Какие свойства материалов относятся к технологическим

Какие свойства материалов относятся к технологическим thumbnail

Технологические свойства материалов определяют возможность получения заготовок и деталей выбранными методами и способами при условии обеспечения минимума затрат на конечный продукт — минимальной трудоемкости, материалоемкости, а также обеспечения экологии и эргономики.

В зависимости от способа производства заготовок и деталей определяющими являются следующие свойства.

Литейные свойства — способность жидких материалов заполнять литейные формы и образовывать плотные отливки.

Эти свойства характеризуются жидкотекучестыо материала, его усадкой и ликвацией.

Жидкотекучесть — способность материалов заполнять полости литейной формы и точно воспроизводить очертания этой формы. Жидкотекучесть определяется в соответствии с ГОСТ 16438—70 по спиральной пробе. Материал заливается в форму, имеющую вид спирального прутка, и жидкотекучесть оценивается длиной в сантиметрах части канала, залитого сплавом.

Усадка — свойство материалов уменьшаться в линейных размерах и в объеме при охлаждении от температуры заливки до комнатной. С усадкой связано появление в отливках усадочных раковин, пористости, рыхлости, коробления, трещин. Усадка определяется по ГОСТ 16817-71.

Ликвация — это неоднородность химического состава сплава, возникающая при кристаллизации. Различают зональную, внутрикри- сталлическую (дендритную) ликвацию и ликвацию по плотности. Зональная ликвация в отливках возникает из-за разности температур затвердевания отдельных составляющих и разной плотности этих составляющих сплавов. В чугуне и стали ликвируют сера, фосфор, углерод, располагаясь в верхней и центральной частях отливок. В сплавах, затвердевающих с мелкозернистой структурой, зональная ликвация уменьшается. Внутрикристаллическая ликвация образуется при ускоренном охлаждении отливок, она может быть уменьшена термической обработкой (отжигом) отливки. Ликвация по плотности возникает в сплавах, содержащих тяжелые металлы (например, в свинцовых бронзах); такая ликвация предотвращается перемешиванием сплава перед заливкой и ускоренным охлаждением при кристаллизации.

Деформируемость (ковкость, штампуемость) — способность материалов к значительным пластическим деформациям без разрушения и образования пороков.

Деформируемость проверяется технологическими пробами. Технологические пробы проводятся в соответствии с ГОСТ 8817—82 — на осадку в горячем состоянии; ГОСТ 10702—78 — на осадку в холодном состоянии; ГОСТ 1579—80, 13813—68 — на перегиб; ГОСТ 10447—80 — на навивку проволоки и др.

Свариваемость — способность материалов образовывать сварное соединение, свойства которого близки к свойствам свариваемых материалов. Контроль свариваемости проводят по ГОСТ 23870—79, 3242— 79, 6996-66, 13585-68.

Обрабатываемость резанием — характеризуется качеством обработки (шероховатостью обработанной поверхности и точностью размеров), стойкостью инструмента, сопротивлением резанию, видом стружкообразования. Практически обрабатываемость стали резанием определяют сравнительными испытаниями, путем обтачивания образцов испытуемой стали и стали 45 с определенными прочностными характеристиками (о„ 650 МПа, 170—180 НВ), принимаемой за эталон.

Закаливаемость — способность стали повышать твердость в результате термической обработай (закалки).

Прокаливаемость — способность стали получать при термической обработке (закалке) закаленный слой с определенной структурой на ту или иную глубину. Испытания на прокаливаемость проводят в соответствии с ГОСТ 5657—69.

Источник

Технологические свойства материалов – это качества, влияющие на пригодность металлов для различных технологических операций или процессов. Перечислим технологические свойства материалов.

1. Обрабатываемость

Это  легкость, с которой данный материал может
быть разрезан, что позволяет удалять лишнее при более низких затратах. Хорошая
обрабатываемость связана с:

  • Высокой скоростью
    резки.
  • Низким
    энергопотреблением.
  • Хорошей отделкой
    поверхности.
  • Удалением материала
    с умеренной силой.
  • Средней степенью
    истирания инструмента (более длительный срок службы инструмента).
  • Формированием
    мелких чипсов.

Обрабатываемость
зависит от следующих факторов:

  • Химический состав
    материала заготовки.
  • Микроструктура.
  • Механические
    свойства.
  • Физические
    свойства.
  • Условия резки.
  • Свойства
    хладагента.
  • Подача и глубина
    резки.
  • Вид и форма
    режущего инструмента.
  • Размер и форма
    разреза.
  • Коэффициент трения
    между стружкой и материалом инструмента.
  • Материал
    инструмента.
  • Тип используемой
    машины.
  • Тип операции
    обработки.

Для
оценки обрабатываемости основные факторы, которые будут выбраны, зависят от
типа операции и производственных требований.

При
оценке обрабатываемости могут учитываться следующие критерии:

  • Соотношение сил
    резки.
  • Срок службы
    инструмента между двумя последовательными шлифовальными станками.
  • Качество отделки
    поверхности.
  • Форма и размер
    чипсов.
  • Температура чипсов.
  • Скорость удаления
    металла.
  • Скорость резки при
    стандартной силе.
  • Усилие резки и
    энергопотребление.

Следующие
факторы увеличивают обрабатываемость:

  • Маленькие
    неискаженные зерна.
  • Однородная
    микроструктура.
  • Пластинчатая
    структура в низко- и среднеуглеродистых сталях.
  • Меньшая твердость,
    меньшая пластичность и меньшая прочность при разрыве.
  • Холодная обработка
    низкоуглеродистой стали.
  • Операции отжига,
    нормализации и отпуска.
  • Добавление
    небольших количеств серы, свинца, фосфора и марганца.

Обрабатываемость
может быть улучшена путем добавления небольшого процента определенных
элементов, таких как свинец, селен, сера, марганец и т. д.

Индекс
обрабатываемости

Обрабатываемость
различных металлов, подлежащих обработке, можно сравнивать с использованием
индекса обрабатываемости каждого материала, который можно определить следующим
образом:

Стандартная
сталь имеет содержание углерода не более 0,13% и может быть сравнительно легко
обработана; ее индекс обрабатываемости произвольно фиксируется как 100%.

2. Свариваемость

Еще одним видом является свариваемость. Она определяется, как способность металла свариваться в производственных условиях, предъявляемых к конкретной конструкции. Настоящим критерием при определении свариваемости металла является качество сварного шва и легкость, с которой его можно получить.

На
свариваемость металла влияют следующие факторы:

  • Состав металла.
  • Хрупкость металла.
  • Термические
    свойства.
  • Сварочная техника.
  • Наполнители.
  • Прочность металла
    при высокой температуре.
  • Стабильность
    микрокомпонентов до температуры сварки.
  • Сродство кислорода
    и других газов до и при температуре сварки.
  • Экранирующая
    атмосфера.
  • Правильная
    термическая обработка до и после осаждения металла.

Легирующие
элементы влияют на свариваемость следующими способами:

  • Улучшение
    механических свойств.
  • Увеличение или
    уменьшение прокаливаемости в зоне термического влияния.
  • Обеспечение
    измельчения зерна.
  • Обеспечение
    раскисления расплавленного металла.
  • Формируют
    возрастные осадки.
  • Контроль
    температуры превращения пластичного материала в хрупкое.

3. Литье

К основным технологическим свойствам материалов относится и литье. Это легкость, с которой металл может быть отлит в форму, известна как литейная способность металла. Он основан на таких факторах, как скорость затвердевания, газовая пористость, сегрегация, усадка и т. д.

Следующие
факторы являются благоприятными для литейности металла:

  • Текучесть металла.
  • Низкая степень усадки (это уменьшение объема металла, когда он переходит из расплавленного в твердое состояние).
  • Очень низкая или незначительная сегрегация.
  • Низкая газовая пористость.

4. Формируемость

Формируемость
– способность металлов приобретать различные формы.

Различные
факторы, которые в значительной степени определяют текучесть или пластичность
материала:

  • Металлическая
    конструкция.
  • Размер зерна.
  • Горячая и холодная
    обработка.
  • Легирующие
    элементы.
  • Смягчающие
    термообработки (отжиг и нормализация).

Небольшой
размер зерна рекомендуется для мелкой вытяжки металлов, тогда как для тяжелой
вытяжки рекомендуется относительно крупное зерно.

Горячая и холодная обработка вызывает искажение зерна. Обычно обработанные холодом кристаллы более искажены, чем обработанные горячим способом. Поэтому обработанные холодом металлы обычно менее пластичны, чем обработанные горячим способом.

Большинство
легирующих элементов в чистом металле снижают его пластичность, например,
пластичность стали уменьшается с увеличением количества углерода в железе.

При
смягчающих термообработках, таких как отжиг и нормализация, пластичность
металла восстанавливается. Деформированный и искаженный кристалл реформируется,
и, следовательно, сила, необходимая для того, чтобы вызвать проскальзывание,
уменьшается.

5. Податливость

Подобная характеристика технологического свойства материала определяется как  легкость, с которой металл претерпевает слишком сильное изменение формы при сжимающем напряжении без разрыва.

Читайте также:  Какими свойствами обладает система аксиом колмогорова

Такие
материалы, как мягкая сталь, кованое железо, медь и алюминий, обладают хорошей
пластичностью. Их можно забить или свернуть в нужную форму без разрыва.

Степень податливости измеряется толщиной листа или фольги, которая может быть изготовлена.

Вы можете обсудить технологические свойства материалов на нашем форуме, достаточно нажать на кнопку ниже.

Источник

Технологические свойства характеризуют способность металлов и сплавов подвергаться обработке различными способами (литьем, давлением, сваркой, резанием). К тех­нологическим свойствам относятся литейные свойства, ковкость, свариваемость, обрабатываемость резанием.

Готовые изделия и заготовки для дальнейшей обработ­ки производятся путем литья или обработ­ки давлением. Детали и заготовки, получен­ные литьем, называются отливками. Обработкой давле­нием могут быть получены либо заготовки постоянного поперечного сечения по длине (прутки, листы, лента и др.) чаще всего путем прокатки, а также прессования и воло­чения, либо заготовки, имеющие приближенно форму готовой детали, путем ковки или штамповки. Заготовки, полученные ковкой или штамповкой, называются поков­ками. Таким образом, металлические заготовки могут представлять собой отливки, поковки или прокат. Каж­дый из способов получения заготовок предъявляет свои требования к металлам и сплавам, а каждый вид заготов­ки имеет свои особенности последующей обработки (в том числе, термической). Сплавы, предназначенные для по­лучения деталей литьем, называются литейными. Спла­вы, предназначенные для получения деталей обработкой давлением, называют деформируемыми.

Литейные свойстваметаллов и сплавов характеризуют их способность образовывать отливки без трещин, раковин и других дефектов. Основными литейными свойствами являются жидкотекучесть, усадка, ликвация.

Жидкотекучесть– способность расплавленного металла хорошо заполнять полость литейной формы. Например. Медь даже при перегреве расплава густа и плохо растекается, поэтому из нее нельзя изготавливать изделия методом литья, в то время как ее сплавы (бронза, латунь) и сплавы других металлов (чугун, сталь, магниевые и алюминиевые) достаточно жидкотекучи.

Усадка при кристаллизации – это уменьшение объема металла при переходе из жидкого состояния в твердое. Является причиной образования усадочных раковин и усадочной пористости в слитках и отливках.

Ликвация– неоднородность химического состава сплавов, возникающая при их кристаллизации, обусловленная тем, что сплавы в отличие от чистых металлов кристаллизуются не при одной температуре, а в интервале температур. Чем шире температурный интервал кристаллизации сплава, тем сильнее развивается ликвация, причем наибольшую склонность к ней проявляют те компоненты сплава, которые наиболее сильно влияют на ширину температурного интервала кристаллизации. Для стали, например, сера, кислород, фосфор, углерод. Ликвации бывают внутрикристаллическими (микронеоднородности) и межкристаллическими (макронеоднородности).

Деформируемость (ковкость)− способность металла обрабатываться давлением при ковке, штамповке, прокатке, т. е. принимать нужную форму под действием удара или давления в нагретом или холодном состоянии без признаков разрушения.

Сваркой называется технологический процесс получения неразъемных соединений материалов путем установления межатомных связей между свариваемыми частями при их нагреве, или пластическом деформировании, или совместном действии того и другого. Сварка является основным процессом получения металлических сооружений, обеспечивая высокую производи­тельность, экономичность и прочность.

Свариваемостьюназывают способность металла об­разовывать прочное сварное соединение. Хорошей свари­ваемостью обладает низкоуглеродистая сталь, труднее сварить чугун и цветные металлы.

Заключительной стадией изготовления изделий часто является обработка резанием, заключающаяся в снятии с заготовки режущим инструментом слоя материала в виде стружки. В результате этого заготовка приобретает правильную форму, точные размеры, необходимое качество поверхности.

Обрабатываемостью резаниемназывают способность металла поддаваться обработке резанием. Металлы и сплавы, имеющие высокую твердость, плохо поддаются обработке резанием. Также плохо обрабатываются вязкие металлы с низкой твердостью.

Технологические свойства определяются при технологических испытаниях (пробах), которые дают качественную оценку пригодности металлов и сплавов к различ­ным способам обработки.

Дата публикования: 2014-11-04; Прочитано: 7129 | Нарушение авторского права страницы

studopedia.org – Студопедия.Орг – 2014-2020 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования

(0.002 с)…

Источник

Технологические свойства характеризуют способность материалов подвергаться различным видам обработки для получения высококачественных изделий. К технологическим свойствам материалов относятся свариваемость, паяемосгь, закаливаемость, прокаливаемость, обрабатываемость резанием, обрабатываемость давлением, литейные свойства и др.

Свариваемость, паяемость — способность материала образовывать при помощи сварки и пайки прочное неразъемное соединение. При соединении материалов этими способами необходимо согласование их температурных коэффициентов линейного расширения, взаимного смачивания в жидком состоянии. В случае высокой склонности металла к окислению сварку выполняют в вакууме или среде инертного газа. Повышение содержания углерода в стали приводит к образованию сварочных трещин в зоне сварного шва.

Закаливаемость — способность металла или сплава к повышению твердости при закалке. Закаливаемость стали возрастает при увеличении содержания углерода.

Прокаливаемость — способность металла или сплава закаливаться на определенную глубину. Например, при высокоскоростной закалке стали образуется твердый мартенсит, при этом прокаливаемость, оцениваемую по толщине мартенситного или полумартенситного (50%-го) слоя, можно увеличить за счет повышения устойчивости переохлажденного аустенита. Это достигается легированием стали перед закалкой различными элементами (кроме кобальта).

Обрабатываемость резанием — поведение металла или сплава под воздействием режущего инструмента. Хорошая обрабатываемость резанием предполагает получение гладкой и чистой поверхности после обработки режущим инструментом.

Плохо подвергаются этой обработке материалы с высокой вязкостью, а также твердые и хрупкие. Например, к материалам, труднообрабатываемым резанием, относятся нержавеющие (в частности, аустенитные) и жаропрочные стали, сплавы на основе титана и тугоплавких металлов.

Хорошо обрабатываются резанием медные сплавы, автоматные стали (эти стали имеют повышенное содержание серы, свинца, селена, кальция, играющих роль смазки для снижения трения между инструментом и стружкой).

Пластичные стали плохо обрабатываются резанием из-за образования сплошной грудноломающейся стружки. В связи с этим такие стали подвергают нагартовке, что приводит к снижению пластичности и получению мелкой сыпучей стружки.

Литейные свойства — способность материала образовывать отливки без трещин, пустот и других дефектов. Хорошие литейные свойства имеют металлы с высокой жидкотекучестью (в жидком состоянии заполняющие без пустот объем литейной формы) и малой усадкой (характеризуемой уменьшением объема расплавленного материала при переходе из жидкого состояния в твердое).

Для металлических сплавов, кроме этого, важно учитывать ликвацию — неоднородность химического состава по объему материала, возникающую при его кристаллизации. Малую ликвацию имеют сплавы, образующие диаграммы состояния с близко расположенными линиями ликвидуса и со- лидуса.

Из сплавов на основе железа лучшими литейными свойствами обладают чугуны. Это связано с наличием в их структуре свободного углерода — графита, имеющего меньшую, чем у железа, плотность (т. е. больший удельный объем), что обусловливает малую усадку чугуна при затвердевании.

Обрабатываемость давлением — способность материала без разрушения подвергаться в горячем или холодном состоянии прессованию, ковке, штамповке, прокатке и т. д.

Чем пластичнее материал, тем лучше он обрабатывается давлением. Наличие второй фазы, обладающей высокой твердостью, снижает пластичность сплава. Аналогичное вредное влияние оказывают некоторые примеси, например сера и фосфор в стали. При повышенном содержании серы в стали возникает красноломкость — разрушение при горячей пластической деформации.

Читайте также:  Какое главное свойство управляемой ядерной реакции

Некоторые эксплуатационные свойства, важные для диэлектрических материалов, рассмотрены в гл. 10.

Источник

Технологические свойства характеризуют способность материала подвергаться различным способам холодной и горячей обработки.

К технологическим свойствам металлов и сплавов относятся:

o литейные свойства;

o деформируемость;

o свариваемость;

o обрабатываемость режущим инструментом.

Эти свойства позволяют производить формоизменяющую обработку и получать заготовки и детали машин.

Литейные свойства характеризуют способность материала к получению из него качественных отливок.

Литейные свойства определяются способностью расплавленного металла или сплава к заполнению литейной формы (жидкотекучесть), степенью химической неоднородности по сечению полученной отливки (ликвация), а также величиной усадки – сокращением линейных размеров при кристаллизации и дальнейшем охлаждении.

Способность материала к обработке давлением – это способность материала изменять размеры и форму под влиянием внешних нагрузок не разрушаясь (обработка без снятия стружки). Она контролируется в результате технологических испытаний, проводимых в условиях, максимально приближенных к производственным. Листовой материал испытывают на перегиб и вытяжку сферической лунки. Проволоку испытывают на перегиб, скручивание, на навивание. Трубы испытывают на раздачу, сплющивание до определенной высоты и изгиб. Критерием годности материала является отсутствие дефектов после испытания.

Свариваемость – это способность материала образовывать неразъемные соединения требуемого качества при сварке. Свойство оценивается по качеству сварного шва.

Обрабатываемость резанием – характеризует способность материала поддаваться обработке режущим инструментом. Оценивается по стойкости инструмента и по качеству обработанной поверхности.

Технологические свойства часто определяют выбор материала для конструкции. Разрабатываемые материалы могут быть внедрены в производство только в том случае, если их технологические свойства удовлетворяют необходимым требованиям.

Современное автоматизированное производство, предъявляет к технологическим свойствам материала особые требования: проведение сварки на больших скоростях, ускоренное охлаждение отливок, обработка резанием на повышенных режимах и т. п. при обеспечении необходимого условия – высокого качества получаемой продукции.

Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях:

o износостойкость – способность материала сопротивляться поверхностному разрушению под действием внешнего трения;

o коррозионная стойкость – способность материала сопротивляться действию агрессивных кислотных и щелочных сред;

o жаростойкость – способность материала сопротивляться окислению в газовой среде при высокой температуре;

o жаропрочность – это способность материала сохранять прочность и твердость при высоких температурах;

o хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах;

o антифрикционность – способность материала прирабатываться к другому материалу.

Эти свойства определяются специальными испытаниями в зависимости от условий работы изделий. При выборе материала для создания конструкции необходимо учитывать конструкционные, технологические и эксплуатационные свойства.

Черные металлы и сплавы

К черным металлам относятся железо и сплавы на его основе (сталь и чугун). Железо в чистом виде в машиностроении не применяется. Сталь многокомпонентный сплав с содержанием углерода до 2,14 %. Чугун – сплав железа с углеродом при содержании углерода более 2,14 %.

Сталь. В зависимости от химического состава различают стали углеродистые (ГОСТ 380-94, ГОСТ 1050-88) и легированные (ГОСТ 4543-71, ГОСТ 5632-72, ГОСТ 14959-79).

В свою очередь углеродистые стали могут быть:

o малоуглеродистыми, содержащими углерода менее 0,25%;

o среднеуглеродистыми, содержание углерода составляет 0,25…0,60%

o высокоуглеродистыми, в которых концентрация углерода
превышает 0,60%

Легированные стали подразделяют на:

o низколегированные содержание легирующих элементов до 2,5%

o среднелегированные, в их состав входят от 2,5 до 10% легирующих элементов;

o высоколегированные, которые содержат свыше 10% легирующих элементов.

Конструкционные стали предназначены для изготовления строительных и машиностроительных изделий.

Инструментальные стали предназначены для изготовления режущего, измерительного, штампового и прочего инструмента. Эти стали содержат более 0,65% углерода.

Стали с особыми физическими свойствами: с определенными магнитными характеристиками (электротехническая сталь) или с малым коэффициентом линейного расширения (суперинвар).

Стали с особыми химическими свойствами: нержавеющие, жаростойкие и жаропрочные стали.

Качество стали зависит от содержания вредных примесей: серы и фосфора. Стали обыкновенного качества, содержат до 0.06% серы и до 0,07% фосфора; качественные – до 0,035% серы и фосфора каждого отдельно; высококачественные – до 0,025% серы и фосфора; особо высококачественные – до 0,025% фосфора и до 0,015% серы.

По степени удаления кислорода из стали, т. е. по степени её раскисления, существуют:

o спокойные стали, т. е., полностью раскисленные; такие стали обозначаются буквами “сп” в конце марки (иногда буквы опускаются);

o кипящие стали – слабо раскисленные; маркируются буквами “кп”;

o полуспокойные стали, занимающие промежуточное положение между двумя предыдущими; обозначаются буквами “пс”.

Сталь обыкновенного качества подразделяется еще и по поставкам на 3 группы:

o сталь группы А поставляется потребителям по механическим свойствам (такая сталь может иметь повышенное содержание серы или фосфора);

o сталь группы Б – по химическому составу;

o сталь группы В – с гарантированными механическими свойствами и химическим составом.

Конструкционные стали. Нелегированные конструкционные стали обыкновенного качества обозначают по ГОСТ 380-94 буквами “Ст” и условным номером марки (от 0 до 6) в зависимости от химического состава и механических свойств. Чем выше содержание углерода и прочностные свойства стали, тем больше её номер. Буква “Г” после номера марки указывает на повышенное содержание марганца в стали. Например:

Ст1кп2 – углеродистая сталь обыкновенного качества, номер марки 1, кипящая второй категории, поставляется потребителям по механическим свойствам (группа А);

ВСт5Г – углеродистая сталь с повышенным содержанием марганца, спокойная, номер марки 5, первой категории с гарантированными механическими свойствами и химическим составом (группа В);

Бст0 – углеродистая сталь обыкновенного качества, номер марки 0, группы Б, первой категории.

Содержание углерода в стали:

Марка стали Содержание углерода   Марка стали Содержание углерода
Ст0
Ст1
Ст2
Ст3
< 0.23%
0.06…0.12%
0.09…0.15%
0.14…0.22%
  Ст4
Ст5
Ст6
0.18…0.27%
0.28…0.37%
0.38…0.49%

Нелегированные конструкционные качественные стали. в соответствии с ГОСТ 1050-88 эти стали маркируются двухзначными числами, показывающими среднее содержание углерода в сотых долях процента: 05; 08; 10; 25; 40 и т.д. Так сталь с содержанием углерода 0,07…0,14% обозначается 10, сталь с содержанием углерода 0,42…0,50% – 45 и т.д..

При этом для сталей с содержанием углерода меньше 0,2%, не подвергнутых полному раскислению, в обозначение добавляются буквы кп (для кипящей стали) и пс (для полуспокойной). Для спокойных сталей буквы в конце их наименований не добавляются.
Например, 08кп, 10пс, 15, 18кп, 20 и т.д. Буква Г в марке стали указывает на повышенное содержание марганца.
Например: 14Г, 18Г и т.д.

Качественные стали с повышенными свойствами, используемые для производства котлов и сосудов высокого давления, обозначают по ГОСТ 5520-79 добавлением буквы К в конце наименования стали: 15К, 18К, 22К.

Конструкционные легированные стали. В соответствии с ГОСТ 4543-71 наименования таких сталей состоят из цифр и букв. Первые цифры марки обозначают среднее содержание углерода в стали в сотых долях процента. Буквы указывают на основные легирующие элементы, включенные в сталь. Буквенные обозначения легирующих элементов приведены в таблице 3.1.

Таблица.3.1 . Буквенные обозначения легирующих элементов в сталях

Элемент

Обозначение

Ниобий Nb Б
Вольфрам W В
Марганец Mn Г
Медь Cu Д
Кобальт Co К
Молибден Mo М
Никель Ni Н
Бор B Р
Кремний Si С
Титан Ti Т
Ванадий V Ф
Хром Cr Х
Цирконий Zr Ц
Алюминий Al Ю
Читайте также:  Какие свойства имеют финики

Цифры после каждой буквы обозначают примерное процентное содержание соответствующего элемента, округленное до целого числа, при содержании легирующего элемента до 1,5% цифра за соответствующей буквой не указывается.
Например, сталь состава: углерода C 0,09…0,15%, хрома Cr 0,4…0,7%, никеля Ni 0,5…0,8% обозначается 12ХН, а обыкновенного качества с повышенным содержанием легирующих элементов: сталь содержащая углерода C 0,27…0,34%, хрома Cr 2,3…2,7%, молибдена Mo 0,2…0,3%, ванадия V 0,06…0,12%.обозначается 30Х3МФ. Для того, чтобы показать, что в стали ограничено содержание серы и фосфора (S<0,03%, P < 0,03%) и сталь относится к группе высококачественных в конце ее обозначения ставят букву А.

Особовысококачественные стали, подвергнутые электрошлаковому переплаву, обеспечивающему эффективную очистку от сульфидов и оксидов, обозначают добавлением через тире в конце наименования стали буквы Ш.
Например: 12Х2Н4А, 15Х2МА, 18ХГ-Ш, 20ХГНТР-Ш и др.

Литейные конструкционные стали. В соответствии с ГОСТ 977-88 обозначаются по тем же правилам, что и качественные и легированные стали. Отличие заключается лишь в том, что в конце наименований литейных сталей приводится буква Л.

Например, 15Л, 20Г1ФЛ, 35ХГЛ и др.

Шарикоподшипниковые стали по ГОСТ 801-78 маркируют буквами “ШХ“, после которых указывают содержание хрома в десятых долях процента. Для сталей, подвергнутых электрошлаковому переплаву, буква Ш добавляется также и в конце их наименований через тире.
Например: ШХ15, ШХ20СГ, ШХ4-Ш.

Автоматные стали ГОСТ 1414-75 начинаются с буквы А (автоматная). Если сталь при этом легирована свинцом, то ее наименование начинается с букв АС. Для отражения содержания в сталях остальных элементов используются те же правила, что и для легированных конструкционных сталей.
Например: А20, А40Г, АС14, АС38ХГМ.

Инструментальные стали. Данные стали в соответствии с
ГОСТ 1435-90 делятся на качественные и высококачественные. Качественные стали обозначаются буквой У (углеродистая) и цифрой, указывающей среднее содержание углерода в стали в десятых долях процента.
Например, сталь У7 содержит 0,65…0,74% углерода, сталь У10…0,95…1,04%, а сталь У13 – 1,2%.в обозначения высококачественных сталей добавляется буква А (У8А, У12А и т.д.). Кроме того, в обозначениях как качественных, так и высококачественных углеродистых инструментальных сталей может присутствовать буква Г, указывающая на повышенное содержание в стали марганца.
Например: У8Г, У8ГА.

Инструментальные легированные стали. Правила обозначения инструментальных легированных сталей по ГОСТ 5950-73 в основном те же, что и для конструкционных легированных. Различие заключается лишь в цифрах, указывающих на массовую долю углерода в стали. Процентное содержание углерода также указывается в начале наименования стали, в десятых долях процента, а не в сотых, как для конструкционных легированных сталей. Если же в инструментальной легированной стали содержание углерода составляет около 1.0%, то соответствующую цифру в начале ее наименования не указывают. Например: сталь 4Х2В5МФ имеет содержание C 0,3…0,4%, Cr 2,2…3,0%, W 4,5…5,5%, Mo 0,6…0,9%,
V 0,6…0,9%, а сталь ХВГ…C 0,9…1,05%, Cr 0,9…1,2%, W 1,2…1,6%,
Mn 0,8…1,1%.

Быстрорежущие стали. Обозначают буквой “Р“, следующая за ней цифра указывает на процентное содержание в ней вольфрама. В отличие от легированных сталей в наименованиях быстрорежущих сталей не указывается процентное содержание хрома, т.к. оно составляет около 4% во всех сталях, и углерода (оно пропорционально содержанию ванадия). Буква Ф, показывающая наличие ванадия, указывается только в том случае, если содержание ванадия составляет более 2,5%. В соответствии с вышесказанным сталь Р6М5 имеет состав С 0,82…0,9%, Cr 3,8…4,4%,
Mo 4,8…5,3%, V 1,7…2,1%, W 5,5…6,5%, а сталь состава С 0,95…1,05%,
Cr 3,8…4,3%, Mo 4,8…5,3%, V 2,3…2,7%, N 0,05…0,1%, W 5,7…6,7% называется Р6АМ5Ф3.

Нержавеющие стали. Обозначения стандартных нержавеющих сталей согласно ГОСТ 5632-72 состоят из букв и цифр и строятся по тем же принципам, что и обозначения конструкционных легированных сталей. В обозначения литейных нержавеющих сталей добавляется буква Л.

Например: нержавеющая сталь состава C < 0,08%, Cr 17,0…19,0%, Ni 9,0…11,0%, Ti 0,5…0,7% обозначается 08Х18Н10Т, а литейная сталь 16Х18Н12С4ТЮЛ имеет состав C 0,13…0,19%, Cr 17,0…19,0%, Ni 11,0…13,0%, Si 3,8…4,5%, Ti 0,4…0,7%, Al 0,13…0,35%.

В том случае, если стали получены методом электрошлакового переплава, к их наименованиям (также как и для легированных сталей) добавляется через тире буква Ш (06Х16Н15М3Б-Ш). к наименованиям указанных сталей через тире могут добавляться буквы, означающие следующее:
ВД
– вакуумно-дуговой переплав (09Х16Н4Б-ВД),
ВИ – вакуумно-индукционная выплавка (03Х18Н10-ВИ),
ЭЛ
–- электронно-лучевой переплав (03Н18К9М5Т-ЭЛ),
ГР – газокислородное рафинирование (04Х15СТ-ГР),
ИД – ваккумно-индукционная выплавка с последующим вакуумно-дуговым переплавом (ЭП14-ИД),
ПД – плазменная выплавка с последующим вакуумно-дуговым переплавом (ХН45НВТЮБР-ПД),
ИЛ – вакуумно-индукционная выплавка с последующим электронно-лучевым переплавом (ЭП989-ИЛ) и т.д.

Чугун

Чугуном называют сплав железа с углеродом и другими элементами, содержащими углерода более 2,14 %.

Классификация чугунов. Характерной особенностью чугунов является то, что углерод в сплаве может находиться не только в растворенном и связанном состоянии (в виде химического соединения – цементита ), но также в свободном состоянии – в виде графита. При этом форма выделений графита и структура металлической основы (матрицы) определяют основные типы чугунов и их свойства.

Классификация чугуна с различной формой графита производится по ГОСТ 3443–77. по следующим признакам:

o по состоянию углерода – свободный или связанный;

o по форме включений графита – пластинчатый, вермикулярный, шаровидный, хлопьевидный (рисунок 3.5);

o по типу структуры металлической основы (матрицы) – ферритный, перлитный; имеются также чугуны со смешанной структурой: например, феррито-перлитные;

o по химическому составу – не легированные чугуны (общего назначения) и легированные чугуны (специального назначения).

В зависимости от формы выделения углерода в чугуне различают:

а – пластинчатый графит в сером чугуне;
б – шаровидный графит в высокопрочном чугуне; в – хлопьевидный графит в ковком чугуне.
Рисунок 3.5 – Структура чугуна с графитом различной формы

· − белый чугун, в котором весь углерод находится в связанном состоянии в виде цементита ;

· − половинчатый чугун, в котором основное количество углерода (более 0,8 %) находится в виде цементита;

· − серый чугун, в котором весь углерод или его большая часть находится в свободном состоянии в виде пластинчатого графита;

· − отбеленный чугун, в котором основная масса металла имеет структуру серого чугуна, а поверхностный слой – белого;

· − высокопрочный чугун, в котором графит имеет шаровидную форму;

· − ковкий чугун, получающийся из белого путем отжига, при котором углерод переходит в свободное состояние в виде хлопьевидного графита.

Серый чугун – это сплав системы Fe -C-Si, содержащий в качестве примесей марганец, фосфор, серу. Углерод в серых чугунах преимущественно находится в виде графита пластинчатой формы.

Структура отливок определяется химическим составом чугуна и технологическими особенностями его термообработки. Механические свойства серого чугуна зависят от свойс?