Какие свойства излучения присущи конвекции

Какие свойства излучения присущи конвекции thumbnail

Конвекция

Конвекция – перенос тепла внутри области, заполненной жидкой или газообразной средой, вследствие перемещения вещества этой среды.

Различают естественную (свободную) и вынужденную конвекцию.

При естественной конвекции перемещение вещества происходит исключительно вследствие различия температур в отдельных местах, заполненных жидкостью или газом. Интенсивность конвекции при этом тем больше, чем больше разность температур, чем больше теплопроводность и коэффициент объемного расширения вещества, чем меньше его вязкость. Естественная конвекция имеет место, как в природных условиях, так и в технических устройствах.

При вынужденной конвекции перемещение вещества происходит главным образом под воздействием внешнего возбудителя (насоса, вентилятора, дымососа, мешалки и др.). Интенсивность переноса тепла при этом зависит как от перечисленных выше факторов для естественной конвекции, так и от скорости вынужденного движения. Вынужденная конвекция используется, в частности, при нагреве питательной воды котельных агрегатов дымовыми отходящими газами в конвективной зоне котла (экономайзер котла). Конвективными подогревателями воздуха с вынужденной конвекцией являются, например, батареи центрального отопления, электрокалориферы и др.

Тепловое излучение

Тепловое излучение (температурное излучение) – электромагнитное излучение, обусловленное тепловой энергией излучающего тела (твердого, жидкого или газообразного). Происходит в результате колебаний электрически заряженных частиц (электронов, ионов) в веществе. При тепловом излучении имеет место устойчивое равновесное состояние, причем в спектре теплового излучения присутствуют электромагнитные волны разной длины волны (сплошной спектр), амплитуда которых зависит от температуры. При низких температурах имеет место инфракрасное (сравнительно низкочастотное невидимое) излучение, при высоких температурах – видимое и ультрафиолетовое излучение. Например, при нагревании тугоплавкого тела (угля, металла) до температуры около 500 °С появляется видимое темно-красное свечение этого тела. При температуре тела около 1500 °С свечение переходит в белое каление.

Основными характеристиками теплового излучения являются:

– излучательная способность тела – количество энергии, излучаемой в единицу времени с единицы поверхности тела в интервале определенных частот;

– поглощательная способность тела – отношение для данного интервала частот количества энергии, поглощаемой единицей поверхности тела, к количеству энергии, падающей на ту же поверхность за то же время.

Основной закон теплового излучения сформулирован Кирхгофом: отношение излучательной способности тела к его поглощательной способности не зависит от природы тела, являясь универсальной функцией температуры и частоты. Для абсолютно черного тела, например, сажи, поглощательная способность максимальна и равна единице. Свечение, не подчиняющееся закону Кирхгофа, не является тепловым (например, люминесцентным).

Отдача тепла лучеиспусканием имеет место, в частности, в топочных камерах котельных агрегатов. Нагревательные элементы (радиационные или лучевые, ширменные нагреватели), представляющие собой систему высокотемпературных металлических труб, размещают под потолком котла, и пропускают через них нагреваемое рабочее тело (питательную воду или пар).

Источник

«Виды теплопередачи:
теплопроводность, конвекция, излучение»

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы. Существуют следующие виды теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность

Теплопроводность – это процесс передачи энергии от одного тел а к другому или от одной части тела к дpугой благодаря тепловому движению частиц. Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другом у или от одной части телa к другой передается энергия.

Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Виды теплопередачи: теплопроводность, конвекция, излучение

Ещё более плохой теплопроводность ю обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

Конвекция

Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если вертушку, сделанную из бумаги, поместить над источником тепла, то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.  Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

Излучение

Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Опыты также показывают, что чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Виды теплопередачи: теплопроводность, конвекция, излучение

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

теплопередача виды

Конспект урока «Виды теплопередачи: теплопроводность, конвекция, излучение».

Следующая тема: «Количество теплоты. Удельная теплоёмкость».

Источник

Какие свойства излучения присущи конвекции

Опубликовано: 30 июля 2019 г.

656

Виталий Сасин, к.т.н., член президиума НП «АВОК», председатель экспертного совета ассоциации «АПРО»

Из трех известных механизмов передачи теплоты от тела более теплого более холодному (теплопроводность, конвекция и излучение (радиация)) в процессе теплоотдачи отопительных приборов конвекция и радиация играют наиболее заметную роль при формировании теплового комфорта в отапливаемом помещении.

Основной способ передачи теплоты – конвективный. Когда молекулы воздуха, контактируя с молекулами нагретого тела, поглощают часть энергии, начинают двигаться быстрее, воздух нагревается и становится менее плотным, его потоки поднимаются, вытесняясь более холодными, и уносят с собой тепло. Остывая – отдавая часть своего тепла окружающим предметам – воздух опять уплотняется и снова опускается вниз, вытесняя менее плотные теплые массы воздуха – формируются конвективные потоки, которые «разносят» тепло по обогреваемому помещению.

При радиации (этот механизм также называют передачей тепла с помощью лучистой энергии или лучистым обогревом) энергия переносится с объекта на объект посредством электромагнитного излучения с длиной волны (λ) от 0,7 до 400 мкм – инфракрасная часть спектра. При поглощении электромагнитных волн с длиной волны из инфракрасной части спектра каким-либо телом (облучаемым объектом) происходит возбуждение молекул вещества, ускорение движения этих молекул и генерация тепловой энергии. Так, в частности, передается на Землю тепло Солнца, таким же образом мы греемся у костра или камина и, более того, таким способом мы воспринимаем часть тепла от любых предметов и сами отдаем его.

Любой традиционный отопительный прибор отдает тепло в обогреваемое помещение обоими упомянутыми способами. Однако соотношение долей указанных природных механизмов в передаче тепловой энергии окружающей среде и предметам для разных отопительных приборов будет различно. Это соотношение и послужило когда-то основой для их деления на радиаторы и конвекторы. В соответствии с преобладающим способом теплоотдачи отопительные приборы делились на следующие виды:

– радиационные, передающие излучением не менее 50% всего вырабатываемого теплового потока (обычно потолочные отопительные панели и излучатели),

– конвективно-радиационные, передающие конвекцией 50%-75% общего теплового потока (радиаторы секционные и панельные, гладкотрубные приборы, напольные отопительные панели),

– конвективные, передающие конвекцией не менее 75% общего теплового потока (конвекторы и ребристые трубы).

Радиаторы и (или) конвекторы

В быту – как в многоквартирных, так и в частных домах, коттеджах – наибольшее распространение в системах водяного отопления получили отопительные приборы, устанавливающиеся, как правило, под окнами. По упомянутой выше классификации они относятся к «конвекционно-радиационным», но принято называть их просто радиаторами и только некоторые – конвекторами. Однако, если основывать деление отопительных приборов на радиаторы и конвекторы в зависимости от того, какая составляющая, лучистая или конвекционная, преобладает в общей теплоотдаче с прибора, то все типовые отопительные приборы, которые устанавливаются под подоконником (рис. 1) надо считать конвекторами.

Рис. 1 Секционный радиатор, установленный под окном

Секционный радиатор, установленный под окном

Даже для однорядного стального панельного радиатора без оребрения (тип 10) доля лучистого тепла составляет в общей теплоотдаче около 45 % (рис. 2, 3).

Рис. 2 Типы стальных панельных радиаторов

Типы стальных панельных радиаторов

Рис. 3 Стальной панельный радиатор – тип 10

Стальной панельный радиатор – тип 10

Во всех остальных радиаторах оребрение играет главную роль в теплоотдаче, как за счет увеличения площади, так и за счет формирования конвекционных каналов. При этом оребрение само себя экранирует, препятствуя распространению тепла лучистым способом (рис. 4). Поэтому и доля конвективной отдачи с любого отопительного прибора оказывается больше.

Рис. 4 Оребрение стального панельного радиатора

Оребрение стального панельного радиатора

Конвекторами в классификации старых ГОСТО-в, как приводится выше, было принято считать приборы, доля лучистой составляющей в теплоотдаче которых не превышает 25 %. В то же время такие модели приборов, за которыми укоренилось название стальных панельных радиаторов, например, тип 22 или тип 33 не дают и 20 % лучистой энергии в общей теплоотдаче (рис. 5, 6).

Рис. 5 Стальной панельный радиатор тип 22

Стальной панельный радиатор тип 22

Рис. 6 Стальной панельный радиатор тип 33

Стальной панельный радиатор тип 33

Во избежание несуразицы, в современной редакции ГОСТов под радиатором следует понимать: «Отопительный прибор, отдающий теплоту путем конвекции и радиации», а под конвектором (рис. 7): «Отопительный прибор, отдающий теплоту преимущественно за счет свободной конвекции. Конвектор, как правило, состоит из нагревательного элемента и кожуха, образующего необогреваемый канал для естественной конвекции» (ГОСТ 31311-2005. Приборы отопительные. Общие технические условия, статьи 3.2 и 3.3 соответственно).

Рис. 7 Напольный конвектор

Напольный конвектор

Понятия радиатор и конвектор используются также в действующем пока ГОСТе 53583-2009 «Приборы отопительные. Методы испытаний». Прежде всего, это оправдано тем, что в данном нормативном документе учитывается влияние атмосферного давления на конвективную составляющую теплоотдачи и приводится соответствующий график (рис. 8) для поправки (fB) к расчету фактического значения теплового потока прибора (Q), Вт, которое при испытаниях определяют по формуле (ГОСТ 53583-2009, статья 7.3):

Q = Qизм [S + (1- S)fB],

где:

Qизм – тепловой поток испытуемого отопительного прибора,

S – доля теплоотдачи излучением, определяемая согласно ГОСТ-у по приводящейся там таблице.

 Атмосферное давление влияет на конвективную составляющую теплоотдачи отопительного прибора, так как при этом способе отдачи теплоты основную роль играет формирование теплых воздушных потоков, а если прибор имеет существенную долю лучистой энергии в теплоотдаче, то атмосферное давление на его общей теплоотдаче сказывается меньше. В целом же изменения атмосферного давления в природных условиях оказывает влияние на значение теплоотдачи прибора обычно в пределах 2-3%.

Рис. 8 График для поправки на атмосферное давление к расчету теплового потока

График для поправки на атмосферное давление к расчету теплового потока

Конвекция и радиация в температурном комфорте

Наиболее комплексно состояние теплового комфорта человека определяется в микроклимате помещения с помощью эквивалентно-эффективной температуры (ЭЭТ) и результирующей температуры (РТ). ЭЭТ – условно-числовая величина субъективного ощущения человека при разных соотношениях температуры, влажности, скорости движения воздуха, а РТ – и радиационной температуры. Этот параметр используется при наличии источников теплового излучения и рассчитывается, в общем случае, с помощью таблиц или номограмм по показателям сухого и радиационного термометров.

Согласно ГОСТу 30494-96 «Здания жилые и общественные параметры микроклимата в помещениях» результирующая температура при скорости движения воздуха до 0,2 м/с равна полусумме температур воздуха в помещении и средней радиационной. При скорости же 0,2–0,6 м/с она рассчитывается по формуле:

PT = 0,6 tp + 0,4 tr,

где tp и tr – соответственно температуры воздуха в помещении и средняя радиационная. Для получения последней используются показатели шарового термометра или температуры внутренних поверхностей ограждений и отопительных приборов:

tr = Σ(Ai · ti)/ΣAi ,

где Ai – площадь внутренней поверхности ограждений и отопительных приборов, ti – их температуры, ˚С.

 На степень комфортности внутреннего климата значительно влияют также тепловая радиационная асимметрия, температура поверхности пола, температурный градиент по вертикали.

По своей природе инфракрасное излучение более эффективный способ передачи тепла от его источника к окружающим предметам и именно потому, что при этом не нагревается воздух, выступающий при конвекции как промежуточный теплоноситель, доставляющий тепло к месту его потребления. При транспортировке происходят основные потери тепла. Под воздействием же инфракрасного излучения непосредственно нагревается поверхность пола, облучаемые площади стен, поверхность человеческого тела, окружающие предметы. Практически вся излученная энергия переходит в тепло обогреваемого предмета без теплопотерь, и уже впоследствии от нагретых поверхностей предметов нагревается воздух в помещении.

Кроме того, для передачи тепла лучистой энергией свойственен эффект дополнительного обогрева – находящийся под воздействием инфракрасного излучения человек ощущает температуру примерно на 3-4 градуса выше, чем реальная температура воздуха в помещении.

Однако при формировании теплового комфорта в помещении, которое обогревается прибором водяного отопления, размещенном под подоконником, наблюдается такой парадокс, что именно конвекторы оказываются более эффективны и, в том числе, за счет вклада радиационной составляющей в общий баланс для достижения температуры комфорта.

Прежде всего, условный конвектор, установленный под подоконником, создает более мощный конвекционный поток теплого воздуха, чем установленный там же условный радиатор. В результате, этот поток лучше защищает от холода, поступающего внутрь помещения от окна. Поток теплого воздуха от конвектора на 1-2 ºС лучше прогревает поверхность оконного стекла, чем поток от радиатора. А эти 2 градуса очень хорошо чувствуются, если люди сидят около окна и разница между температурами 16 ºС и 18 ºС очень заметна.

Более того, конвекторы создают большую подвижность воздуха в помещении, теплый воздух скапливается в верхней части помещения и перегревают потолок тоже на 2-3 ºС. Казалось бы, это мелочи, и такая небольшая разница перегрева не будет заметна при формировании теплового комфорта в отапливаемом помещении, но потолок обладает большой площадью и поэтому «лишние» 2-3 градуса тепла со всей его поверхности оказываются совсем не лишними и очень заметными. Причем отдается это тепло с поверхности потолка в основном уже лучистым способом. То есть улучшается радиационная составляющая.

Эффективны в повышении вклада радиационной составляющей в общий баланс температурного комфорта оказываются и плинтусные (парапетные) конвекторы, которые размещаются при отоплении больших помещений по периметру стен, особенно при сочетании с вентиляторными конвекторами, устанавливаемыми под окнами. При их работе не только перегревается потолок, но и формирующиеся у поверхности стен конвекционные потоки прогревают и сами стены. Опять на те же 2-3 °С, но в этом случае и стены начинают вносить больший вклад в радиационную составляющую общего теплового комфорта. Таким образом получается, что как бы теплопотери с промежуточного теплоносителя (воздуха) работают на более эффективное достижение комфортной температуры.  

Статья из журнала “Аква-Терм”  № 4/2019,  рубрика”Отопление и ГВС”

вернуться назад

Источник

Оглавление темы “Регуляция обмена веществ и энергии. Рациональное питание. Основной обмен. Температура тела и ее регуляция.”:

1. Энергетические затраты организма в условиях физической нагрузки. Коэффициент физической активности. Рабочая прибавка.

2. Регуляция обмена веществ и энергии. Центр регуляции обмена веществ. Модуляторы.

3. Концентрация глюкозы в крови. Схема регуляции концентрации глюкозы. Гипогликемия. Гипогликемическая кома. Чувство голода.

4. Питание. Норма питания. Соотношение белков, жиров и углеводов. Энергетической ценность. Калорийность.

5. Рацион беременных и кормящих женщин. Рацион детского питания. Распределение суточного рациона. Пищевые волокна.

6. Рациональное питание как фактор сохранения и укрепления здоровья. Здоровый образ жизни. Режим приема пищи.

7. Температура тела и ее регуляция. Гомойотермные. Пойкилотермные. Изотермия. Гетеротермные организмы.

8. Нормальная температура тела. Гомойотермное ядро. Пойкилотермная оболочка. Температура комфорта. Температура тела человека.

9. Теплопродукция. Первичная теплота. Эндогенная терморегуляция. Вторичная теплота. Сократительный термогенез. Несократительный термогенез.

10. Теплоотдача. Излучение. Теплопроведение. Конвекция. Испарение.

Теплоотдача. Излучение. Теплопроведение. Конвекция. Испарение.

Существуют следующие пути отдачи тепла организмом в окружающую среду: излучение, теплопроведение, конвекция и испарение.

Излучение — это способ отдачи тепла в окружающую среду поверхностью тела человека в виде электромагнитных волн инфракрасного диапазона (а = 5—20 мкм). Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения и разности средних значений температур кожи и окружающей среды. Площадь поверхности излучения — это суммарная площадь поверхности тех частей тела, которые соприкасаются с воздухом. При температуре окружающей среды 20 °С и относительной влажности воздуха 40—60 % организм взрослого человека рассеивает путем излучения около 40—50 % всего отдаваемого тепла. Теплоотдача путем излучения возрастает при понижении температуры окружающей среды и уменьшается при ее повышении. В условиях постоянной температуры окружающей среды излучение с поверхности тела возрастает при повышении температуры кожи и уменьшается при ее понижении. Если средние температуры поверхности кожи и окружающей среды выравниваются (разность температур становится равной нулю), отдача тепла излучением становится невозможной. Снизить теплоотдачу организма излучением можно за счет уменьшения площади поверхности излучения («сворачивания тела в клубок»). Если температура окружающей среды превышает среднюю температуру кожи, тело человека, поглощая инфракрасные лучи, излучаемые окружающими предметами, согревается.

Теплоотдача. Излучение. Теплопроведение. Конвекция. Испарение.
Рис. 13.4. Виды теплоотдачи. Пути отдачи тепла организмом во внешнюю среду можно условно подразделить на «влажную» теплоотдачу, связанную с испарением пота и влаги с кожи и слизистых оболочек, и на «сухую» теплоотдачу, которая не связана с потерей жидкости.

Теплопроведение — способ отдачи тепла, имеющий место при контакте, соприкосновении тела человека с другими физическими телами. Количество тепла, отдаваемого организмом в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади контактирующих поверхностей, времени теплового контакта и теплопроводности контактирующего тела. Сухой воздух, жировая ткань характеризуются низкой теплопроводностью и являются теплоизоляторами. Использование одежды из тканей, содержащих большое число маленьких неподвижных «пузырьков» воздуха между волокнами (например, шерстяные ткани), дает возможность организму человека уменьшить рассеяние тепла путем теплопроводности. Влажный, насыщенный водяными парами воздух, вода характеризуются высокой теплопроводностью. Поэтому пребывание человека в среде с высокой влажностью при низкой температуре сопровождается усилением теплопотерь организма. Влажная одежда также теряет свои теплоизолирующие свойства.

Конвекция — способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха (воды). Для рассеяния тепла конвекцией требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. При этом контактирующий с кожей слой воздуха нагревается, снижает свою плотность, поднимается и замещается более холодным и более плотным воздухом. В условиях, когда температура воздуха равна 20 °С, а относительная влажность — 40—60 %, тело взрослого человека рассеивает в окружающую среду путем теплопро-ведения и конвекции около 25—30 % тепла (базисная конвекция). При увеличении скорости движения воздушных потоков (ветер, вентиляция) значительно возрастает и интенсивность теплоотдачи (форсированная конвекция).

Отдача тепла организмом путем теплопроведения, конвекции и излучения, называемых вместе «сухой» теплоотдачей, становится неэффективной при выравнивании средних температур поверхности тела и окружающей среды.

Теплоотдача. Излучение. Теплопроведение. Конвекция. Испарение.

Теплоотдача путем испарения — это способ рассеяния организмом тепла в окружающую среду за счет его затраты на испарение пота или влаги с поверхности кожи и влаги со слизистых оболочек дыхательных путей («влажная» теплоотдача). У человека постоянно осуществляется выделение пота потовыми железами кожи («ощутимая», или железистая, потеря воды), увлажняются слизистые оболочки дыхательных путей («неощутимая» потеря воды) (рис. 13.4). При этом «ощутимая» потеря воды организмом оказывает более существенное влияние на общее количество отдаваемого путем испарения тепла, чем «неощутимая».

При температуре внешней среды около 20 “С испарение влаги составляет около 36 г/ч. Поскольку на испарение 1 г воды у человека затрачивается 0,58 ккал тепловой энергии, нетрудно подсчитать, что путем испарения организм взрослого человека отдает в этих условиях в окружающую среду около 20 % всего рассеиваемого тепла. Повышение внешней температуры, выполнение физической работы, длительное пребывание в теплоизолирующей одежде усиливают потоотделение и оно может возрасти до 500— 2000 г/ч. Если внешняя температура превышает среднее значение температуры кожи, то организм не может отдавать во внешнюю среду тепло излучением, конвекцией и теплопроведением. Организм в этих условиях начинает поглощать тепло извне, и единственным способом рассеяния тепла становится усиление испарения влаги с поверхности тела. Такое испарение возможно до тех пор, пока влажность воздуха окружающей среды остается меньше 100 %. При интенсивном потоотделении, высокой влажности и малой скорости движения воздуха, когда капли пота, не успевая испариться, сливаются и стекают с поверхности тела, теплоотдача путем испарения становится менее эффективной.

– Вернуться в оглавление раздела “Физиология человека.”

Источник