Какие свойства элементов электрической цепи характеризуют параметры r l c

Студопедия

КАТЕГОРИИ:

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Электрическая цепь

Электрическая цепь и ее характеристики

Электрической цепью называется совокупность электротехнических устройств, создающих замкнутый путь электрическому току. Она состоит из источников (генераторов) энергии, приемников энергии (нагрузки) коммутирующей, измерительной аппаратуры и соединительных проводов.

Заметим, что ЭДС, токи и напряжения, изменяющиеся во времени, обозначаются строчными латинскими буквами е, i, u, а ЭДС, токи и напряжения, неизменные во времени, обозначаются заглавными латинскими буквами E, I, U.

Графическое изображение электрической цепи называется электрической схемой. В схеме различают ветви, узлы и контуры. Ветвь – это часть схемы, состоящая из последовательно соединенных источников, приемников и других элементов цепи, и через них протекает одинаковый ток. Узел – точка схемы, в которой соединены не менее трех ветвей (ветви начинаются и заканчиваются на узлах цепи). Контур – замкнутый путь по элементам схемы.

При расчетах электрических цепей необходимо задаться направлениями токов, напряжений и ЭДС. Эти направления указывают на схемах стрелками.

За направление тока принято направление движения положительных зарядов, т. е. стрелка у тока направлена от большего потенциала к меньшему потенциалу. Направление напряжения в приемнике всегда указывают в ту же сторону, что и у тока

Любая электрическая цепь в общем случае может характеризоваться тремя параметрами: сопротивлением R, индуктивностью L и емкостью С.

Сопротивление R характеризует способность цепи преобразовывать электромагнитную энергию в тепловую.

Величина сопротивления любого элемента цепи определяется как отношение постоянного напряжения на этом элементе к постоянному току в нем и измеряется в омах (Ом):

. (1.1)

Величина, обратная сопротивлению, называется проводимостью. Она обозначается G и измеряется в сименсах (См):

.

Индуктивность L характеризует способность цепи накапливать энергию магнитного поля. Такой способностью обладают любой проводник с током или система проводов.

Эта энергия не преобразуется в тепло, а существует в цепи в виде некоторого запаса энергии. Когда ток в цепи равен нулю, запаса энергии магнитного поля в ней нет.

Величина индуктивности определяется как отношение потокосцепления цепи y к току i и измеряется в генри (Гн):

. (1.2)

Потокосцеплением называется сумма магнитных потоков всех витков катушки. В простейшем случае для катушки на замкнутом стальном сердечнике можно считать, что ее потокосцепление есть магнитный поток Ф, умноженный на число витков w: Y = Ф w.

Емкость С характеризует способность цепи накапливать энергию электрического поля.

Эта энергия не преобразовывается в тепловую энергию, а существует в цепи в виде некоторого запаса. Если напряжение между проводами отсутствует, то и запаса энергии электрического поля в цепи нет.

Величина емкости С определяется как отношение электрического заряда q одного из проводов к напряжению u между ними и измеряется в фарадах (Ф):

. (1.3)

Если R, L и С являются постоянными величинами и не зависят от тока (или напряжения), то такие элементы называются линейными,а цепи, их содержащие, называются линейными цепями.

Элементы, параметры которых зависят от тока или напряжения, называются нелинейными, а цепи, их содержащие, также называются нелиней- ными цепями.

Свойства элементов электрической цепи описываются характеристиками. Для сопротивлений это зависимости напряжения от тока (вольт-амперные характеристики); для индуктивностей это зависимости потокосцепления от тока (вебер-амперные характеристики); для емкостей это зависимости электрического заряда от напряжения (кулонвольтные характеристики).

Cоотношения между током и напряжением в каждом из идеальных элементов цепи называются уравнениями элементов:

; ; .

1.2. Линейные электрические цепи постоянного тока

Дата добавления: 2015-06-04; Просмотров: 3977; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Рекомендуемые страницы:

Читайте также:

Источник

Любая электрическая цепь и каждый ее элемент в отдельности обладают тремя параметрами: сопротивлением R, индуктивностью L и емкостью С.

Сопротивление R характеризует способность цепи преобразовывать электромагнитную энергию в тепловую. Количество тепловой энергии WТ , выделяющееся в сопротивлении R при протекании тока i в течение времени t, определяется соотношением (1.3) и измеряется в джоулях (Дж):

Величина сопротивления любого элемента цепи определяется как отношение постоянного напряжения на этом элементе к постоянному току в нем и измеряется в омах (Ом):

Индуктивность L характеризует способность цепи накапливать энергию магнитного поля. Такой способностью обладает любой проводник с током или система проводов. Количество этой энергии WM , накопленной в цепи, зависит от величины тока i и измеряется в джоулях (Дж):

Эта энергия не преобразуется в тепло, а существует в цепи в виде некоторого запаса. Когда ток в цепи равен нулю, запаса энергии магнитного поля в ней нет.

Величина индуктивности определяется как отношение потокосцепления цепик току i и измеряется в генри (Гн):

Потокосцеплением называется сумма магнитных потоков всех витков катушки. В простейшем случае для катушки на замкнутом стальном сердечнике можно считать, что ее потокосцепление есть магнитный поток Ф, умноженный на число витков w: = Ф w.

38

Емкость С характеризует способность цепи накапливать энергию электрического поля. Такой способностью обладают любые два провода, разделенные диэлектриком, например провод, висящий над землей, любые два провода линии передачи.

Количество энергии электрического поля WЭ , накопленной в цепи с емкостью С, зависит от величины напряжения между проводами и измеряется в джоулях (Дж):

Читайте также:  Какие свойства внимания существуют

Эта энергия не может преобразовываться в тепловую, а существует в цепи в виде некоторого запаса. Если напряжение между проводами отсутствует, то и запаса энергии электрического поля в цепи нет.

Величина емкости С определяется как отношение электрического заряда q одного из проводов к напряжению u между ними и измеряется в фарадах (Ф):

С qКакие свойства элементов электрической цепи характеризуют параметры r l cu .

Если R, L и С являются постоянными величинами и не зависят от напряжения), то такие элементы называются линейными, а цепи, содержащие, называются линейными цепями.

Элементы, параметры которых зависят от тока или напряжения, называются нелинейными, а цепи, их содержащие, также называются нелинейными цепями.

Свойства нелинейного элемента электрической цепи не могут быть выражены одним постоянным числом и поэтому описываются его характеристикой. Для сопротивлений это зависимости напряжения от тока (вольтамперные характеристики); для индуктивностей это зависимости потокосцепления от тока (веберамперные характеристики); для емкостей это зависимости электрического заряда от напряжения (кулонвольтные характеристики). На рис. 1.5 показаны примеры характеристик некоторых линейных (ЛЭ) и нелинейных (НЭ) элементов цепи.

Заметим, что характеристики всех линейных элементов цепи являются прямыми линиями, а нелинейных элементов – кривыми.

39

Какие свойства элементов электрической цепи характеризуют параметры r l c

1.6. Идеальные элементы электрической цепи

Любое электротехническое устройство содержит все три параметра: сопротивление R , индуктивность L и емкость С. Рассмотрим (рис. 1.6) катушку, выполненную из провода с конечной проводимостью (это может быть и нить лампы накаливания, и обмотка трансформатора или электродвигателя).

i

R

L

C

q

нэ

лэ

лэ

нэ

лэ

нэ

u

i

u

вольтамперная

веберамперная

кулонвольтная

характеристика

характеристика

характеристика

сопротивления

индуктивности

емкости

Рис. 1.5

При подаче на ее зажимы напряжения u на концах катушки появляются разноименные заряды (+)q и ( )q и в обмотке начинает протекать ток i. При этом вокруг витков обмотки возникает магнитное поле, характеризуемое потокосцеплением . Таким образом, в соответствии с формулами (1.4), (1.6) и (1.8) рассматриваемая катушка обладает всеми тремя вышеуказанными параметрами.

R L C

Рис. 1.6

40

Для удобства анализа и расчета электрических цепей вводят в рассмотрение такие элементы, которые при всех условиях обладают только одним параметром: только сопротивлением, только индуктивностью, только емкостью. Они называются идеальными.

Графическое изображение идеальных элементов электрической цепи показано на рис. 1.2 позициями 4, 5 и 6. В природе таких элементов не существует, но есть устройства, по своим свойствам близкие к идеальным. Реостат (резистор) при низких частотах обладает практически только сопротивлением R, а индуктивностью L и емкостью С этого устройства можно пренебречь. Катушка индуктивности на замкнутом ферромагнитном сердечнике с малыми тепловыми потерями в нем обладает на низких частотах практически только индуктивностью L, а сопротивлением R и емкостью С такой катушки можно пренебречь. Конденсатор с малыми внутренними тепловыми потерями обладает практически только емкостью С, а его активной проводимостью G и индуктивностью L можно пренебречь.

Любое реальное электротехническое устройство можно изобразить в виде электрической схемы, состоящей из комбинации идеальных элементов и, следовательно, произвести его электрический расчет.

1.7. Соотношение между током и напряжением в идеальных элементах

цепи

Прежде чем приступать к расчету сколько-нибудь сложных электрических цепей, следует выяснить, каким образом связаны между собой ток и напряжение в каждом из идеальных элементов цепи. Эти соотношения, называемые уравнения элементов, известные из курса физики, приведены

в табл. 1.1. Они имеют всеобщий характер и справедливы для цепей, у которых ток и напряжение изменяются во времени по любому закону.

Из табл. 1.1 видно, что только в сопротивлении R ток и напряжение связаны между собой алгебраическим соотношением. Между током и напряжением в индуктивности и емкости имеют место интегродифференциальные соотношения.

41

Какие свойства элементов электрической цепи характеризуют параметры r l c

Таблица 1.1

Формулы для определения тока и напряжения в идеальных элементах

Идеальный элемент

Ток

Напряжение

п/п

i

R

i

u

u iR

1

u

R

2

i

L

1 udt

u L di

i

dt

u

L

3

i

C

i C du

u 1 idt

u

dt

C

Пример 1.3. В цепи с идеальной индуктивностью (рис. 1.7,а) действует пилообразный периодический ток (рис. 1.7,б). Требуется определить форму приложенного напряжения.

а)

L

б)

i,u

i

i

u

u

1

2

t

T

2T

3T

Рис. 1.7

Решение. Для нахождения графика напряжения используем соотношение u L diКакие свойства элементов электрической цепи характеризуют параметры r l cdt , из которого следует, что форма кривой напряжения соответствует производной от тока по времени.

42

Какие свойства элементов электрической цепи характеризуют параметры r l c

В нашем примере на участке от 0 до T/2 кривая тока представляет собой прямую, проходящую через начало координат под острым углом 1 90 к оси

t, и поэтому производная di / dt на этом участке есть постоянная и положительная конечная величина.

На участке от T/2 до Т ток представляет собой прямую, составляющую тупой угол с осью t 2 90 , и поэтому производная di / dt на этом участке есть постоянная и отрицательная величина. При этом tg 2 tg (180 1 ) tg 1 .

Таким образом, график искомого напряжения представляет собой отрезки прямых, меняющих каждую половину периода свой знак, как это показано на рис. 1.7,б.

Вопросы для самопроверки

6)Дано: С = 1000 мкФ; U = 100 В.

С

U

Определите заряд

конденсатора q Кл.

0,1

0,2

0,3

0,4

0,5

1.

2.

3.

4.

5.

7)Дано: L =10 мГн; I = 100 A.

L

Определите

I

потокосцепление

катушки

Вб.

4

3

2

1

0,5

1.

2.

3.

4.

5.

8)Дано: WЭ = 0,05 Дж; С = 10 мкФ.

С

Определите напряжение

U

на конденсаторе U В.

43

Источник

Электромагнитные процессы, протекающие
в электротехнических устройствах, как правило, достаточно сложны. Однако во
многих случаях, их основные характеристики можно описать с помощью таких интегральных
понятий, как: напряжение, ток, электродвижущая сила (ЭДС). При таком подходе
совокупность электротехнических устройств, состоящую из соответствующим образом
соединенных источников и приемников электрической энергии, предназначенных для
генерации, передачи, распределения и преобразования электрической энергии и
(или) информации, рассматривают как электрическую цепь. Электрическая
цепь состоит из отдельных частей (объектов), выполняющих определенные функции
и называемых элементами цепи. Основными элементами цепи являются источники
и приемники электрической энергии (сигналов). Электротехнические устройства,
производящие электрическую энергию, называются генераторами или источниками
электрической энергии
, а устройства, потребляющие ее – приемниками
(потребителями) электрической энергии.

У каждого элемента цепи можно выделить
определенное число зажимов (полюсов), с помощью которых он соединяется
с другими элементами. Различают двух –и многополюсные элементы.
Двухполюсники имеют два зажима. К ним относятся источники энергии (за исключением
управляемых и многофазных), резисторы, катушки индуктивности, конденсаторы.
Многополюсные элементы – это, например, триоды, трансформаторы, усилители и
т.д.

Все элементы электрической цепи условно
можно разделить на активные и пассивные. Активным называется элемент,
содержащий в своей структуре источник электрической энергии. К пассивным относятся
элементы, в которых рассеивается (резисторы) или накапливается (катушка индуктивности
и конденсаторы) энергия. К основным характеристикам элементов цепи относятся
их вольт-амперные, вебер-амперные и кулон-вольтные характеристики, описываемые
дифференциальными или (и) алгебраическими уравнениями. Если элементы описываются
линейными дифференциальными или алгебраическими уравнениями, то они называются
линейными, в противном случае они относятся к классу нелинейных.
Строго говоря, все элементы являются нелинейными. Возможность рассмотрения их
как линейных, что существенно упрощает математическое описание и анализ процессов,
определяется границами изменения характеризующих их переменных и их частот.
Коэффициенты, связывающие переменные, их производные и интегралы в этих уравнениях,
называются параметрами элемента.

Если параметры элемента не являются функциями
пространственных координат, определяющих его геометрические размеры, то он называется
элементом с сосредоточенными параметрами
. Если элемент описывается уравнениями,
в которые входят пространственные переменные, то он относится к классу элементов
с распределенными параметрами
. Классическим примером последних является
линия передачи электроэнергии (длинная линия).

Цепи, содержащие только линейные элементы,
называются линейными. Наличие в схеме хотя бы одного нелинейного элемента относит
ее к классу нелинейных.

Рассмотрим пассивные элементы цепи, их
основные характеристики и параметры.

1. Резистивный элемент (резистор)

Условное графическое изображение резистора приведено на рис. 1,а. Резистор
– это пассивный элемент, характеризующийся резистивным сопротивлением. Последнее
определяется геометрическими размерами тела и свойствами материала: удельным
сопротивлением r (Ом´
м) или обратной величиной – удельной проводимостью
(См/м).

В простейшем случае проводника длиной
и сечением S его сопротивление определяется выражением

.

В общем случае
определение сопротивления связано с расчетом поля в проводящей среде, разделяющей
два электрода.

Основной характеристикой резистивного элемента является зависимость
(или ),
называемая вольт-амперной характеристикой (ВАХ). Если зависимость
представляет собой прямую линию, проходящую через начало координат (см.рис.
1,б), то резистор называется линейным и описывается соотношением

или

,

где –
проводимость. При этом R=const.

Нелинейный резистивный элемент, ВАХ которого нелинейна (рис. 1,б), как будет
показано в блоке лекций, посвященных нелинейным цепям, характеризуется несколькими
параметрами. В частности безынерционному резистору ставятся в соответствие статическое
и дифференциальное
сопротивления.

2. Индуктивный элемент (катушка индуктивности)

Условное графическое изображение катушки индуктивности приведено на рис. 2,а.
Катушка – это пассивный элемент, характеризующийся индуктивностью. Для расчета
индуктивности катушки необходимо рассчитать созданное ею магнитное поле.

Индуктивность определяется отношением потокосцепления к току, протекающему
по виткам катушки,

.

В свою очередь потокосцепление равно сумме произведений потока, пронизывающего
витки, на число этих витков ,
где .

Основной характеристикой катушки индуктивности является зависимость ,
называемая вебер-амперной характеристикой. Для линейных катушек индуктивности
зависимость
представляет собой прямую линию, проходящую через начало координат (см. рис.
2,б); при этом

.

Нелинейные свойства катушки индуктивности (см. кривую
на рис. 2,б) определяет наличие у нее сердечника из ферромагнитного материала,
для которого зависимость
магнитной индукции от напряженности поля нелинейна. Без учета явления магнитного
гистерезиса нелинейная катушка характеризуется статической
и дифференциальной
индуктивностями.

3. Емкостный элемент (конденсатор)

Условное графическое изображение конденсатора приведено на рис. 3,а.

Конденсатор – это пассивный элемент, характеризующийся емкостью. Для расчета
последней необходимо рассчитать электрическое поле в конденсаторе. Емкость определяется
отношением заряда q на обкладках конденсатора к напряжению u между ними

и зависит от геометрии обкладок и свойств диэлектрика, находящегося между ними.
Большинство диэлектриков, используемых на практике, линейны, т.е. у них относительная
диэлектрическая проницаемость
=const. В этом случае зависимость
представляет собой прямую линию, проходящую через начало координат, (см. рис.
3,б) и

Читайте также:  Какое свойство у имбиря с лимоном и медом

.

У нелинейных диэлектриков (сегнетоэлектриков) диэлектрическая проницаемость
является функцией напряженности поля, что обусловливает нелинейность зависимости
(рис.
3,б). В этом случае без учета явления электрического гистерезиса нелинейный
конденсатор характеризуется статической
и дифференциальной
емкостями.

Схемы замещения источников электрической энергии

Свойства источника электрической энергии описываются ВАХ ,
называемой внешней характеристикой источника. Далее в этом разделе для
упрощения анализа и математического описания будут рассматриваться источники
постоянного напряжения (тока). Однако все полученные при этом закономерности,
понятия и эквивалентные схемы в полной мере распространяются на источники переменного
тока. ВАХ источника может быть определена экспериментально на основе схемы,
представленной на рис. 4,а. Здесь вольтметр V измеряет напряжение на зажимах
1-2 источника И, а амперметр А – потребляемый от него ток I, величина которого
может изменяться с помощью переменного нагрузочного резистора (реостата) RН.

В общем случае ВАХ источника является нелинейной (кривая 1 на рис. 4,б). Она
имеет две характерные точки, которые соответствуют:

а – режиму холостого хода ;

б – режиму короткого замыкания .

Для большинства источников режим короткого замыкания (иногда холостого хода)
является недопустимым. Токи и напряжения источника обычно могут изменяться в
определенных пределах, ограниченных сверху значениями, соответствующими номинальному
режиму
(режиму, при котором изготовитель гарантирует наилучшие условия его
эксплуатации в отношении экономичности и долговечности срока службы). Это позволяет
в ряде случаев для упрощения расчетов аппроксимировать нелинейную ВАХ на рабочем
участке m-n (см. рис. 4,б) прямой, положение которой определяется рабочими интервалами
изменения напряжения и тока. Следует отметить, что многие источники (гальванические
элементы, аккумуляторы) имеют линейные ВАХ.

Прямая 2 на рис. 4,б описывается линейным уравнением

,(1)

где – напряжение на зажимах
источника при отключенной нагрузке (разомкнутом ключе К в схеме на рис. 4,а);
внутреннее
сопротивление источника
.

Уравнение (1) позволяет составить последовательную схему замещения
источника (см. рис. 5,а). На этой схеме символом Е обозначен элемент, называемый
идеальным источником ЭДС. Напряжение на зажимах этого элемента
не зависит от тока источника, следовательно, ему соответствует ВАХ на рис. 5,б.
На основании (1) у такого источника .
Отметим, что направления ЭДС и напряжения на зажимах источника противоположны.

Если ВАХ источника линейна, то для определения параметров
его схемы замещения
необходимо провести замеры напряжения и тока для двух
любых режимов его работы.

Существует также параллельная схема замещения источника. Для ее описания разделим
левую и правую части соотношения (1) на .
В результате получим

или

,(2)

где ;
внутренняя
проводимость источника
.

Уравнению (2) соответствует схема замещения источника на рис. 6,а.

На этой схеме символом J обозначен элемент, называемый идеальным источником
тока
. Ток в ветви с этим элементом равен
и не зависит от напряжения на зажимах источника, следовательно, ему соответствует
ВАХ на рис. 6,б. На этом основании с учетом (2) у такого источника ,
т.е. его внутреннее сопротивление .

Отметим, что в расчетном плане при выполнении условия
последовательная и параллельная схемы замещения источника являются эквивалентными.
Однако в энергетическом отношении они различны, поскольку в режиме холостого
хода для последовательной схемы замещения мощность равна нулю, а для параллельной
– нет.

Кроме отмеченных режимов функционирования источника, на практике важное значение
имеет согласованный режим работы, при котором нагрузкой RН от источника
потребляется максимальная мощность

,(3)

Условие такого режима

,(4)

В заключение отметим, что в соответствии с ВАХ на рис. 5,б и 6,б идеальные
источники ЭДС и тока являются источниками бесконечно большой мощности.

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил,
    С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические
    цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных
    специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под
    общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи
    с сосредоточенными постоянными. –М.: Энергия, 1972. –240 с.
  4. Каплянский А.Е. и др. Теоретические основы электротехники. Изд. 2-е.
    Учеб. пособие для электротехнических и энергетических специальностей вузов.
    –М.: Высш. шк., 1972. –448 с.

Контрольные вопросы и задачи

  1. Может ли внешняя характеристик источника проходить через начало координат?
  2. Какой режим (холостой ход или короткое замыкание) является аварийным для
    источника тока?
  3. В чем заключаются эквивалентность и различие последовательной и параллельной
    схем замещения источника?
  4. Определить индуктивность L и энергию магнитного поля WМкатушки, если при
    токе в ней I=20А потокосцепление y =2 Вб.

    Ответ: L=0,1 Гн; WМ=40 Дж.

  5. Определить емкость С и энергию электрического поля WЭконденсатора, если
    при напряжении на его обкладках U=400 В заряд конденсатора q=0,2´
    10-3 Кл.

    Ответ: С=0,5 мкФ; WЭ=0,04 Дж.

  6. У генератора постоянного тока при токе в нагрузке I1=50Анапряжение на зажимах
    U1=210 В,а притоке, равном I2=100А, оно снижается до U2=190 В.
  7. Определить параметры последовательной схемы замещения источника и ток короткого
    замыкания.

    Ответ:

  8. Вывести соотношения (3) и (4) и определить максимальную мощность, отдаваемую
    нагрузке, по условиям предыдущей задачи.

    Ответ:

Источник