Какие свойства насыщенного пара есть

Какие свойства насыщенного пара есть thumbnail

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: насыщенные и ненасыщенные пары, влажность воздуха.

Если открытый стакан с водой оставить на долгое время, то в конце концов вода полностью улетучится. Точнее — испарится. Что такое испарение и почему оно происходит?

Испарение и конденсация

При данной температуре молекулы жидкости обладают разными скоростями. Скорости большинства молекул находятся вблизи некоторого среднего значения (характерного для этой температуры). Но попадаются молекулы, скорости которых значительно отличаются от средней как в меньшую, так и большую сторону.

На рис. 1 изображён примерный график распределения молекул жидкости по скоростям. Голубым фоном показано то самое большинство молекул, скорости которых группируются около среднего значения. Красный «хвост» графика — это небольшое число «быстрых» молекул, скорости которых существенно превышают среднюю скорость основной массы молекул жидкости.

Какие свойства насыщенного пара есть

Рис. 1. Распределение молекул по скоростям

Когда такая весьма быстрая молекула окажется на свободной поверхности жидкости (т.е. на границе раздела жидкости и воздуха), кинетической энергии этой молекулы может хватить на то, чтобы преодолеть силы притяжения остальных молекул и вылететь из жидкости. Данный процесс и есть испарение, а молекулы, покинувшие жидкость, образуют пар.

Итак, испарение — это процесс превращения жидкости в пар, происходящий на свободной поверхности жидкости (при особых условиях превращение жидкости в пар может происходить по всему объёму жидкости. Данный процесс вам хорошо известен — это кипение).

Может случиться, что через некоторое время молекула пара вернётся обратно в жидкость.

Процесс перехода молекул пара в жидкость называется конденсацией. Конденсация пара — процесс, обратный испарению жидкости.

Динамическое равновесие

А что будет, если сосуд с жидкостью герметично закрыть? Плотность пара над поверхностью жидкости начнёт увеличиваться; частицы пара будут всё сильнее мешать другим молекулам жидкости вылетать наружу, и скорость испарения станет уменьшаться. Одновременно начнёт увеличиваться скорость конденсации, так как с возрастанием концентрации пара число молекул, возвращающихся в жидкость, будет становиться всё больше.

Наконец, в какой-то момент скорость конденсации окажется равна скорости испарения. Наступит динамическое равновесие между жидкостью и паром: за единицу времени из жидкости будет вылетать столько же молекул, сколько возвращается в неё из пара. Начиная с этого момента количество жидкости перестанет убывать, а количество пара — увеличиваться; пар достигнет «насыщения».

Насыщенный пар — это пар, который находится в состоянии динамического равновесия со своей жидкостью. Пар, не достигший состояния динамического равновесия с жидкостью, называется ненасыщенным.

Давление и плотность насыщенного пара обозначаются и . Очевидно, и — это максимальные давление и плотность, которые может иметь пар при данной температуре. Иными словами, давление и плотность насыщенного пара всегда превышают давление и плотность ненасыщенного пара.

Свойства насыщенного пара

Оказывается, что состояние насыщенного пара (а ненасыщенного — тем более) можно приближённо описывать уравнением состояния идеального газа (уравнением Менделеева — Клапейрона). В частности, имеем приближённое соотношение между давлением насыщенного пара и его плотностью:

(1)

Это весьма удивительный факт, подтверждаемый экспериментом. Ведь по своим свойствам насыщенный пар существенно отличается от идеального газа. Перечислим важнейшие из этих отличий.

1. При неизменной температуре плотность насыщенного пара не зависит от его объёма.

Если, например, насыщенный пар изотермически сжимать, то его плотность в первый момент возрастёт, скорость конденсации превысит скорость испарения, и часть пара конденсируется в жидкость — до тех пор, пока вновь не наступит динамическое равновесие, в котором плотность пара вернётся к своему прежнему значению.

Аналогично, при изотермическом расширении насыщенного пара его плотность в первый момент уменьшится (пар станет ненасыщенным), скорость испарения превысит скорость конденсации, и жидкость будет дополнительно испаряться до тех пор, пока опять не установится динамическое равновесие — т.е. пока пар снова не станет насыщенным с прежним значением плотности.

2. Давление насыщенного пара не зависит от его объёма.

Это следует из того, что плотность насыщенного пара не зависит от объёма, а давление однозначно связано с плотностью уравнением (1).

Как видим, закон Бойля — Мариотта, справедливый для идеальных газов, для насыщенного пара не выполняется. Это и не удивительно — ведь он получен из уравнения Менделеева — Клапейрона в предположении, что масса газа остаётся постоянной.

3. При неизменном объёме плотность насыщенного пара растёт с повышением температуры и уменьшается с понижением температуры.

Действительно, при увеличении температуры возрастает скорость испарения жидкости.

Динамическое равновесие в первый момент нарушается, и происходит дополнительное испарение некоторой части жидкости. Пара будет прибавляться до тех пор, пока динамическое равновесие вновь не восстановится.

Точно так же при понижении температуры скорость испарения жидкости становится меньше, и часть пара конденсируется до тех пор, пока не восстановится динамическое равновесие — но уже с меньшим количеством пара.

Таким образом, при изохорном нагревании или охлаждении насыщенного пара его масса меняется, поэтому закон Шарля в данном случае не работает. Зависимость давления насыщенного пара от температуры уже не будет линейной функцией.

4. Давление насыщенного пара растёт с температурой быстрее, чем по линейному закону.

В самом деле, с увеличением температуры возрастает плотность насыщенного пара, а согласно уравнению (1) давление пропорционально произведению плотности на температуру.

Зависимость давления насыщенного пара от температуры является экспоненциальной (рис. 2). Она представлена участком 1–2 графика. Эту зависимость нельзя вывести из законов идеального газа.

Какие свойства насыщенного пара есть

Рис. 2. Зависимость давления пара от температуры

В точке 2 вся жидкость испаряется; при дальнейшем повышении температуры пар становится ненасыщенным, и его давление растёт линейно по закону Шарля (участок 2–3).

Вспомним, что линейный рост давления идеального газа вызван увеличением интенсивности ударов молекул о стенки сосуда. В случае нагревания насыщенного пара молекулы начинают бить не только сильнее, но и чаще — ведь пара становится больше. Одновременным действием этих двух факторов и вызван экспоненциальный рост давления насыщенного пара.

Влажность воздуха

Воздух, содержащий водяной пар, называется влажным.Чем больше пара находится в воздухе, тем выше влажность воздуха.

Абсолютная влажность — это парциальное давление водяного пара, находящегося в воздухе (т. е. давление, которое водяной пар оказывал бы сам по себе, в отсутствие других газов). Иногда абсолютной влажностью называют также плотность водяного пара в воздухе.

Читайте также:  Какими свойствами обладает предмет

Относительная влажность воздуха — это отношение парциального давления водяного пара в нём к давлению насыщенного водяного пара при той же температуре. Как правило, это отношение выражают в процентах:

Из уравнения Менделеева-Клапейрона (1) следует, что отношение давлений пара равно отношению плотностей. Так как само уравнение (1), напомним, описывает насыщенный пар лишь приближённо, мы имеем приближённое соотношение:

Одним из приборов, измеряющих влажность воздуха, является психрометр. Он включает в себя два термометра, резервуар одного из которых завёрнут в мокрую ткань. Чем ниже влажность, тем интенсивнее идёт испарение воды из ткани, тем сильнее охлаждается резервуар «мокрого» термометра, и тем больше разность его показаний и показаний сухого термометра. По этой разности с помощью специальной психрометрической таблицы определяют влажность воздуха.

Источник

Насыщенный пар.

Какие свойства насыщенного пара есть

Если сосуд с жидкостью плотно закрыть, то сначала количество жидкости уменьшится, а затем
будет оставаться постоянным. При неизменной температуре система жидкость – пар
придет в состояние теплового равновесия и будет находиться в нем сколь угодно
долго. Одновременно с процессом испарения происходит и конденсация, оба
процесса в среднем компенсируют друг друга. В первый момент, после того как
жидкость нальют в сосуд и закроют его, жидкость будет испаряться и плотность
пара над ней будет увеличиваться. Однако одновременно с этим будет расти и
число молекул, возвращающихся в жидкость. Чем больше плотность пара, тем
большее число его молекул возвращается в жидкость. В результате в закрытом
сосуде при постоянной температуре установится динамическое (подвижное)
равновесие между жидкостью и паром, т. е. число молекул, покидающих поверхность
жидкости за некоторый промежуток времени, будет равно в среднем числу молекул
пара, возвратившихся за то же время в жидкость. Пар, находящийся в динамическом
равновесии со своей жидкостью, называют насыщенным паром. Это определение
подчеркивает, что в данном объеме при данной температуре не может находиться
большее количество пара. 

Более подробно здесь

Давление насыщенного пара.

Что будет
происходить с насыщенным паром, если уменьшить занимаемый им объем? Например,
если сжимать пар, находящийся в равновесии с жидкостью в цилиндре под поршнем,
поддерживая температуру содержимого цилиндра постоянной. При сжатии пара
равновесие начнет нарушаться. Плотность пара в первый момент немного увеличится,
и из газа в жидкость начнет переходить большее число молекул, чем из жидкости в
газ. Ведь число молекул, покидающих жидкость в единицу времени, зависит только
от температуры, и сжатие пара это число не меняет. Процесс продолжается до тех
пор, пока вновь не установится динамическое равновесие и плотность пара, а
значит, и концентрация его молекул не примут прежних своих значений.
Следовательно, концентрация молекул насыщенного пара при постоянной температуре
не зависит от его объема. Так как давление пропорционально концентрации молекул
(p=nkT), то из этого определения следует, что давление насыщенного пара не
зависит от занимаемого им объема. Давление pн.п. пара, при котором
жидкость находится в равновесии со своим паром, называют давлением насыщенного
пара.

Зависимость давления насыщенного
пара от температуры.

Какие свойства насыщенного пара есть

Состояние
насыщенного пара, как показывает опыт, приближенно описывается уравнением
состояния идеального газа, а его давление определяется формулой Р = nкТ С
ростом температуры давление растет. Так как давление насыщенного пара не
зависит от объема, то, следовательно, оно зависит только от температуры. Однако
зависимость рн.п. от Т, найденная экспериментально, не является
прямо пропорциональной, как у идеального газа при постоянном объеме. С увеличением
температуры давление реального насыщенного пара растет быстрее, чем давление
идеального газа (рис. участок кривой 12). Почему это происходит? При нагревании
жидкости в закрытом сосуде часть жидкости превращается в пар. В результате
согласно формуле Р = nкТ давление насыщенного пара растет не только вследствие
повышения температуры жидкости, но и вследствие увеличения концентрации молекул
(плотности) пара. В основном увеличение давления при повышении температуры
определяется именно увеличением концентрации. (Главное различие в поведении
идеального газа и насыщенного пара состоит в том, что при изменении температуры
пара в закрытом сосуде (или при изменении объема при постоянной температуре)
меняется масса пара. Жидкость частично превращается в пар, или, напротив, пар
частично конденсируется. С идеальным газом ничего подобного не происходит.). Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть
насыщенным и его давление при постоянном объеме будет возрастать прямо
пропорционально абсолютной температуре (см. рис., участок кривой 23).

Кипение.

Кипение –
это интенсивный переход вещества из жидкого состояния в газообразное,
происходящее по всему объему жидкости (а не только с ее поверхности).
(Конденсация – обратный процесс.) По мере увеличения температуры жидкости
интенсивность испарения увеличивается. Наконец, жидкость начинает кипеть. При
кипении по всему объему жидкости образуются быстро растущие пузырьки пара,
которые всплывают на поверхность. Температура кипения жидкости остается
постоянной. Это происходит потому, что вся подводимая к жидкости энергия
расходуется на превращение ее в пар. При каких условиях начинается кипение?

Какие свойства насыщенного пара есть

В
жидкости всегда присутствуют растворенные газы, выделяющиеся на дне и стенках
сосуда, а также на взвешенных в жидкости пылинках, которые являются центрами
парообразования. Пары жидкости, находящиеся внутри пузырьков, являются
насыщенными. С увеличением температуры давление насыщенных паров возрастает и
пузырьки увеличиваются в размерах. Под действием выталкивающей силы они
всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то
в этих слоях происходит конденсация пара в пузырьках. Давление стремительно
падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что
стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких
микровзрывов создает характерный шум. Когда жидкость достаточно прогреется,
пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит.
Понаблюдайте внимательно за чайником на плите. Вы обнаружите, что перед
закипанием он почти перестает шуметь. Зависимость давления насыщенного пара от
температуры объясняет, почему температура кипения жидкости зависит от давления
на ее поверхность. Пузырек пара может расти, когда давление насыщенного пара
внутри него немного превосходит давление в жидкости, которое складывается из
давления воздуха на поверхность жидкости (внешнее давление) и гидростатического
давления столба жидкости . Кипение начинается при температуре, при которой давление
насыщенного пара в пузырьках сравнивается с давлением в жидкости. Чем больше
внешнее давление, тем выше температура кипения. И наоборот, уменьшая внешнее
давление, мы тем самым понижаем температуру кипения. Откачивая насосом воздух и
пары воды из колбы, можно заставить воду кипеть при комнатной температуре. У
каждой жидкости своя температура кипения (которая остается постоянной, пока вся
жидкость не выкипит), которая зависит от давления ее насыщенного пара. Чем выше
давление насыщенного пара, тем ниже температура кипения жидкости.

Читайте также:  Какие свойства у розмарина

Заполни опорный конспект                                   Контрольные вопросы

Влажность воздуха и ее измерение.

В окружающем
нас воздухе практически всегда находится некоторое количество водяных паров.
Влажность воздуха зависит от количества водяного пара, содержащегося в нем.
Сырой воздух содержит больший процент молекул воды, чем сухой. Большое значение
имеет относительная влажность воздуха, сообщения о которой каждый день звучат в
сводках метеопрогноза.  

Какие свойства насыщенного пара есть
Относительная влажность — это отношение плотности
водяного пара, содержащегося в воздухе, к плотности насыщенного пара при данной
температуре, выраженное в процентах (показывает, насколько водяной пар в
воздухе близок к насыщению).

Какие свойства насыщенного пара есть

Какие свойства насыщенного пара есть

Точка росы

Сухость или
влажность воздуха зависит от того, насколько близок его водяной пар к
насыщению. Если влажный воздух охлаждать, то находящийся в нем пар можно
довести до насыщения, и далее он будет конденсироваться. Признаком того, что
пар насытился является появление первых капель сконденсировавшейся жидкости –
росы. Температура, при которой пар, находящийся в воздухе, становится
насыщенным, называется точкой росы. Точка росы также характеризует влажность
воздуха. Примеры: выпадение росы под утро, запотевание холодного стекла, если
на него подышать, образование капли воды на холодной водопроводной трубе,
сырость в подвалах домов. Для измерения влажности воздуха используют
измерительные приборы – гигрометры. Существуют несколько видов гигрометров, но
основные: волосной и психрометрический.

Так как непосредственно измерить
давление водяных паров в воздухе сложно, относительную влажность воздуха
измеряют косвенным путем. Известно, что от относительной влажности воздуха
зависит скорость испарения. Чем меньше влажность воздуха, тем легче влаге
испаряться. В психрометре есть два термометра. Один – обычный, его называют
сухим. Он измеряет температуру окружающего воздуха. Колба другого термометра
обмотана тканевым фитилем и опущена в емкость с водой. Второй термометр
показывает не температуру воздуха, а температуру влажного фитиля, отсюда и
название увлажненный термометр. Чем меньше влажность воздуха, тем интенсивнее
испаряется влага из фитиля, тем большее количество теплоты в единицу времени
отводится от увлажненного термометра, тем меньше его показания, следовательно,
тем больше разность показаний сухого и увлажненного термометров. Определив
разность показаний сухого и увлажненного термометров, по специальной таблице,
расположенной на психрометре, находят значение относительной влажности.

Какие свойства насыщенного пара есть

Источник: https://5fan.ru/wievjob.php?id=1361

Источник

Свойства пара

Что это такое и как им пользоваться

Численные значения параметров теплоты, а также взаимосвязь между температурой и давлением, приведенные в настоящем Руководстве, взять из Таблицы “Свойства насыщенного пара”.

Определение применяемых терминов:

Насыщенный пар

Чистый пар, температура которого соответствует температуре кипения воды при данном давлении.

Абсолютное давление

Абсолютное давления пара в барах (избыточное плюс атмосферное).

Зависимость между температурой и давлением

Каждому значению давления чистого пара соответствует определенная температура. Например: температура чистого пара при давлении 10 бар всегда равна 180°С.

Удельный объём пара

Масса пара, приходящаяся на единицу его объёма, кг/м3.

Теплота кипящей жидкости

Количество тепла, которое требуется чтобы повысить температуру килограмма воды от 0°С до точки кипения при давлении и температуре, указанных в Таблице. Выражается в ккал/кг.

Скрытая температура парообразования

Количество тепла в ккал/кг, необходимое для превращения одного килограмма воды при температуре кипения в килограмм пара. При конденсации одного килограмма пара в килограмм воды высвобождает такое же самое количество теплоты. Как видно из Таблицы, для каждого сочетания давления и температуры величина этой теплоты будет разной.

Полная теплота насыщенного пара

Сумма теплоты кипящей жидкости и скрытой теплоты парообразования в ккал/кг. Она соответствует полной теплоте, содержащейся в паре с температурой выше 0°С.

Как пользоваться таблицей

 Кроме определения зависимости между давлением и температурой пара, Вы, также, можете вычислить количество пара, которое превратится в конденсат в любом теплообменнике, если известно передаваемое им количество теплоты в ккал. И наоборот, Таблицу можно использовать для определения количества переданной теплообменником теплоты если известен расход образующегося конденсата.

1

2

3

4

5

6

7

Абсолют.

Давление

бар

Температ

пара

°C

Уд.объем

пара

м3/кг

Плотность

пара

кг/м3

Теплота

жидкости

ккал/кг

Скрытая

теплота

парообра-

зования

ккал/кг

Полная

теплота

пара

P

t

V

7

q

r

X=q+r

0,010

7,0

129,20

0,007739

7,0

593,5

600,5

0,020

17,5

67,01

0,01492

17,5

587,6

605,1

0,030

24,1

45,67

0,02190

24,1

583,9

608,0

0,040

29,0

34,80

0,02873

28,9

581,2

610,1

0,050

32,9

28,19

0,03547

32,9

578,9

611,8

0,060

36,2

23,47

0,04212

36,2

577,0

613,2

0,070

39,0

20,53

0,04871

39,0

575,5

614,5

0,080

41,5

18,10

0,05523

41,5

574,0

615,5

0,090

43,8

16,20

0,06171

43,7

572,8

616,5

0,10

45,8

14,67

0,06814

45,8

571,8

617,6

0,20

60,1

7,650

0,1307

60,1

563,3

623,4

0,30

69,1

5,229

0,1912

69,1

558,0

627.1

0,40

75,9

3,993

0,2504

75,8

554,0

629,8

0,50

81,3

3,240

0,3086

81,3

550,7

632,0

0,60

86,0

2,732

0,3661

85,9

547,9

633,8

0,70

90,0

2,365

0,4229

89,9

545,5

635,4

0,80

93,5

2,087

0,4792

93,5

543,2

636,7

0,90

96,7

1,869

0,5350

96,7

541,2

637,9

1,00

99,6

1,694

0,5904

99,7

539,3

639,0

1,5

111,4

1,159

0,8628

111,5

531,8

643,3

2,0

120,2

0,8854

1,129

120,5

525,9

646,4

2,5

127,4

0,7184

1,392

127,8

521,0

648,8

3,0

133,5

0,6056

1,651

134,1

516,7

650,8

3,5

138,9

0,5240

1,908

139,5

512,9

652,4

4,0

143,6

0,4622

2,163

144,4

509,5

653,9

4,5

147,9

0,4138

2,417

148,8

506,3

655,1

5,0

151,8

0,3747

2,669

152,8

503,4

656,2

6,0

158,8

0,3155

3,170

160,1

498,0

658,1

7,0

164,9

0,2727

3,667

166,4

493,3

659,7

8,0

170,4

0,2403

4,162

172,2

488,8

661,0

9,0

175,4

0,2148

4,655

177,3

484,8

662,1

10

179,9

0,1943

5,147

182,1

481,0

663,1

11

184,1

0,1774

5,637

186,5

477,4

663,9

12

188,0

0,1632

6,127

190,7

473,9

664,6

13

191,6

0,1511

6,617

194,5

470,8

665,3

14

195,0

0,1407

7,106

198,2

467,7

665,9

15

198,3

0,1317

7,596

201,7

464,7

666,4

16

201,4

0,1237

8,085

205,1

461,7

666,8

17

204,3

0,1166

8,575

208,2

459,0

667,2

18

207,1

0,1103

9,065

211,2

456,3

667,5

19

209,8

0,1047

9,555

214,2

453,6

667,8

20

212,4

0,09954

10,05

217,0

451,1

668,1

25

223,9

0,07991

12,51

229,7

439,3

669,0

30

233,8

0,06663

15,01

240,8

428,5

669,3

40

250,3

0,04975

20,10

259,7

409,1

668,8

50

263,9

0,03943

25,36

275,7

391,7

667,4

60

275,6

0,03244

30,83

289,8

375,4

665,2

70

285,8

0,02737

36,53

302,7

359,7

662,4

80

295,0

0,02353

42,51

314,6

344,6

659,2

90

303,3

0,02050

48,79

325,7

329,8

655,5

100

311,0

0,01804

55,43

336,3

315,2

651,5

110

318,1

0,01601

62,48

346,5

300,6

647,1

120

324,7

0,01428

70,01

356,3

286,0

642,3

130

330,8

0,01280

78,14

365,9

271,1

637,0

140

336,6

0,01150

86,99

375,4

255,7

631,1

150

342,1

0,01034

96,71

384,7

239,9

624,6

200

365,7

0,005877

170,2

436,2

141,4

577,6

Читайте также:  При какой температуре мед сохраняет свойства

1 ккал = 4,186 кдж

1 кдж  = 0,24 ккал

1 бар  = 0,102 МПа

ПАР ВТОРИЧНОГО ВСКИПАНИЯ

Что такое пар вторичного вскипания:

Когда горячий конденсат или вода
из котла, находящиеся под определенным давлением, выпускают в пространство, где
действует меньшее давление, часть жидкости вскипает и превращается в так
называемый пар вторичного вскипания.

Почему он имеет важное значение :

Этот пар важен потому, что в нем
содержится определенное количество теплоты, которая может быть использована для
повышения экономичности работы предприятия, т.к. в противном случае она будет
безвозвратно потеряна. Однако, чтобы получить пользу от пара вторичного
вскипания, нужно знать как в каком количестве он образуется в конкретных
условиях.

Как он образуется :

Если воду нагревать при атмосферном давлении, ее
температура будет повышаться пока не достигнет 100°С – самой высокой
температуры, при которой вода может существовать при данном давлении в виде
жидкости. Дальнейшее добавление теплоты не повышает температуру воды, а
превращает ее в пар.

Теплота, поглощенная водой в
процессе повышения температуры до точки кипения, называется физической теплотой
или тепло-содержанием. Теплота, необходимая для превращения воды в пар, при
температуре точки кипения, называется скрытой теплотой парообразования.
Единицей теплоты, в общем случае, является килокалория (ккал), которая равна
количеству тепла, необходимому для повышения температуры одного килограмма воды
на 1°С при атмосферном давлении.

Однако, если воду нагревать при
давлении выше атмосферного, ее точка кипения будет выше 100°С, в силу чего
увеличится также и количество требуемой физической теплоты. Чем выше давление,
тем выше температура кипения воды и ее теплосодержание. Если давление
понижается, то теплосодержание также уменьшается и температура кипения воды
падает до температуры, соответствующей новому значению давления. Это значит,
что определенное количество физической теплоты высвобождается. Эта избыточная
теплота будет поглощаться в форме скрытой теплоты парообразования, вызывая
вскипание части воды и превращение ее в пар. Примером может служить выпуск
конденсата из конденсатоотводчика или выпуск воды из котла при продувке.
Количество образующегося при этом пара можно вычислить.

Конденсат при температуре пара 179,9
°C
и
давлении 10 бар обладает теплотой в количестве 182, 1ккал/кг. См. Колонку 5
таблицы параметров пара. Если его выпускать в атмосферу, т.е. при абсолютном
давлении 1 бар, теплосодержание конденсата сразу же упадет до 99,7 ккал/кг.
Избыток теплоты в количестве 82,3 ккал/кг вызовет вторичное вскипание части
конденсата. Величину части конденсата в %, которая превратится в пар вторичного
вскипания, определяют следующим образом :

Разделите разницу между
теплосодержанием конденсата при большем и при меньшем давлениях на величину
скрытой теплоты парообразования при меньшем давлением значении давления и
умножьте результат на 100.

Выразив это в виде формулы,
получим :

% пар вторичного вскипания

Какие свойства насыщенного пара есть

q1 = теплота конденсата при
большем значении  давления до его выпуска

q2 = теплота конденсата при
меньшем значении давления, т.е. в пространстве, куда производится выпуск

r   = 
скрытая теплота парообразования пара при меньшем значении давления, при
котором производится выпуск конденсата

% пара вторичного вскипания =Какие свойства насыщенного пара есть

График 1.

Какие свойства насыщенного пара есть

График 2.      Какие свойства насыщенного пара есть                                                                                              

Объем пара вторичного вскипания при выпуске
одного кубического метра конденсата в систему с атмосферным давлением.

 Для упрощения
расчетов, на графике показано количество пара вторичного вскипания, которое
будет образовываться, если выпуск конденсата будет производится при разных
давлениях на выходе

Влияние присутствия воздуха на температуру пара

Рис. 1 поясняет, к чему приводит
присутствие  воздуха в паропроводах, а в
Таблице 1 и на Графике 1 показана зависимость снижения температуры пара от
процентного содержания в нем воздуха при различных давлениях.

Влияние присутствия воздуха на теплопередачу

Воздух, обладая отличными
изоляционными свойствами, может образовать, по мере конденсации пара,
своеобразное “покрытие” на поверхностях теплопередачи и значительно
понизить ее эффективность.

При определенных условиях, даже
такое незначительное количество воздуха в паре как 0,5% по объему может
уменьшить  эффективность тепло – передачи
на 50%. См. Рис.1

СО2 в газообразной
форме, образовавшись в котле и перемещаясь вместе с паром, может растворится в
конденсате, охлажденном ниже температуры пара, и образовать угольную кислоту.
Эта кислота весьма агрессивна и, в конечном итоге “проест”
трубопроводы и теплообменное оборудование. См. Рис.2. Если в систему попадает
кислород, он может вызвать питтинговую 
коррозию чугунных и стальных поверхностей. См. Рис. 3.

Какие свойства насыщенного пара есть

Паровая камера со 100%
содержанием пара. Общее давление 10 бар. 
Давления пара 10 бар температура пара 180°С

Рис.1. Камера, в которой
находится смесь пара и воздуха, передает только ту часть теплоты, которая
соответствует парциальному давлению пара, а не полному давлению в ее полости.

Какие свойства насыщенного пара есть

Паровая камера с содержанием
пара 90%

И воздуха 10%. Полное давление
10 бар. Давление

 Пара 9 бар, температура пара 175,4°С

Таблица 1.

Снижение температуры паро-воздушной
смеси в зависимости  от содержания
воздуха

Давление

Температура насыщ. пара

Температура паро-воздушной смеси от
к-ва воздуха в объему,°С

бар

°C

10%

20%

30%

2

120,2

116.7

113.0

110.0

4

143.6

140.0

135.5

131.1

6

158.8

154.5

150.3

145.1

8

170.4

165.9

161.3

155.9

10

179.9

175.4

170.4

165.0

Свойства пара

Теплофизические свойства воды и водяного пара (программа расчета)

Методические указания по очистке и контролю возвратного конденсата (РД 34.37.515-93)

Источник