Какие свойства мышечной ткани
Мышечные ткани — это ткани, отличающиеся по структуре и происхождению, но имеют общую способность к сокращению. Состоят из миоцитов — клеток, которые могут воспринимать нервные импульсы и отвечать на них сокращением.
Свойства и виды мышечной ткани
Морфологические признаки:
- Вытянутая форма миоцитов;
- продольно размещены миофибриллы и миофиламенты;
- митохондрии находятся вблизи сократительных элементов;
- присутствуют полисахариды, липиды и миоглобин.
Свойства мышечной ткани:
- Сократимость;
- возбудимость;
- проводимость;
- растяжимость;
- эластичность.
Выделяют следующие виды мышечной ткани в зависимости от морфофункциональных особенностей:
- Поперечнополосатая: скелетная, сердечная.
- Гладкая.
Гистогенетическая классификация делит мышечные ткани на пять видов в зависимости от эмбрионального источника:
- Мезенхимные — десмальный зачаток;
- эпидермальные — кожная эктодерма;
- нейральные — нервная пластинка;
- целомические — спланхнотомы;
- соматические — миотом.
Из 1-3 видов развиваются гладкомышечные ткани, 4, 5 дают поперечнополосатые мышцы.
Строение и функции гладкой мышечной ткани
Cостоит из отдельных мелких веретеновидных клеток. Эти клетки имеют одно ядро и тонкие миофибриллы, которые тянутся от одного конца клетки к другому. Гладкие мышечные клетки объединяются в пучки, состоящие из 10-12 клеток. Это объединение возникает благодаря особенностям иннервации гладкой мускулатуры и облегчает прохождение нервного импульса на всю группу гладких мышечных клеток. Сокращается гладкая мышечная ткань ритмично, медленно и на протяжении длительного времени, способна при этом развивать большую силу без значительных затрат энергии и без утомления.
У низших многоклеточных животных из гладкой мышечной ткани состоят все мышцы, тогда как у позвоночных животных она входит в состав внутренних органов (кроме сердца).
Сокращения этих мышц не зависят от воли человека, т. е. происходят непроизвольно.
Функции гладкой мышечной ткани:
- Поддерживание стабильного давления в полых органах;
- регуляция уровня кровяного давления;
- перистальтика пищеварительного тракта, перемещения по нему содержимого;
- опорожнение мочевого пузыря.
Строение и функции скелетной мышечной ткани
Скелетная мышечная ткань
Cостоит из длинных и толстых волокон длиной 10-12 см. Скелетная мускулатура характеризуется произвольным сокращением (в ответ на импульсы, идущие из коры головного мозга). Скорость ее сокращения в 10-25 раз выше, чем в гладкой мышечной ткани.
Мышечное волокно поперечнополосатой ткани покрыто оболочкой — сарколеммой. Под оболочкой находится цитоплазма с большим количеством ядер, расположенных по периферии цитоплазмы, и сократительными нитями — миофибриллами. Состоит миофибрилла из последовательно чередующихся темных и светлых участков (дисков), обладающих разным коэффициентом преломления света. С помощью электронного микроскопа установлено, что миофибрилла состоит из протофибрилл. Тонкие протофибриллы построены из белка — актина, аболее толстые — из миозина.
При сокращении волокон происходит возбуждение сократимых белков, тонкие протофибриллы скользят по толстым. Актин реагирует с миозином, и возникает единая актомиозиновая система.
Функции скелетной мышечной ткани:
- Динамическая — перемещение в пространстве;
- статическая — поддержание определенной позиции частей тела;
- рецепторная — проприорецепторы, воспринимающие раздражение;
- депонирующая — жидкость, минералы, кислород, питательные вещества;
- терморегуляция — расслабление мышц при повышении температуры для расширения сосудов;
- мимика — для передачи эмоций.
Строение и функции сердечной мышечной ткани
Сердечная мышечная ткань
Миокард построен из сердечной мышечной и соединительной ткани, с сосудами и нервами. Мышечная ткань относится к поперечнополосатой мускулатуре, исчерченность которой также обусловлена наличием разных типов миофиламентов. Миокард состоит из волокон, которые связаны между собой и формируют сетку. Эти волокна включают одно или двухъядерные клетки, что расположены в виде цепочки. Они получили название сократительных кардиомиоцитов.
Сократительные кардиомиоциты длиной от 50 до 120 микрометров, шириной — до 20 мкм. Ядро здесь располагается в центре цитоплазмы, в отличие от ядер поперечно полосатых волокон. Кардиомиоциты имеют больше саркоплазма и меньше миофибрилл, в сравнении со скелетными мышцами. В клетках сердечной мышцы находится много митохондрий, так как непрерывные сердечные сокращения требуют много энергии.
Вторая разновидность клеток миокарда — это проводящие кардиомиоциты, которые формируют проводящую систему сердца. Проводящие миоциты обеспечивают передачу импульса к сократительным мышечным клеткам.
Функции сердечной мышечной ткани:
- Насосная;
- обеспечивает ток крови в кровеносном русле.
Компоненты сократительной системы
Особенности строения мышечной ткани обусловлены выполняемыми функциями, возможностью принимать и проводить импульсы, способностью к сокращению. Механизм сокращения заключается в согласованной работе ряда элементов: миофибрилл, сократительных белков, митохондрий, миоглобина.
В цитоплазме мышечных клеток имеются особые сократительные нити — миофибриллы, сокращение которых возможно при содружественной работе белков — актина и миозина, а также при участии ионов Са. Митохондрии снабжают все процессы энергией. Также энергетические запасы образуют гликоген и липиды. Миоглобин необходим для связывания O2 и формирование его запаса на период сокращения мышцы, так как во время сокращения идет сдавление кровеносных сосудов и снабжение мышц O2 резко снижается.
Таблица. Соответствие между характеристикой мышечной ткани и ее видом
Вид ткани | Характеристика |
---|---|
Гладкомышечная | Входит в состав стенок кровеносных сосудов |
Структурная единица – гладкий миоцит | |
Сокращается медленно, неосознанно | |
Поперечная исчерченность отсутствует | |
Скелетная | Структурная единица – многоядерное мышечное волокно |
Свойственна поперечная исчерченность | |
Сокращается быстро, осознанно |
Где находится мышечная ткань?
Гладкие мышцы являются составной частью стенок внутренних органов: желудочно-кишечного тракта, мочеполовой системы, сосудов. Входят в состав капсулы селезенки, кожных покровов, сфинктера зрачка.
Скелетная мускулатуразанимают около 40% от массы тела человека, с помощью сухожилий крепятся к костям. Из этой ткани состоят скелетные мышцы, мышцы рта, языка, глотки, гортани, верхнего участка пищевода, диафрагмы, мимическая мускулатура. Также поперечно полосатые мышцы находится в миокарде.
Чем мышечное волокно скелетной мышцы отличается от гладкой мышечной ткани?
Волокна поперечнополосатых мышц намного длиннее (до 12см), чем клеточные элементы гладкомышечной ткани (0,05-0,4мм). Также скелетные волокна имеют поперечную исчерченность благодаря особому расположению нитей актина и миозина. Для гладких мышц это не характерно.
В мышечных волокнах находится много ядер, а сокращение волокон сильное, быстрое и осознанное. В отличие от гладких мышц, клетки гладкомышечной ткани одноядерные, способны сокращаться в медленном темпе и неосознанно.
Источник
Мышечные ткани составляют активную часть опорно-двигательного аппарата (пассивной частью являются кости, соединения костей). Важнейшие
свойства мышечной ткани: сократимость и возбудимость. К данной группе тканей относятся гладкая, поперечно-полосатая (скелетная) и сердечная
мышечные ткани.
Гладкая (висцеральная) мускулатура
Эта мышечная ткань встречается в стенках внутренних органах (кишечник, мочевой пузырь), в стенках сосудов, протоках
желез. Эволюционно является наиболее древним видом мускулатуры.
Состоит из веретенообразных миоцитов – коротких одноядерных клеток. Слабо выражено межклеточное вещество, клетки сближены друг с другом: благодаря этому возбуждение, возникшее в одной клетке, волнообразно распространяется на все
остальные клетки.
Гладкая мышечная ткань отличается своей способностью к длительному тоническому напряжению, что очень важно для работы
внутренних органов (к примеру мочевого пузыря), практически не утомляется. Скелетная мышечная ткань, которую мы изучим чуть позже, такой способностью не обладает и утомляется быстро.
Осуществляется сокращение с помощью клеточных органоидов – миофиламентов, которые расположены в клетке хаотично и не имеют
такой упорядоченной структуры, как миофибриллы в скелетной мускулатуре (все познается в сравнении, уже скоро мы их тоже изучим.)
Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой: человек не может управлять ей произвольно.
К примеру, невозможно по желанию сузить или расширить зрачок.
Скелетная поперечно-полосатая мускулатура
Скелетная ткань образует мышцы туловища, конечностей и головы.
В отличие от гладкой мускулатуры, скелетная образована не отдельными одноядерными клетками, а длинными многоядерными
волокнами, имеющими до 100 и более ядер – миосимпластами. Миосимпласт представляет совокупность слившихся клеток, имеет длину
от нескольких миллиметров до нескольких сантиметром.
Внутри миосимпласта находится саркоплазма, снаружи миосимпласт покрыт сарколеммой.
Характерная черта данной ткани – поперечная исчерченность, выражающаяся в равномерном чередовании светлых и темных полос
на мышечном волокне. Это происходит потому, что границы саркомеров в соседних миофибриллах совпадают, вследствие чего
все волокно приобретает поперечную исчерченность. Теперь самое время изучить микроскопическую основу мышцы – саркомер.
Саркомер (от греч. sarco – мясо (мышца) + mere – маленький)
Сократимость мышечной ткани обусловлена наличием в клетках миофиламентов. Саркомер – элементарная сократительная единица
мышцы. Состоит из тонкого белка – актина, и толстого – миозина. Сокращение осуществляется благодаря трению нитей актина о
нити миозина, в результате чего саркомер укорачивается.
Источником энергии для сокращения служат молекулы АТФ. К тому же невозможно представить сокращение мышц без участия ионов кальция: именно они
связываются с тропонином (белком между нитями актина), что обуславливает соединение актина и миозина. При сокращении мышц выделяется тепло.
Замечу, что трупное окоченение – посмертное затвердевание мышц – связано именно с ионами кальция, которые устремляются в область
низкой концентрации (мышцы), способствуя связыванию актина и миозина. Мертвый организм не способен разорвать цикл, возникший в мышцах,
в связи с чем наблюдается стойкая мышечная контрактура (лат. contractura – стягивание, сужение): конечности очень сложно разогнуть или согнуть.
Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.
В процесс возбуждения вовлекается изолированно один миосимпласт, соседние волокна не возбуждают друг друга, в отличие
от гладких миоцитов. Скелетные мышцы сокращаются мгновенно (у гладких мышц фазы сокращения и расслабления
растянуты во времени) и быстро утомляются.
Скелетные мышцы подконтрольны нашему сознанию: их сокращение регулируется произвольно. К примеру, по желанию мы можем изменить
скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение
суставы.
Сердечная мышечная ткань
Мышечная ткань сердца – миокард (от др.-греч. μῦς «мышца» + καρδία – «сердце») – средний слой сердца, составляющий основную
часть его массы.
Этот тип мышечной ткани удивительным образом сочетает свойства двух предыдущих, изученных нами, тканей (возбудимость, сократимость) и имеет одно новое
уникальное свойство. Сердечная мышечная ткань состоит из одиночных клеток, имеющих поперечно-полосатую исчерченность.
В некоторых участках эти клетки смыкаются, образуя между собой контакты, благодаря которым возбуждение одной клетки волнообразно
передается на соседние, таким образом, охватываются новые участки миокарда. Сокращается эта ткань непроизвольно, не утомляется.
Сердечная ткань обладает уникальным свойством – автоматизмом – способностью возбуждаться и сокращаться без влияний извне,
самопроизвольно. Это легко можно подтвердить, изолировав сердце лягушки из организма в физиологический раствор: сокращения
сердца в нем будут продолжаться еще несколько часов.
Автоматизм возможен благодаря наличию в миокарде особых пейсмекерных (англ. pacemaker – задающий ритм) клеток, которые также называют водителями ритма. Они
спонтанно генерируют нервные импульсы, которые охватывают весь миокард, в результате чего осуществляется сокращение. Именно благодаря водителям
ритма сердце лягушки продолжает биться, будучи полностью отделенным от тела.
Ответ мышц на физическую нагрузку
Физические нагрузки приводят к гипертрофии мышц (от др.-греч. ὑπερ- чрез, слишком + τροφή – еда, пища) – в них увеличивается количество мышечных волокон, объем мышечной
массы нарастает.
В условиях гиподинамии (от греч. ὑπό – под и δύνᾰμις – сила), то есть пониженной активности, мышцы уменьшаются вплоть до полной
атрофии. В худшем случае волокна мышечной ткани перерождаются в соединительную ткань, после чего пациент становится обездвиженным.
Необходимо отметить, что сердечная мышечная ткань также дает ответную реакцию на чрезмерную нагрузку: сердце увеличивается в
размере, нарастает масса миокарда. Причиной могут быть генетические заболевания, повышенное артериальное давление.
Гипертрофия сердца – состояние, требующее вмешательства врача и наблюдения за пациентом.
В большинстве случае
гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).
Происхождение мышц
Мышцы развиваются из среднего зародышевого листка – мезодермы.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Источник
Растительные и животные организмы различаются не только внешне, но и, конечно, внутренне. Однако самая главная отличительная черта образа жизни – это то, что животные способны активно передвигаться в пространстве. Обеспечивается это благодаря наличию в них особых тканей – мышечных. Их мы и рассмотрим подробнее дальше.
Животные ткани
В организме млекопитающих животных и человека выделяют 4 типа тканей, выстилающих все органы и системы, формирующих кровь и осуществляющих жизненно важные функции.
- Эпителиальная. Образует покровы органов, наружные стенки сосудов, выстилает слизистые оболочки, формирует серозные оболочки.
- Нервная. Образует все органы одноименной системы, обладает важнейшими особенностями – возбудимостью и проводимостью.
- Соединительная. Существует в разных проявлениях, в том числе в жидкой форме – крови. Формирует сухожилия, связки, жировые прослойки, заполняет кости.
- Мышечная ткань, строение и функции которой позволяют животным и человеку осуществлять самые разнообразные движения, а многим внутренним структурам – сокращаться и расширяться (сосудам и так далее).
Совокупное сочетание всех перечисленных видов обеспечивает нормальное строение и функционирование живых существ.
Мышечная ткань: классификация
Особую роль в активной жизнедеятельности человека и животных играет специализированная структура. Ее название – мышечная ткань. Строение и функции ее весьма своеобразны и интересны.
Вообще данная ткань неоднородна и имеет свою классификацию. Следует рассмотреть ее подробнее. Существуют такие разновидности мышечных тканей, как:
- гладкая;
- поперечнополосатая;
- сердечная.
Каждая из них имеет свое место локализации в организме и выполняет строго определенные функции.
Строение клетки мышечной ткани
Все три разновидности мышечных тканей имеют свои особенности строения. Однако можно выделить общие закономерности устройства клетки такой структуры.
Во-первых, она удлиненной формы (иногда достигает 14 см), то есть тянется вдоль всего мышечного органа. Во-вторых, она многоядерная, так как именно в этих клетках наиболее интенсивно протекают процессы синтеза белка, образования и распада молекул АТФ.
Также особенности строения мышечной ткани в том, что ее клетки содержат пучки миофибрилл, сформированных двумя белками – актином и миозином. Именно они обеспечивают главное свойство этой структуры – сократимость. Каждая нитевидная фибрилла включает в себя полосы, в микроскоп видимые как более светлые и темные. Ими являются белковые молекулы, образующие что-то вроде тяжей. Актин формирует светлые, а миозин – темные.
Особенности мышечной ткани любого типа в том, что их клетки (миоциты) образуют целые скопления – пучки волокон, или симпласты. Каждый из них изнутри выстлан целыми скоплениями фибрилл, в то время как сама мельчайшая структура состоит из названных выше белков. Если рассмотреть образно данный механизм строения, то получается, словно матрешка, – меньшее в большем, и так до самых пучков волокон, объединенных рыхлой соединительной тканью в общую структуру – определенный тип мышечной ткани.
Внутренняя среда клетки, то есть протопласт, содержит все те же самые структурные компоненты, что и любая другая в организме. Отличие – в количестве ядер и их ориентации не в центре волокна, а в периферической части. Также в том, что деление происходит не за счет генетического материала ядра, а благодаря особым клеткам, носящим название сателлитов. Они входят в состав оболочки миоцита и активно выполняют функцию регенерации – восстановления целостности ткани.
Свойства мышечных тканей
Как и любые другие структуры, данные разновидности тканей имеют свои особенности не только в строении, но и в выполняемых функциях. Основные свойства мышечных тканей, благодаря которым они могут это делать:
- сокращение;
- возбудимость;
- проводимость;
- лабильность.
Благодаря большому количеству нервных волокон, кровеносных сосудов и капилляров, питающих мышцы, они могут быстро воспринимать сигнальные импульсы. Данное свойство называется возбудимостью.
Также особенности строения мышечной ткани позволяют ей быстро реагировать на любые раздражения, посылая ответный импульс в кору головного и спинной мозга. Так проявляется свойство проводимости. Это очень важно, так как способность вовремя отреагировать на угрожающие воздействия (химического, механического, физического характера) – важное условие нормальной безопасной жизнедеятельности любого организма.
Мышечная ткань, строение и функции, которые она выполняет – все это в целом сводится к главному свойству, сократимости. Оно подразумевает произвольное (контролируемое) или непроизвольное (без осознанного управления) уменьшение или увеличение длины миоцита. Происходит это благодаря работе белковых миофибрилл (актиновых и миозиновых нитей). Они могут растягиваться и истончаться почти до невидимости, а затем снова быстро восстанавливать свою структуру.
В этом состоят особенности мышечной ткани любого типа. Так построена работа сердца человека и животных, их сосудов, глазных мышц, вращающих яблоко. Именно данное свойство обеспечивает способность к активному движению, перемещению в пространстве. Что бы сумел сделать человек, если бы его мышцы не могли сокращаться? Ничего. Поднять и опустить руку, подпрыгнуть, присесть, танцевать и бегать, выполнять различные физические упражнения – все это помогают делать только мышцы. А именно миофибриллы актиновой и миозиновой природы, образующие миоциты ткани.
Последнее свойство, о котором необходимо упомянуть, это лабильность. Она подразумевает способность ткани быстро восстанавливаться после возбуждения, приходить в абсолютную работоспособность. Лучше миоцитов это могут делать только аксоны – нервные клетки.
Строение мышечных тканей, обладание перечисленными свойствами, отличительные особенности – главные причины выполнения ими ряда важнейших функций в организмах животных и человека.
Гладкая ткань
Одна из разновидностей мышечных. Имеет мезенхимное происхождение. Устроена отлично от других. Миоциты небольшие, слегка вытянутые, напоминают утолщенные в центре волокна. Средний размер клетки составляет около 0,5 мм в длину и 10 мкм в диаметре.
Протопласт отличается отсутствием сарколеммы. Ядро одно, а вот митохондрий много. Локализация генетического материала, отделенного от цитоплазмы кариолеммой, – в центре клетки. Плазматическая мембрана устроена достаточно просто, сложных белков и липидов не наблюдается. Рядом с митохондриями и по всей цитоплазме разбросаны миофибрилльные кольца, содержащие актин и миозин в небольших количествах, однако достаточных для сокращения ткани. Эндоплазматическая сеть и комплекс Гольджи несколько упрощены и редуцированы по сравнению с другими клетками.
Гладкая мышечная ткань образована пучками миоцитов (веретенообразных клеток) описанного строения, иннервируется эфферентными и афферентными волокнами. Подчиняется управлению вегетативной нервной системы, то есть сокращается, возбуждается без осознанного контроля организма.
В некоторых органах гладкая мускулатура сформирована благодаря индивидуальным одиночным клеткам с особенной иннервацией. Хотя такое явление достаточно редко. В целом можно выделить два основных типа клеток гладкой мускулатуры:
- секреторные миоциты, или синтетические;
- гладкие.
Первая группа клеток малодифференцированна, содержит множество митохондрий, хорошо выраженный аппарат Гольджи. В цитоплазме явно прослеживаются пучки сократительных миофибрилл и микрофиламентов.
Вторая группа миоцитов специализируется на синтезе полисахаридов и сложных комбинативных высокомолекулярных веществах, из которых в дальнейшем строятся коллаген и эластин. Ими же вырабатывается значительная часть межклеточного вещества.
Места локализации в организме
Гладкая мышечная ткань, строение и функции, которые она выполняет, позволяют ей концентрироваться в разных органах в неодинаковом количестве. Так как иннервация не подчиняется контролю со стороны направленной деятельности человека (его сознания), то и места локализации будут соответствующие. Такие, как:
- стенки кровеносных сосудов и вен;
- большая часть внутренних органов;
- кожа;
- глазное яблоко и прочие структуры.
В связи с этим характер активности гладкой мышечной ткани – быстродействующий низкий.
Выполняемые функции
Строение мышечных тканей накладывает прямой отпечаток на выполняемые ими функции. Так, гладкая мускулатура нужна для следующих операций:
- осуществление сокращения и расслабления органов;
- сужение и расширение просвета кровеносных и лимфатических сосудов;
- движение глаз в разных направлениях;
- контроль над тонусом мочевого пузыря и других полых органов;
- обеспечение реакции на действие гормонов и других химических веществ;
- высокая пластичность и связь процессов возбуждения и сокращения.
Желчный пузырь, места впадения желудка в кишку, мочевой пузырь, лимфатические и артериальные сосуды, вены и многие другиеорганы – все они способны нормально функционировать только благодаря свойствам гладкой мускулатуры. Управление, еще раз оговоримся, строго автономное.
Поперечно-полосатая мышечная ткань
Рассмотренные выше типы мышечной ткани не подчиняются управлению со стороны сознания человека и не отвечают за его движение. Это прерогатива следующего вида волокон – поперечно-полосатых.
Сначала разберемся, за что им было дано такое название. При рассмотрении в микроскоп можно увидеть, что данные структуры имеют четко выраженную исчерченность поперек определенными тяжами – нитями белка актина и миозина, образующими миофибриллы. Это и послужило причиной для такого названия ткани.
Поперечно-мышечная ткань имеет миоциты, содержащие множество ядер и представляющие собой результат слияния нескольких клеточных структур. Такое явление обозначается терминами “симпласт” или “синцитий”. Внешний вид волокон представлен длинными, вытянутыми цилиндрическими клетками, плотно соединенными между собой общим межклеточным веществом. Кстати, существует определенная ткань, которая образует эту среду для сочленения всех миоцитов. Ею обладает и гладкая мышечная. Соединительная ткань – основа межклеточного вещества, которая может быть как плотной, так и рыхлой. Она же формирует целый ряд сухожилий, при помощи которых поперечно-полосатая скелетная мускулатура крепится к костям.
Миоциты рассматриваемой ткани, кроме значительного размера, имеют еще несколько особенностей:
- саркоплазма клеток содержит большое количество хорошо различимых микрофиламентов и миофибрилл (актин и миозин в основе);
- данные структуры объединяются в большие группы – мышечные волокна, которые, в свою очередь, формируют непосредственно скелетные мышцы разных групп;
- имеется множество ядер, хорошо выраженный ретикулюм и аппарат Гольджи;
- хорошо развиты многочисленные митохондрии;
- иннервация осуществляется под контролем соматической нервной системы, то есть осознанно;
- утомляемость волокон высокая, однако и работоспособность тоже;
- лабильность выше среднего уровня, быстрое восстановление после рефракции.
В теле животных и человека поперечнополосатая мускулатура имеет красный цвет. Это объясняется присутствием в волокнах миоглобина – специализированного белка. Каждый миоцит покрыт снаружи практически невидимой прозрачной оболочкой – сарколеммой.
В молодом возрасте животных и человека скелетные мышцы содержат больше плотной соединительной ткани между миоцитами. С течением времени и старением она заменяется на рыхлую и жировую, поэтому мышцы становятся дряблыми и слабыми. В целом скелетная мускулатура занимает до 75% от общей массы. Именно она составляет мясо животных, птиц, рыб, которое человек употребляет в пищу. Питательная ценность очень высокая из-за большого содержания различных белковых соединений.
Разновидностью поперечно-полосатой мускулатуры, помимо скелетной, является сердечная. Особенности ее строения выражаются в присутствии двух типов клеток: обычных миоцитов и кардиомиоцитов. Обычные имеют такое же строение, как и скелетные. Отвечают за автономное сокращение сердца и его сосудов. А вот кардиомиоциты – особые элементы. В них незначительное количество миофибрилл, а значит, актина и миозина. Это говорит о низкой способности к сокращению. Но их задача не в этом. Главная роль – выполнение функции проведения возбудимости по сердцу, осуществление ритмической автоматии.
Сердечная мышечная ткань формируется за счет многократного ветвления входящих в ее состав миоцитов и последующего объединения в общую структуру этих веточек. Еще одно отличие от поперечно-полосатой скелетной мускулатуры – в том, что сердечные клетки содержат ядра в своей центральной части. Миофибриллярные участки локализованы по периферии.
Какие органы образует?
Вся скелетная мускулатура организма – это поперечно-полосатая мышечная ткань. Таблица, отражающая места локализации данной ткани в организме, приведена ниже.
Поперечно-полосатая скелетная мышечная ткань | Сердечная мышечная ткань |
1. Опорно-двигательный аппарат | Главный орган сердечно-сосудистой системы – сердце. |
2. Мышцы гортани и пищевода | |
3. Глотка | |
4. Язык |
Значение для организма
Роль, которую исполняет поперечно-полосатая мускулатура, переоценить сложно. Ведь именно она отвечает за самое важное отличительное свойство растений и животных – способность к активному передвижению. Человек может совершать массу самых сложных и простых манипуляций, и все они будут зависеть от работы скелетных мышц. Многие люди занимаются тщательными тренировками своей мускулатуры, добиваются в этом большого успеха благодаря свойствам мышечных тканей.
Рассмотрим, какие еще функции выполняет поперечно-полосатая мускулатура в теле человека и животных.
- Отвечает за сложные мимические сокращения, выражение эмоций, внешние проявления сложных чувств.
- Поддерживает положение тела в пространстве.
- Выполняет функцию защиты органов брюшной полости (от механических воздействий).
- Сердечная мускулатура обеспечивает ритмические сокращения сердца.
- Скелетные мышцы участвуют в актах глотания, формируют голосовые связки.
- Регулируют движения языка.
Таким образом, можно сделать следующий вывод: мышечные ткани – важные структурные элементы любого животного организма, наделяющие его определенными уникальными способностями. Свойства и строение разных типов мускулатуры обеспечивают жизненно необходимые функции. В основе строения любой мышцы лежит миоцит – волокно, образованное из белковых нитей актина и миозина.
Источник