Какие свойства является общим для всех функций распределения одномерных случайных величин

Понятие случайной величины. Дискретные и непрерывные случайные величины. Функция распределения вероятностей и ее свойства. Плотность распределения вероятности и ее свойства. Числовые характеристики случайных величин: математическое ожидание, дисперсия и их свойства, среднее квадратическое отклонение, мода и медиана; начальные и центральные моменты, асимметрия и эксцесс. Числовые характеристики среднего арифметического n независимых случайных величин.

Понятие случайной величины

Случайной называется величина, которая в результате испытаний принимает то или иное (но при этом только одно) возможное значение, заранее неизвестное, меняющееся от испытания к испытанию и зависящее от случайных обстоятельств. В отличие от случайного события, являющегося качественной характеристикой случайного результата испытания, случайная величина характеризует результат испытания количественно. Примерами случайной величины могут служить размер обрабатываемой детали, погрешность результата измерения какого-либо параметра изделия или среды. Среди случайных величин, с которыми приходится встречаться на практике, можно выделить два основных типа: дискретные и непрерывные.

Дискретной называется случайная величина, принимающая конечное или бесконечное счетное множество значений. Например: частота попаданий при трех выстрелах; число бракованных изделий в партии из штук; число вызовов, поступающих на телефонную станцию в течение суток; число отказов элементов прибора за определенный промежуток времени при испытании его на надежность; число выстрелов до первого попадания в цель и т. д.

Непрерывной называется случайная величина, которая может принимать любые значения из некоторого конечного или бесконечного интервала. Очевидно, что число возможных значений непрерывной случайной величины бесконечно. Например: ошибка при измерении дальности радиолокатора; время безотказной работы микросхемы; погрешность изготовления деталей; концентрация соли в морской воде и т. д.

Случайные величины обычно обозначают буквами и т. д., а их возможные значения — и т. д. Для задания случайной величины недостаточно перечислить все ее возможные значения. Необходимо также знать, как часто могут появиться те или иные ее значения в результате испытаний при одних и тех же условиях, т. е. нужно задать вероятности их появления. Совокупность всех возможных значений случайной величины и соответствующих им вероятностей составляет распределение случайной величины.

Законы распределения случайной величины

Законом распределения случайной величины называется соответствие между возможными значениями случайной величины и соответствующими им вероятностями. Про случайную величину говорят, что она подчиняется данному закону распределения. Две случайные величины называются независимыми, если закон распределения одной из них не зависит то того, какие возможные значения приняла другая величина. В противном случае случайные величины называются зависимыми. Несколько случайных величин называются взаимно независимыми, если законы распределения любого числа из них не зависят от того, какие возможные значения приняли остальные величины.

Закон распределения случайной величины может быть задан в виде таблицы, функции распределения либо плотности распределения. Таблица, содержащая возможные значения случайной величины и соответствующие вероятности, является простейшей формой задания закона распределения случайной величины.

Табличное задание закона распределения можно использовать только для дискретной случайной величины с конечным числом возможных значений. Табличная форма задания закона случайной величины называется также рядом распределения.

Для наглядности ряд распределения представляют графически. При графическом изображении в прямоугольной системе координат по оси абсцисс откладывают все возможные значения случайной величины, а по оси ординат — соответствующие вероятности. Точки , соединенные прямолинейными отрезками, называют многоугольником распределения (рис. 5). Следует помнить, что соединение точек выполняется только с целью наглядности, так как в промежутках между и , и и т. д. не существует значений, которые может принимать случайная величина , поэтому вероятности её появления в этих промежутках равны нулю.

Многоугольник распределения, как и ряд распределения, является одной из форм задания закона распределения дискретной случайной величины. Они могут иметь различную форму, однако все обладают одним общим свойством: сумма ординат вершин многоугольника распределения, представляющая собой сумму вероятностей всех возможных значений случайной величины, всегда равна единице. Это свойство следует из того, что все возможные значения случайной величины образуют полную группу несовместных событий, сумма вероятностей которых равна единице.

Функция распределения вероятностей и ее свойства

Функция распределения является наиболее общей формой задания закона распределения. Она используется для задания как дискретных, так и непрерывных случайных величин. Обычно ее обозначают . Функция распределения определяет вероятность того, что случайная величина принимает значения, меньшие фиксированного действительного числа , т. е. . Функция распределения полностью характеризует случайную величину с вероятностной точки зрения. Ее еще называют интегральной функцией распределения.

Геометрическая интерпретация функции распределения очень проста. Если случайную величину рассматривать как случайную точку оси (рис. 6), которая в результате испытания может занять то или иное положение на оси, то функция распределения — это вероятность того, что случайная точка в результате испытания попадет левее точки .

Для дискретной случайной величины , которая может принимать значения , функция распределения имеет вид

где неравенство означает, что суммирование распространяется на все значения , меньше . Из этой формулы следует, что функция распределения дискретной случайной величины представляет собой ступенчатую ломаную линию (рис. 7). При каждом новом значении случайной величины ступень поднимается выше на величину, равную вероятности этого значения. Сумма всех скачков функции распределения равна единице.

Читайте также:  Какими свойства обладает историческая информации

Непрерывная случайная величина имеет непрерывную функцию распределения, график этой функции имеет форму плавной кривой (рис. 8 ).

Рассмотрим общие свойства функций распределения.

Свойство 1. Функция распределения — неотрицательная, функция, заключенная между нулем и единицей:

Справедливость этого свойства вытекает из того, что функция распределения определена как вероятность случайного события, состоящего в том, что .

Свойство 2. Вероятность попадания случайной величины в интервал равна разности значений функции распределения на концах этого интервала, т. е.

Отсюда следует, что вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Свойство 3. Функция распределения случайной величины есть неубывающая функция, т. е. .

Свойство 4. На минус бесконечности функция распределения равна нулю, а на плюс бесконечности — единице, т. е. и .

Пример 1. Функция распределения непрерывной случайной величины задана выражением

Найти коэффициент и построить график . Определить вероятность того, что случайная величина в результате опыта примет значение на интервале .

Решение. Так как функция распределения непрерывной случайной величины непрерывна, то при получим . Отсюда . График функции изображен на рис. 9.

Исходя из второго свойства функции распределения, имеем

Плотность распределения вероятности и ее свойства

Функция распределения непрерывной случайной величины является ее вероятностной характеристикой. Но она имеет недостаток, заключающийся в том, что по ней трудно судить о характере распределения случайной величины в небольшой окрестности той или другой точки числовой оси. Более наглядное представление о характере распределения непрерывной случайной величины дает функция, которая называется плотностью распределения вероятности, или дифференциальной функцией распределения случайной величины.

Плотность распределения равна производной от функции распределения , т. е.

Смысл плотности распределения состоит в том, что она указывает на то, как часто случайная величина появляется в некоторой окрестности точки при повторении опытов. Кривая, изображающая плотность распределения случайной величины, называется кривой распределения.

Рассмотрим свойства плотности распределения.

Свойство 1. Плотность распределения неотрицательна, т. е.

Свойство 2. Функция распределения случайной величины равна интегралу от плотности в интервале от до , т. е.

Свойство 3. Вероятность попадания непрерывной случайной величины на участок равна интегралу от плотности распределения, взятому по этому участку, т. е.

Свойство 4. Интеграл в бесконечных пределах от плотности распределения равен единице:

Пример 2. Случайная величина подчинена закону распределения с плотностью

Определить коэффициент а; построить график плотности распределения; найти вероятность попадания случайной величины на участок от до определить функцию распределения и построить ее график.

Решение. Площадь, ограниченная кривой распределения, численно равна

Учитывая свойство 4 плотности распределения, находим . Следовательно, плотность распределения можно выразить так:

График плотности распределения на рис. 10. По свойству 3, имеем

Для определения функции распределения воспользуемся свойством 2:

Таким образом, имеем

График функции распределения изображен на рис. 11

Числовые характеристики случайных величин

Закон распределения полностью характеризует случайную величину с вероятностной точки зрения. Но при решении ряда практических задач нет необходимости знать все возможные значения случайной величины и соответствующие им вероятности, а удобнее пользоваться некоторыми количественными показателями. Такие показатели называются числовыми характеристиками случайной величины. Основными из них являются математическое ожидание, дисперсия, моменты различных порядков, мода и медиана.

Математическое ожидание иногда называют средним значением случайной величины. Рассмотрим дискретную случайную величину , принимающую значения с вероятностями соответственно Определим среднюю арифметическую значений случайной величины, взвешенных по вероятностям их появлений. Таким образом, вычислим среднее значение случайной величины, или ее математическое ожидание :

Учитывая, что получаем

Итак, математическим ожиданием дискретной случайной величины называется сумма произведений всех ее возможных значений на соответствующие вероятности.

Для непрерывной случайной величины математическое ожидание

Математическое ожидание непрерывной случайной величины , возможные значения которой принадлежат отрезку ,

Используя функцию распределения вероятностей , математическое ожидание случайной величины можно выразить так:

Свойства математического ожидания

Свойство 1. Математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий:

Свойство 2. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

Свойство 3. Математическое ожидание постоянной величины равно самой постоянной:

Свойство 4. Постоянный множитель случайной величины можно вынести за знак математического ожидания:

Свойство 5. Математическое ожидание отклонения случайной величины от ее математического ожидания равно нулю:

Пример 3. Найти математическое ожидание количества бракованных изделий в выборке из пяти изделий, если случайная величина (количество бракованных изделий) задана рядом распределения.

Решение. По формуле (4.1) находим

Модой дискретной случайной величины называется наиболее вероятное ее значение.

Модой непрерывной случайной величины называется такое ее значение, которому соответствует наибольшее значение плотности распределения. Геометрически моду интерпретируют как абсциссу точки глобального максимума кривой распределения (рис. 12).

Медианой случайной величины называется такое ее значение, для которого справедливо равенство

Читайте также:  Какими свойствами обладает память человека ответ

С геометрической точки зрения медиана — это абсцисса точки, в которой площадь фигуры, ограниченной кривой распределения вероятностей и осью абсцисс, делится пополам (рис. 12). Так как вся площадь, ограниченная кривой распределения и осью абсцисс, равна единице, то функция распределения в точке, соответствующей медиане, равна 0,5, т. е.

С помощью дисперсии и среднеквадратического отклонения можно судить о рассеивании случайной величины вокруг математического ожидания. В качестве меры рассеивания случайной величины используют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания, которое называют дисперсией случайной величины и обозначают :

Для дискретной случайной величины дисперсия равна сумме произведений квадратов отклонений значений случайной величины от ее математического ожидания на соответствующие вероятности:

Для непрерывной случайной величины, закон распределения которой задан плотностью распределения вероятности , дисперсия

Размерность дисперсии равна квадрату размерности случайной величины и поэтому ее нельзя интерпретировать геометрически. Этих недостатков лишено среднее квадратическое отклонение случайной величины, которое вычисляется по формуле

Свойства дисперсии случайных величин

Свойство 1. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:

Свойство 2. Дисперсия случайной величины равна разности между математическим ожиданием квадрата случайной величины и квадратом ее математического ожидания:

Свойство 3. Дисперсия постоянной величины равна нулю:

Свойство 4. Постоянный множитель случайной величины, можно выносить за знак дисперсии, предварительно возведя его в квадрат:

Свойство 5. Дисперсия произведения двух независимых случайных величин и определяется по формуле

Пример 4. Вычислить дисперсию количества бракованных изделий для распределения примера 3.

Решение. По определению дисперсии

Обобщением основных числовых характеристик случайной величины является понятие моментов случайной величины.

Начальным моментом q-го порядка случайной величины называют математическое ожидание величины :

Начальный момент дискретной случайной величины

начальный момент непрерывной случайной величины

Центральным моментом q-го порядка случайной величины называют математическое ожидание величины :

Центральный момент дискретной случайной величины

центральный момент непрерывной случайной величины

Начальный момент первого порядка представляет собой математическое ожидание, а центральный момент второго порядка — дисперсию случайной величины.

Нормированный центральный момент третьего порядка служит характеристикой скошенности или асимметрии распределения (коэффициент асимметрии):

Нормированный центральный момент четвертого порядка служит характеристикой островершинности или плосковершинности распределения (эксцесс):

Пример 5. Случайная величина задана плотностью распределения вероятностей

Найти коэффициент , математическое ожидание, дисперсию, асимметрию и эксцесс.

Решение. Площадь, ограниченная кривой распределения, численно равна

Учитывая, что эта площадь должна быть равна единице, находим . По формуле (4.2) найдем математическое ожидание:

Дисперсию определим по формуле (4.3). Для этого найдем сначала математическое ожидание квадрата случайной величины:

Таким образом,

Используя начальные моменты, вычисляем центральные моменты третьего и четвертого порядка:

Числовые характеристики среднего арифметического n независимых случайных величин

Пусть — значения случайной величины , полученные при независимых испытаниях. Математическое ожидание случайной величины равно , а ее дисперсия . Эти значения можно рассматривать как независимые случайные величины с одинаковыми математическими ожиданиями и дисперсиями:

Средняя арифметическая этих случайных величин

Используя свойства математического ожидания и дисперсии случайной величины, можно записать:

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Источник

Определение функции случайных величин. Функция дискретного случайного аргумента и ее числовые характеристики. Функция непрерывного случайного аргумента и ее числовые характеристики. Функции двух случайных аргументов. Определение функции распределения вероятностей и плотности для функции двух случайных аргументов.

Закон распределения вероятностей функции одной случайной величины

При решении задач, связанных с оценкой точности работы различных автоматических систем, точности производства отдельных элементов систем и др., часто приходится рассматривать функции одной или нескольких случайных величин. Такие функции также являются случайными величинами. Поэтому при решении задач необходимо знать законы распределения фигурирующих в задаче случайных величин. При этом обычно известны закон распределения системы случайных аргументов и функциональная зависимость.

Таким образом, возникает задача, которую можно сформулировать так.

Дана система случайных величин , закон распределения которой известен. Рассматривается некоторая случайная величина Y как функция данных случайных величин:

(6.1)

Требуется определить закон распределения случайной величины , зная вид функций (6.1) и закон совместного распределения ее аргументов.

Рассмотрим задачу о законе распределения функции одного случайного аргумента

Пусть — дискретная случайная величина, имеющая ряд распределения

Тогда также дискретная случайная величина с возможными значениями . Если все значения различны, то для каждого события и тождественны. Следовательно,

и искомый ряд распределения имеет вид

Если же среди чисел есть одинаковые, то каждой группе одинаковых значений нужно отвести в таблице один столбец и соответствующие вероятности сложить.

Для непрерывных случайных величин задача ставится так: зная плотность распределения случайной величины , найти плотность распределения случайной величины . При решении поставленной задачи рассмотрим два случая.

Предположим сначала, что функция является монотонно возрастающей, непрерывной и дифференцируемой на интервале , на котором лежат все возможные значения величины . Тогда обратная функция существует, при этом являясь также монотонно возрастающей, непрерывной и дифференцируемой. В этом случае получаем

Читайте также:  Какое общее свойство имеют земля мяч солнце глобус луна бусина

(6.2)

Пример 1. Случайная величина распределена с плотностью

Найти закон распределения случайной величины , связанной с величиной зависимостью .

Решение. Так как функция монотонна на промежутке , то можно применить формулу (6.2). Обратная функция по отношению к функции есть , ее производная . Следовательно,

Рассмотрим случай немонотонной функции. Пусть функция такова, что обратная функция неоднозначна, т. е. одному значению величины соответствует несколько значений аргумента , которые обозначим , где — число участков, на которых функция изменяется монотонно. Тогда

(6.3)

Пример 2. В условиях примера 1 найти распределение случайной величины .

Решение. Обратная функция неоднозначна. Одному значению аргумента соответствуют два значения функции

Применяя формулу (6.3), получаем:

Закон распределения функции двух случайных величин

Пусть случайная величина является функцией двух случайных величин, образующих систему , т. е. . Задача состоит в том, чтобы по известному распределению системы найти распределение случайной величины .

Пусть — плотность распределения системы случайных величин . Введем в рассмотрение новую величину , равную , и рассмотрим систему уравнений

Будем полагать, что эта система однозначно разрешима относительно

и удовлетворяет условиям дифференцируемости.

Плотность распределения случайной величины

Заметим, что рассуждения не изменяются, если введенную новую величину положить равной .

Математическое ожидание функции случайных величин

На практике часто встречаются случаи, когда нет особой надобности полностью определять закон распределения функции случайных величин, а достаточно только указать его числовые характеристики. Таким образом, возникает задача определения числовых характеристик функций случайных величин помимо законов распределения этих функций.

Пусть случайная величина является функцией случайного аргумента с заданным законом распределения

Требуется, не находя закона распределения величины , определить ее математическое ожидание

Пусть — дискретная случайная величина, имеющая ряд распределения

Составим таблицу значений величины и вероятностей этих значений:

Эта таблица не является рядом распределения случайной величины , так как в общем случае некоторые из значений могут совпадать между собой и значения в верхней строке не обязательно идут в возрастающем порядке. Однако математическое ожидание случайной величины можно определить по формуле

(6.4)

так как величина, определяемая формулой (6.4), не может измениться от того, что под знаком суммы некоторые члены будут заранее объединены, а порядок членов изменен.

Формула (6.4) не содержит в явном виде закон распределения самой функции , а содержит только закон распределения аргумента . Таким образом, для определения математического ожидания функции вовсе не требуется знать закон распределения функции , а достаточно знать закон распределения аргумента .

Для непрерывной случайной величины математическое ожидание вычисляется по формуле

где — плотность распределения вероятностей случайной величины .

Рассмотрим случаи, когда для нахождения математического ожидания функции случайных аргументов не требуется знание даже законов распределения аргументов, а достаточно знать только некоторые их числовые характеристики. Сформулируем эти случаи в виде теорем.

Теорема 6.1. Математическое ожидание суммы как зависимых, так и независимых двух случайных величин равно сумме математических ожиданий этих величин:

Теорема 6.2. Математическое ожидание произведения двух случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

Следствие 6.1. Математическое ожидание произведения двух некоррелированных случайных величин равно произведению их математических ожиданий.

Следствие 6.2. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Дисперсия функции случайных величин

По определению дисперсии имеем . Следовательно,

, где .

Приведем расчетные формулы только для случая непрерывных случайных аргументов. Для функции одного случайного аргумента дисперсия выражается формулой

(6.5)

где — математическое ожидание функции ; — плотность распределения величины .

Формулу (6.5) можно заменить на следующую:

Рассмотрим теоремы о дисперсиях, которые играют важную роль в теории вероятностей и ее приложениях.

Теорема 6.3. Дисперсия суммы случайных величин равна сумме дисперсий этих величин плюс удвоенная сумма корреляционных моментов каждой из слагаемых величин со всеми последующими:

Следствие 6.3. Дисперсия суммы некоррелированных случайных величин равна сумме дисперсий слагаемых:

Теорема 6.4. Дисперсия произведения двух независимых случайных величин вычисляется по формуле

Корреляционный момент функций случайных величин

Согласно определению корреляционного момента двух случайных величин и , имеем

Раскрывая скобки и применяя свойства математического ожидания, получаем

(6.6)

Рассмотрим две функции случайной величины

Согласно формуле (6.6)

отсюда

т.е. корреляционный момент двух функций случайных величин равен математическому ожиданию произведения этих функций минус произведение из математических ожиданий.

Рассмотрим основные свойства корреляционного момента и коэффициента корреляции.

Свойство 1. От прибавления к случайным величинам постоянных величин корреляционный момент и коэффициент корреляции не изменяются.

Свойство 2. Для любых случайных величин и абсолютная величина корреляционного момента не превосходит среднего геометрического дисперсий данных величин:

где — средние квадратические отклонения величин и .

Следствие 6.5. Для любых случайных величин и абсолютная величина коэффициента корреляции не превосходит единицы:

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Источник