемент, принимающий их , называют окислителем.
Звучит запутанно, поэтому очень легко ошибиться в названии. Однако существует мнемоника, которая помогает запомнить неразбериху.
Важно!
Окислитель — похититель, забирает электроны, восстанавливает зоны.
Восстановитель – это донор, электроны отдает, окисление грядет.
Отдать — окислиться.
Взять — восстановиться.
«Вещества-оборотни»
Увы, нельзя сказать, что всю периодическую таблицу можно разделить на две колонки и никогда не ошибаться. На самом деле выделяют типичные вещества, понижающие и повышающие степень окисления. Но есть и «оборотни», которые могут выступать как окислителями, так и восстановителями.
Вещества, принимающие электроны
- Неметаллические, простые. Самым сильным будет F2F_2F2, за ним кислород O2O_2O2, потом Cl2Cl_2Cl2 и азот N2N_2N2. Это можно определить по шкале электронегативности элементов Полинга.
- Сложные вещества, содержащие ионы металлов или неметаллов, – элементы в высшей положительной степени окисления. Это может быть калий перманганат, хлорная, нитратная кислота, нитрат калия, высший оксид серы.
- Химические соединения, содержащие катионы некоторых металлов в высокой степени окисления Au3+Au^{3+}Au3+ или Fe3+Fe^{3+}Fe3+.
Вещества, отдающие электроны
- Простые металлы. Их способности к восстановлению демонстрирует ряд стандартных электродных потенциалов.
- Соединения, содержащие атомы или ионы неметаллов, – элементы в отрицательной низшей степени окисления. К ним относятся соединения с водородом HBrHBrHBr, H2SH_2SH2S и соли с бескислородными кислотными остатками, такие как K2SK_2SK2S, NaBrNaBrNaBr, LiILiILiI.
- Катионы, которые имеют минимальную положительную степень окисления. Во время реакции эта степень повышается.
- Сложные соединения, в составе которых содержатся катионы неметаллов в положительной промежуточной степени окисления. Этот показатель во время реакции может повыситься.
Внимание!
Остальные вещества, которых нет в списке – это «оборотни». Они ведут себя в реакциях непредсказуемо.
Электронный баланс
В основе любой окислительно-восстановительной реакции лежит электронный баланс.
Его суть заключается в следующем: сколько электронов отдал восстановитель, столько же и должен принять окислитель.
Именно на этом золотом правиле и базируются методы уравнения реакций, которые используют, когда расставить коэффициенты методом подбора долго и сложно.
Как работает метод электронного баланса?
- Сначала мы записываем саму реакцию, оставляем немного места для коэффициентов и несколько строчек внизу для уравнений.
- Расставляем степени окисления над каждым элементом.
- Ищем пары, меняющие свою степень окисления.
- Определяем, на сколько единиц произошло изменение. Изменения идут +8 – 0 – -8.
- Под уравнением записываем первый элемент, над ним – его изначальную степень окисления, потом количество электронов, которое он отдал или присоединил, и элемент еще раз – с окончательной степенью окисления.
- Со вторым элементом делаем аналогично.
- Находим наименьшее общее значение отданных и присоединенных электронов.
- Делим его на количество электронов каждой реакции.
- Полученные цифры и будут коэффициентами, которые следует выставлять.
Пример
SiH4+O2→SiO2+H2OSiH_4+O_2→SiO_2+H_2OSiH4+O2→SiO2+H2O – неуравненное взаимодействие.
Подпишем степень окисления каждого элемента и определим, кто поменял степень окисления:
Si−4H+1+O20=Si+4O2−2+H2+1O−2Si^{-4}H^{+1} + O_2^0 = Si^{+4}O_2^{-2} + H_2^{+1}O^{-2}Si−4H+1+O20=Si+4O2−2+H2+1O−2;
Кремний и кислород поменяли свою степень.
Si−4−8e=Si+4Si^{-4}-8e = Si^{+4}Si−4−8e=Si+4 – процесс окисления;
4O20+8e=4O−24O_2^0 + 8e = 4O^{-2}4O20+8e=4O−2 – процесс восстановления.
Общее кратное для чисел 4 и 8: – 8;
88=1 – коэффициент перед кремнием;
84 =2 – коэффициент перед кислородом;
SiH4+2O2→SiO2+2H2OSiH_4+2O_2→SiO_2+2H_2OSiH4+2O2→SiO2+2H2O.
Тест по теме “Окислительно-восстановительные реакции”
Источник