Какие свойства элементов и их соединений изменяются периодически
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке “Файлы работы” в формате PDF
Введение
Периодический закон был сформулирован Д.И. Менделеевым в ходе работы над текстом учебника “Основы химии”, когда он столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 года, обдумывая структуру учебника, он постепенно пришел к выводу, что между свойствами и атомными массами элементов существует какая-то закономерность.
Первым шагом к появлению Периодического закона стала таблица “Опыт системы элементов, основанной на их атомном весе и химическом сходстве”. Позднее Д.И. Менделеев сформулировал сам закон: “Свойства элементов, а потому и свойства образуемых ими простых и сложных тел находятся в периодической зависимости от их атомного веса”.
Положив в основу своего закона сходство элементов и их соединений, Менделеев не стал слепо следовать принципу возрастания атомных масс. Он учитывал, что для некоторых элементов атомные массы могли быть определены недостаточно точно.
Актуальность
Периодический закон сыграл огромную роль в развитии химии и других естественных наук.
Используя Периодический закон, Д.И. Менделеев стал первым исследователем, сумевшим решить проблемы прогнозирования в химии.
Периодический закон является универсальным законом. Он относится к числу таких общих научных закономерностей, которые реально существуют в природе и поэтому в процессе эволюции наших знаний никогда не потеряют своего значения.
Периодичность
Периодичность – это повторяемость свойств химических и некоторых физических свойств у простых веществ и их соединений при изменении порядкового номера элементов. Она связана, в первую очередь, с повторяемостью электронного строения атомов по мере увеличения порядкового номера (а, следовательно, заряда ядра и числа электронов в атоме).
Химическая периодичность проявляется в аналогии химического поведения, однотипности химических реакций. При этом число валентных электронов, характерные степени окисления, формулы соединений могут быть разными. Периодически повторяются не только сходные черты, но и существенные различия химических свойств элементов по мере роста их порядкового номера.
Некоторые физико-химические свойства атомов (потенциал ионизации, атомный радиус), простых и сложных веществ могут быть не только качественно, но и количественно представлены в виде зависимостей от порядкового номера элемента, причем для них периодически проявляются четко выраженные максимумы и минимумы.
Виды периодичности
Общее описание периодичности свойств
По периоду слева направо:
заряд ядра атома – увеличивается;
радиус атома – уменьшается;
количество электронов на внешнем уровне – увеличивается;
электроотрицательность – увеличивается;
отдача электронов – уменьшается;
прием электронов – увеличивается.
По группе сверху вниз:
заряд ядра атома – увеличивается;
радиус атома – увеличивается;
количество электронов на внешнем уровне – неизменяется;
электроотрицательность – уменьшается;
отдача электронов – увеличивается;
прием электронов – уменьшается.
Вертикальная периодичность
Вертикальная периодичность заключается в повторяемости свойств простых веществ и соединений в вертикальных столбцах Периодической системы. Это основной вид периодичности, в соответствии с которым все элементы объединены в группы. Элементы одной группы имеет однотипные электронные конфигурации. Химия элементов и их соединений обычно рассматривается на основе этого вида периодичности.
Вертикальная периодичность обнаруживается и в некоторых физических свойствах атомов, например, в энергиях ионизации Ei (кДж/моль):
IA-группа | IIA-группа | VIIIA-группа |
Li 520 | Be 900 | Ne 2080 |
Na 490 | Mg 740 | Ar 1520 |
K 420 | Ca 590 | Kr 1350 |
Энергия ионизации – разновидность энергии связи, представляет собой наименьшую энергию, необходимую для удаления электрона от свободного атома в его низшем энергетическом (основном) состоянии на бесконечность. Энергия ионизации является одной из главных характеристик атома, от которой в значительной степени зависят природа и прочность образуемых атомом химических связей. От энергии ионизации атома существенно зависят также восстановительные свойства соответствующего простого вещества.
Горизонтальная периодичность
Элемент | Li | Be | C | O | F | Ne | ||
Ei | 520 | 900 | 801 | 1086 | 1402 | 1314 | 1680 | 2080 |
Ae | −60 | −27 | −122 | +7 | −141 | −328 | ||
Электронная формула (валентные электроны) | 2s1 | 2s2 | 2s22p1 | 2s22p2 | 2s22p3 | 2s22p4 | 2s22p5 | 2s22p6 |
Число неспаренных электронов | 1 | 1 | 2 | 3 | 2 | 1 |
Горизонтальная периодичность заключается в появлении максимальных и минимальных значений свойств простых веществ и соединений в пределах каждого периода. Она особенно заметна для элементов VIIIБ-группы и лантаноидов (например, лантаноиды с четными порядковыми номерами более распространены, чем с нечетными).
В таких физических свойствах, как энергия ионизации и сродство к электрону, также проявляется горизонтальная периодичность, связанная с периодическим изменением числа электронов на последних энергетических подуровнях:
Сродство к электрону – способность некоторых нейтральных атомов, молекул и свободных радикалов присоединять добавочные электроны, превращаясь в отрицательные ионы. Мерой этой способности служит положительная энергия. Сродство к электрону, равная разности энергии нейтрального атома (молекулы) в основном состоянии и энергии основного состояния отрицательного иона, образовавшегося после присоединения электрона.
Диагональная периодичность
Диагональная периодичность – повторяемость свойств простых веществ и соединений по диагоналям Периодической системы. Она связана с возрастание неметаллических свойств в периодах слева направо и в группах снизу вверх. Поэтому литий похож на магний, бериллий на алюминий, бор на кремний, углерод на фосфор. Так, литий и магний образуют много алкильных и арильных соединений, которые часто используют в органической химии. Бериллий и алюминий имеют сходные значения окислительно-восстановительных потенциалов. Бор и кремний образуют летучие, весьма реакционноспособные молекулярные гидриды.
Диагональную периодичность не следует понимать как абсолютное сходства атомных, молекулярных, термодинамических и других свойств. Та, в своих соединениях атом лития имеет степень окисления (+I), а атом магния – (+II). Однако свойства ионов Li+ и Mg2+ очень близки, проявляясь, в частности, в малой растворимости карбонатов и ортофосфатов.
В результате объединения вертикальной, горизонтальной и диагональной периодичности появляется так называемая звездная периодичность. Так, свойства германия напоминают свойства окружающих его галлия, кремния, мышьяка и олова. На основании таких “геохимических звезд” можно предсказать присутствие элемента в минералах и рудах.
Вторичная периодичность
Многие свойства элементов в группах изменяются не монотонно, а периодически, особенно для элементов IIIA-VIIA-групп. Такое явление носит название вторичной периодичности. Так, германий по своим свойствам больше похож на углерод, чем на кремний. Известно, что силан реагирует с гидроксид-ионами в водном растворе с выделением водорода, а метан и герман не взаимодействуют даже с избытком гидроксид-ионов.
Подобные аномалии в химическом поведении элементов наблюдаются и в других группах. Так, например, для элементов 4-го периода, находящихся в VA-VIIA-группах, (As, Se, Br) характерна малая устойчивость соединений в высшей степени окисления. В то время как для фосфора и сурьмы известны пентафториды, пентахлориды и пентаиодиды, в случае мышьяка до сих получен только пентафторид. Гексафторид селена менее устойчив, чем соответствующие фториды серы и теллура. В группе галогенов хлор(VII) и иод(VII) образуют устойчивые кислородсодержание анионы, тогда как пербромат-ион, синтезированный лишь в 1968 г., является очень сильным окислителем.
Вторичная периодичность связана, в частности, с относительной инертностью валентных s-электронов за счет так называемого “проникновения к ядру”, поскольку увеличение электронной плотности вблизи ядра при одном и том же главном квантовом числе уменьшается в последовательности ns > np > nd >nf.
Поэтому элементы, которые в Периодической системе стоят непосредственно после элементов со впервые заполненным p-, d– или f-подуровнем, характеризуются понижением устойчивости их соединений в высшей степени окисления. Это натрий и магний (идут после элементов с впервые заполненным р-подуровнем), р-элементы 4-го периода от галлия до криптона (заполнен d-подуровень), а также послелантаноидные элементы от гафния до радона.
Периодическое изменение атомных радиусов
Согласно представлениям квантовой механики, атомы не имеют четких границ, однако вероятность найти электрон, связанный с данным ядром, на определенном расстоянии от этого ядра быстро убывает с увеличением расстояния. Поэтому атому приписывают некоторый радиус, полагая, что в сфере этого радиуса заключена бóльшая часть электронной плотности (более 90%).
Радиусы атомов элементов находятся в периодической зависимости от их порядкового номера.
В периодах по мере увеличения заряда ядра радиусы атомов, в общем, уменьшаются, что связано с усилением притяжения внешних электронов к ядру. Наибольшее уменьшение атомных радиусов наблюдается у элементов малых периодов. В группах элементов радиусы атомов, в общем, увеличиваются, так как растет число электронных слоев. Таким образом, в изменении атомных радиусов элементов просматриваются разные виды периодичности: вертикальная, горизонтальная и диагональная.
Небольшие размеры атомов элементов второго периода приводят к устойчивости кратных связей, образованных при дополнительном перекрывании р-орбиталей, ориентированных перпендикулярно межъядерной оси. Так, диоксид углерода − газообразные мономер, молекула которого содержит две двойные связи, а диоксид кремния − кристаллический полимер со связями Si−O. При комнатной температуре азот существует в виде устойчивых молекул N2, в которых атомы азота соединены прочной тройной связью. Белый фосфор состоит из молекул Р4, а черный фосфор представляет собой полимер.
По-видимому, для элементов третьего периода образование нескольких одинарных связей выгоднее формирования одной кратной связи. Вследствие дополнительного перекрывания р-орбиталей для углерода и азота характерны анионы СО32− и NO3− (форма треугольника), а для кремния и фосфора более устойчивы тетраэдрические анионы SiO44− и PO43−.
Значение Периодического закона. Заключение
Периодический закон сыграл огромную роль в развитии химии и других естественных наук. Была открыта взаимная связь между всеми элементами, их физическими и химическими свойствами. Это поставило перед естествознанием научно-философскую проблемы огромной важности: эта взаимная связь должно получить объяснение. После открытия Периодического закона стало ясно, что атомы всех элементов должны быть построены по единому принципу, а их строение должно отображать периодичность свойств элементов. Таким образом, периодический закон стал важным звеном в эволюции атомно-молекулярного учения, оказав значительное влияние на разработку теории строения атома. Он также способствовал формулировке современного понятия “химический элемент” и уточнению представлений о простых и сложных веществах.
Используя Периодический закон, Д.И. Менделеев стал первым исследователем, сумевшим решить проблемы прогнозирования в химии. Это проявилось уже через несколько лет после создания Периодической системы элементов, когда были открыты предсказанные Менделеевым новые химические элементы. Периодический закон помог также уточнить многие особенности химического поведения уже открытых элементов. Успехи атомной физики, включая ядерную энергетику и синтез искусственных элементов, стали возможными лишь благодаря Периодическому закону. В свою очередь, они расширили и углубили сущность закона Менделеева, расширили пределы Периодической системы элементов.
Периодический закон является универсальным законом. Он относится к числу таких общих научных закономерностей, которые реально существуют в природе и поэтому в процессе эволюции наших знаний никогда не потеряют своего значения. Установлено, что периодичности подчиняются не только электронное строение атома, но и тонкая структура атомных ядер, что говорит о периодическом характере свойств в мире элементарных частиц.
Со временем роль Периодического закона не уменьшается. Он стал важнейшей основой неорганической химией. Он используется, например, при синтезе веществ с заранее заданными свойствами, создании новых материалов, подборе эффективных катализаторов.
Неоценимо значение Периодического закона в преподавании общей и неорганической химии. Его открытие было связано с созданием учебника по химии, когда Менделеев пытался предельно четко изложить сведения об известных на тот момент 63 химических элементах. Сейчас число элементов увеличилось почти вдвое (118), и Периодический закон позволяет предсказать сходство и закономерности свойств различных химических элементов с использованием их положения в Периодической системе.
Источник
Элементы главных и побочных подгрупп
Свойства элементов главной и побочной подгрупп существенно различаются. В то же время благодаря периодической системе мы находим много общего в свойствах всех элементов, образующих данную группу.
Так, в VII группе имеются два элемента — хлор (VIIA группа) и марганец (VIIB группа). Хлор образует простое вещество — неметалл, газообразный при обычных условиях, очень ядовитый. Марганец — типичный металл со всеми свойствами металлов (твердый, пластичный, электропроводный). Что же объединяет эти несхожие элементы? Почему они находятся в одной группе периодической системы? Все дело в том, что и атомы хлора, и атомы марганца содержат по 7 валентных электронов:
Cl $1s^22s^22p^6 underline{3s^23p^5}$;
Mn 1s$^2$2s$^2$2p$^6$3s$^2$3p$^6$ $underline{3d^5 4s^2}$.
Поэтому высшая степень окисления для этих элементов одна и та же, а именно +7.
Хлор и марганец образуют высшие оксиды одного состава: $Cl_2O_7$ и $Mn_2O_7$. Оба эти оксида кислотные, энергично взаимодействуют с водой с образованием кислот одного и того же состава:
Cl$_2$O$_7$ + Н$_2$О → 2HClO$_4$ хлорная кислота,
Mn$_2$O$_7$ + Н$_2$О → 2HMnO$_4$ марганцевая кислота.
Оба оксида (и отвечающие им кислоты) очень неустойчивы и являются сильнейшими окислителями.
И хлорная, и марганцевая кислота относятся к наиболее сильным кислотам. При нейтрализации кислот получаются однотипные соли — перхлораты и перманганаты, например KClO$_4$ и KMnO$_4$. При небольшом нагревании обе соли легко разлагаются с выделением кислорода. Все это и позволяет рассматривать элементы хлор и марганец в одной группе периодической системы элементов Д. И. Менделеева.
Следует подчеркнуть, что закономерности изменения свойств по группам, описанные ниже, относятся только к элементам главных подгрупп.
Атомный радиус
Атомный радиус увеличивается с увеличением количества энергетических уровней, то есть сверху вниз по группе. У элементов, стоящих в одном периоде и обладающих равным количеством энергетических уровней, атомный радиус, на первый взгляд, меняться не должен. Однако вследствие взаимодействие ядра и электронов усиливается при движении по периоду слева направо, что приводит к незначительному сжатию атома — уменьшению его радиуса.
Электроотрицательность
Определение
Способность атома элемента притягивать к себе электроны химической связи называют электроотрицательностью (ЭО).
Элементы-металлы легче отдают электроны, чем притягивают их, иными словами, они имеют низкую электроотрицательность — меньше 1,8. Элементы-неметаллы, наоборот, легче притягивают электроны и имеют высокие значения ЭО.
Окислительно-восстановительные свойства соединений элементов. Металличность и неметалличность
Слова «металл» и «неметалл» применимы не только к химическим элементам, но и к простым веществам. Например, говоря, что простое вещество является металлом, мы подразумеваем не только что оно состоит из атомов элемента-металла, но и определенную общность физических (металлический блеск, пластичность) и химических (восстановитель) свойств.
Напомним, что из известных на данный момент 116 химических элементов 98 являются металлами. Металлы расположены в главных подгруппах в левом нижем углу (относительно диагонали бор-астат) таблицы Менделеева и в побочных подгруппах.
Атомы металлов на внешнем уровне содержат не более четырех электронов, как правило, от одного до трех. Отдавая эти электроны, они приобретают устойчивую оболочку ближайшего инертного газа.
Таки образом, металлы в химических реакциях являются восстановителями — они легко отдают электроны и приобретают положительную степень окисления. В этом заключается их принципиальное отличие от элементов-неметаллов.
Поэтому очень часто говорят о металлических свойствах как синониме восстановительных свойств.
В наибольшей степени металлические свойства выражены у элементов главной подгруппы I группы периодической системы — щелочных металлов. Их атомы настолько легко отдают валентный электрон, что в природе эти элементы встречаются исключительно в виде соединений.
Поскольку сверху вниз возрастают атомные радиусы элементов, сила притяжения валентных электронов к ядру ослабевает и увеличивается легкость отдачи внешних электронов, то есть восстановительные (или металлические) свойства.
Металлические (восстановительные) свойства элементов при движении по периоду убывают слева направо; а по группе убывают снизу вверх.
Элементы-металлы образуют генетический ряд химических соединений, в которых проявляются их металлические химические свойства: металл — оксид металла ($Me_xO_y$) — гидроксид (основание $Me^{+n}(OH)_n$. В сложных веществах проявление металлических свойств характеризуется понятием основность, и говорят, что оксиды и гидроксиды проявляют основные свойства. Соответственно, основные свойства оксидов и гидроксидов металлов сверху вниз по подгруппе увеличиваются, а кислотные — уменьшаются.
Элементы-неметаллы имеют на внешнем энергетическом уровне от четырех до семи электронов, при этом элементы восьмой группы образуют семейство инертных газов. Такие элементы имеют восемь электронов на внешнем энергетическом уровне, то есть такой уровень является завершенным, а сами элементы не вступают в химические реакции с другими элементами, то есть являются химически инертными.
Неметаллы в химических реакциях являются окислителями — они легко присоединяют электроны, отнимая их от атомов других элементов, и приобретают отрицательный заряд.
Легче всего принимают электроны те элементы, у которых число электронов на внешнем уровне больше четырех — до завершения внешнего уровня им более энергетически выгодно принять несколько электронов, чем отдать свои. В наибольшей степени свойства неметаллов проявляют галогены — элементы главной подгруппы VII группы.
Проследим закономерность изменения окислительных свойств по периоду на примере элементов второго периода:
3Li − 4Be − 5B − 6C − 7N − 😯 − 9F − 10Ne.
Литий и бериллий (типичные металлы) — окислительными свойствами не обладают. Неметаллы бор и углерода — очень слабые окислители. Например, они реагируют с углеродом только в электрической печи, где температура превышает 1500$^o$С. С неметаллом азотом алюминий вступает в реакцию уже при 1000$^o$С, а с кислородом порошок алюминия реагирует при внесении в пламя горелки. Фтор окисляет порошкообразный алюминий уже при комнатной температуре. А вот завершающий второй период инертный газ неон вообще не вступает в химические реакции.
Таким образом, неметаллические (окислительные) свойства простых веществ при движении по периоду слева направо возрастают.
Элементы-неметаллы образуют генетический ряд химических соединений, в которых проявляются их неметаллические химические свойства: неметалл — оксид неметалла ($HMe_xO_y$) — гидроксид неметалла (кислородсодержащая кислота $H_n(HMeO)^{n-}$). В сложных веществах проявление неметаллических свойств характеризуется понятием кислотность, и говорят, что оксиды и гидроксиды проявляют кислотные свойства. Соответственно, кислотные свойства оксидов и гидроксидов неметаллов в высших степенях окисления сверху вниз по подгруппе уменьшаются, а основные — увеличиваются.
Кислотные свойства оксидов и гидроксидов по периоду слева направо также возрастают.
Но изменение окислительно-восстановительных свойств происходит постепенно. Так, металл бериллий, в отличие от типичного металла лития, взаимодействует не только с кислотами, но и со щелочами (что характерно для ряда неметаллов), а простое вещество графит, образованное элементом-неметаллом углеродом, подобно металлам, обладает металлическим блеском и проводит электрический ток.
Энергия ионизации
Определение
Энергия ионизации — это наименьшая энергия, которая должна быть затрачена на отрыв электрона от нейтрального атома.
Ионный радиус
Диагональная периодичность
В заключение укажем, что химические элементы, расположенные в диагональном направлении периодической системы, также иногда могут проявлять близость многих физических и химических свойств. Это явление носит название диагонального сходства. Так, химические свойства лития и его соединений иногда оказываются гораздо ближе к свойствам магния, чем к свойствам остальных щелочных металлов. Аналогично свойства бериллия гораздо ближе к свойствам алюминия, чем к свойствам щелочноземельных металлов, а свойства бора ближе к свойствам кремния.
Диагональное сходство можно объяснить, если принять во внимание характер изменения атомных радиусов по группам и периодам: уменьшение радиусов в периодах (слева направо) приблизительно компенсируется увеличением радиусов в группах (сверху вниз). Тем самым оказываются весьма близки атомные радиусы лития и магния, бериллия и алюминия и др.
Все вышеупомянутые закономерности изменения свойств условно отражены в схеме ниже:
Сравнение строения и свойств элементов VIIА и VIIB групп
Чтобы увидеть, как изменяются свойства элементов по периоду рассмотрим строение и свойства типичных металлов и неметаллов – представителей IA и VIIA -группы. Кроме того, рассмотрим также свойства элементов побочных IB и VIIB -групп и сравним их между собой.
К седьмой группе главной подгруппы Периодической системы относятся элементы семейства галогенов. В длиннопериодном варианте ПС эта группа 17. Элементы этой группы обладают строением и свойствами типичных неметаллов, то есть имеют небольшой радиус и 7 электронов на внешнем уровне, поэтому относятся к p-элементам.
Типичным представителем галогенов является хлор. Электронная конфигурация этого элемента отвечает электронной формуле $1s^22s^22p^63s^23p^5$ или $[Ne]3s^23p^5$. Это означает, что валентными являются 7 внешних электронов – 2 s-электрона и 5р-электронов, которые образуют 3 пары и имеют один неспаренный электрон. Поэтому, образуя связь с менее электроотрицательными элементами (водородом или металлами), хлор отнимает у них 1 электрон и достраивает тем самым свой незавершенный уровень. При этом хлор проявляет свойства окислителя и имеет в соединениях степень окисление -1.
Нужно помнить, что хлор расположен в третьем периоде, поэтому имеет три энергетических уровня, а, значит на третьем, внешнем уровне у него имеются вакантные (незанятые) d-орбитали. При переходе в возбужденное состояние электроны с s- и р-подуровней могут перескакивать на более высокий d-энергетический подуровень:
В этом случае “распаренными” получаются 3, 5 или 7 электронов. Поэтому в соединениях с более электроотрицательными элементами, а именно с кислородом, хлор может проявлять степени окисления +1; +3; +5 или +7. В этих степенях окисления он образует оксиды и соответствующие им кислородсодержащие кислоты:
HCL- хлороводородная, соли – хлориды
HClO – хлорноватистая (кислотный оксид $Cl_2O$, соли — гипохлориты), очень слабая кислота, неустойчивая, окислитель:
$2HClO + H_2S longrightarrow S + Cl_2 + 2H_2O$
$HClO_2$ – хлористая (кислотный оксид $Cl_2O_3$, соли — хлориты), неустойчивая;
$HClO_3$ – хлорноватая (кислотный оксид — $Cl_2O_5$, соли – хлораты, $KClO_3$ – бертоллетова соль), в свободном виде не получена, «живет» только в растворах, сильный окислитель:
$HClO_3 + S + H_2O longrightarrow H_2SO_4 + HCl$
$HClO_4$– хлорная (кислотный оксид — $Cl_2O_7$, соли – перхлораты)
Все кислородсодержащие кислоты хлора являются сильными окислителями. Их свойства изменяются следующим образом:
с увеличением степени окисления хлора увеличивается сила кислородсодержащих кислот и их окислительные свойства.
В то же время, в минимальной степени окисления (-1) хлор образует сильную кислоту HCl, но не является в ней окислителем.
Рассмотрим теперь особенности строения и свойств элементов IA группы (в длиннопериодном варианте ПС это тоже группа I) на примере натрия. Элементы этой группы являются типичными металлами, то есть обладают большим радиусом, имеют всего 1 валентный электрон, то есть относятся к s-элементам, и в химических реакциях являются типичными восстановителями. Элементы этой группы называются щелочными металлами.
Натрий находится с хлором в одном периоде, имеет электронную конфигурацию $1s^22s^22p^63s^1$ или $[Ne]3s^1$. то есть различия с атомом натрия заключается только в числе внешних валентных электронов. Имея один неспаренный электрон на внешнем уровне, натрий обладает свойствами восстановителя, то есть легко отдает валентный электрон на образование связи, а хлор, обладая свойствами окислителя, легко присоединяет этот электрон. Поэтому при образовании молекулы хлорида натрия валентный электрон натрия полностью переходит к хлору и образуется соединение с ионным типом связи:
Теперь рассмотрим и сравним свойства элементов побочных подгрупп IB и VIIB -групп. К IB-группе, или в длиннопериодном варианте XI группы, относятся металлы подгруппы меди: Cu, Ag, Au. Особенностью строения этих элементов является наличие заполненного предвнешнего (n-1)d-подуровня, которое происходит за счёт перескока электрона с ns-подуровня. Причина возможности такого “перескока” электрона объясняется высокой энергетической устойчивостью полностью заполненного d-подуровня и более высокой, по сравнению с 4s, энергией 3d-подуровня (вспомните порядок заполнения подуровней).
Строением энергетических уровней объясняется химическая инертность простых веществ, образованных этими элементами, которые называют “благородными металлами”. Если медь и серебро при обычных условиях медленно окисляются на воздухе, а также могут вступать во взаимодействие с соединениями серы, например сероводородом, то золото при нормальных условиях не реагирует с химическими веществами. Исключение составляет “царская водка” – смесь концентрированной соляной и азотной кислот.
Для сравнения осталось рассмотреть строение и свойства элементов VIIB-подгруппы, или VII группы в длиннопериодном варианте ПС. Эта подгруппа называется подгруппой марганца и включает три элемента: Mn-магранец, Tc – технеций, Re – рений Рассмотри особенности строения этих элементов на примере марганца. Электронная конфигурация марганца отображается электронной формулой $1s^22s^22p^63s^23p^63d^54s^2$ или $[Ar]3d^54s^2$. Как видно из формулы, у марганца не заполнен предвнешний уровень, на котором находится 5 электронов из 10-ти возможных. Для марганца характерны степени окисления +2, +4 и +7, что связано с более устойчивой конфигурацией $d^5$ и $d^3$.
Простое вещество- марганец, металл серебристо-белого цвета, широко использующийся в металлургии. Марганец образует следующие оксиды: MnO, $Mn_2O_3$, $MnO_2$, $MnO_3$ (не выделен в свободном состоянии) и марганцевый ангидрид $Mn_2O_7$. Оксиды низших валентностей (II, III) носят основной характер, высших – кислотный. Кислотным оксидам соответствуют кислоты и образованные ими соли:
Манганаты — соли нестойких, несуществующих в свободном состоянии кислородных кислот марганца в степенях окисления V, VI и VII:
$MnO_4^{3−}$ – гипоманганаты,
$MnO_4^{2−}$ – манганаты,
$MnO_4^−$ – перманганаты
Все соли марганца, особенно перманганаты, являются сильными окислителями. Например, перманганат калия в зависимости от pH раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. Необходимо запомнить:
Степени окисления марганца:
В кислой среде — до соединений марганца (II), в нейтральной — до соединений марганца (IV), в сильно щелочной — до соединений марганца (VI).
Источник