Какие свойства имеют оксид
Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.
Оксиды могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.
Они бывают солеобразующими и несолеобразующие.
Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:
CuO + 2HCl → CuCl2 + H2O.
В результате химических реакций можно получать и другие соли:
CuO + SO3 → CuSO4.
Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N2O, NO.
Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова «основание»), кислотными и амфотерными.
Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na2O, K2O, MgO, CaO и т.д.
Химические свойства основных оксидов
1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:
Na2O + H2O → 2NaOH.
2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли
Na2O + SO3 → Na2SO4.
3. Реагируют с кислотами, образуя соль и воду:
CuO + H2SO4 → CuSO4 + H2O.
4. Реагируют с амфотерными оксидами:
Li2O + Al2O3 → 2LiAlO2.
Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO2, SO3, P2O5, N2O3, Cl2O5, Mn2O7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.
Химические свойства кислотных оксидов
1. Взаимодействуют с водой, образуя кислоту:
SO3 + H2O → H2SO4.
Но не все кислотные оксиды непосредственно реагируют с водой (SiO2 и др.).
2. Реагируют с основанными оксидами с образованием соли:
CO2 + CaO → CaCO3
3. Взаимодействуют со щелочами, образуя соль и воду:
CO2 + Ba(OH)2 → BaCO3 + H2O.
В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH)2 и H2ZnO2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.
Химические свойства амфотерных оксидов
1. Взаимодействуют с кислотами, образуя соль и воду:
ZnO + 2HCl → ZnCl2 + H2O.
2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:
ZnO + 2NaOH → Na2 ZnO2 + H2O.
При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:
ZnO + 2 NaOH + H2O => Na2[Zn(OH)4].
Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле. Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;
Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.
Остались вопросы? Хотите знать больше об оксидах?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!
Зарегистрироваться
© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.
Источник
Запрос «Окись» перенаправляется сюда; об одноимённом фильме см. Окись (фильм).
Окси́д (синонимы: о́кисел, о́кись) — бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй после фтора, поэтому к оксидам относятся почти все соединения химических элементов с кислородом. К исключениям относятся, например, дифторид кислорода OF2.
Оксиды — весьма распространённый тип соединений, содержащихся в земной коре и во Вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей. Оксидами также является класс минералов, представляющих собой соединения металла с кислородом (см. Окислы).
Соединения, которые содержат атомы кислорода, соединённые между собой, называют пероксидами или перекисями (содержат цепочку −O−O−), супероксидами (содержат группу О−
2) и озонидами (содержат группу О−
3). Они, строго говоря, не относятся к категории оксидов.
Классификация[править | править код]
В зависимости от химических свойств различают:
- Солеобразующие оксиды:
- основные оксиды (например, оксид натрия Na2O, оксид меди(II) CuO): оксиды металлов, степень окисления которых I—II;
- кислотные оксиды (например, оксид серы(VI) SO3, оксид азота(IV) NO2): оксиды металлов со степенью окисления V—VII и оксиды неметаллов;
- амфотерные оксиды (например, оксид цинка ZnO, оксид алюминия Al2О3): оксиды металлов со степенью окисления III—IV и исключения (ZnO, BeO, SnO, PbO);
- Несолеобразующие оксиды: оксид углерода(II) СО, оксид азота(I) N2O, оксид азота(II) NO, оксид кремния(II) SiO.
Существуют сложные оксиды, включающие в молекулу атомы двух и более элементов, кроме кислорода — например, оксид лития-кобальта(III) Li2O·Co2O3, и двойные оксиды, в которые атомы одного и того же элемента входят в двух или более степенях окисления — например, оксид марганца(II,IV) Mn5O8. Во многих случаях такие оксиды могут рассматриваться как соли кислородсодержащих кислот. Так, оксид лития-кобальта(III) можно рассматривать как кобальтит лития Li2Co2O4, а оксид марганца(II,IV) — как ортоманганит марганца Mn3(MnO4)2.
Номенклатура[править | править код]
В соответствии с номенклатурой ИЮПАК, оксиды называют словом «оксид», после которого следует наименование химического элемента в родительном падеже, например: Na2O — оксид натрия, Al2O3 — оксид алюминия. Если элемент имеет переменную степень окисления, то в названии оксида указывается его степень окисления римской цифрой в скобках сразу после названия (без пробела). Например, Cu2О — оксид меди(I), CuO — оксид меди(II), FeO — оксид железа(II), Fe2О3 — оксид железа(III), Cl2O7 — оксид хлора(VII).
Часто используют и другие наименования оксидов по числу атомов кислорода: если оксид содержит только один атом кислорода, то его называют монооксидом или одноокисью, если два — диоксидом или двуокисью, если три — то триоксидом или триокисью и т. д. Например: монооксид углерода CO, диоксид углерода СО2, триоксид серы SO3.
Также распространены исторически сложившиеся (тривиальные) названия оксидов, например угарный газ CO, серный ангидрид SO3 и т. д.
В начале XIX века и ранее тугоплавкие, практически не растворимые в воде оксиды химики называли «землями».
Традиционная номенклатура[править | править код]
Оксиды с низшими степенями окисления (субоксиды) иногда называют закись и недокись (например, оксид углерода(II), CO — закись углерода; диоксид триуглерода, C3O2 — недокись углерода[1]; оксид азота(I), N2O — закись азота; оксид меди(I), Cu2O — закись меди).
Оксиды с высшими степенями окисления (например, оксид железа(III), Fe2O3) называют в соответствии с этой номенклатурой окись, а двойные (то есть с разными степенями окисления) оксиды — закись-окись (Fe3O4 = FeO·Fe2O3 — закись-окись железа, оксид урана(VI)-диурана(V), U3O8 — закись-окись урана).
Если какой-нибудь металл дает один основной окисел, то последний называют окисью, например окись кальция, окись магния и пр.; если их существует два, то окисел с меньшим содержанием кислорода называется закисью, например закись железа FeO и окись Fe2O3. Окись с меньшим содержанием кислорода, чем в закиси, называется недокисью
Эта номенклатура, однако, не отличается последовательностью, поэтому такие названия следует рассматривать скорее как традиционные.
Свойства[править | править код]
- При взаимодействии кислотного оксида с основным образуется соль.
- Оксиды взаимодействуют с водой, если образуется растворимая кислота или растворимое основание.
- Основные оксиды взаимодействуют с кислотами, а кислотные с основаниями.
Основные оксиды[править | править код]
1. Основный оксид + сильная кислота → соль + вода
2. Сильноосновный оксид + вода → гидроксид
3. Сильноосновный оксид + кислотный оксид → соль
4. Основный оксид + водород → металл + вода
Примечание: металл менее активный, чем алюминий.
Кислотные оксиды[править | править код]
1. Кислотный оксид + вода → кислота
Некоторые оксиды, например SiO2, с водой не вступают в реакцию, поэтому их кислоты получают косвенным путём.
2. Кислотный оксид + основный оксид → соль
3. Кислотный оксид + основание → соль + вода
Если кислотный оксид является ангидридом многоосновной кислоты, возможно образование кислых или средних солей:
4. Нелетучий оксид + соль1 → соль2 + летучий оксид
5. Ангидрид кислоты 1 + безводная кислородосодержащая кислота 2 → Ангидрид кислоты 2 + безводная кислородосодержащая кислота 1
Амфотерные оксиды[править | править код]
При взаимодействии с сильной кислотой или кислотным оксидом проявляют основные свойства:
При взаимодействии с сильным основанием или основным оксидом проявляют кислотные свойства:
(в водном растворе)
(при сплавлении)
Получение[править | править код]
1. Взаимодействие простых веществ (за исключением инертных газов, золота и платины) с кислородом:
При горении в кислороде щелочных металлов (кроме лития), а также стронция и бария образуются пероксиды и надпероксиды:
2. Обжиг или горение бинарных соединений в кислороде:
3. Термическое разложение солей:
4. Термическое разложение оснований или кислот:
5. Окисление низших оксидов в высшие и восстановление высших в низшие:
6. Взаимодействие некоторых металлов с водой при высокой температуре:
7. Взаимодействие солей с кислотными оксидами при сжигании кокса с выделением летучего оксида:
8. Взаимодействие металлов с кислотами-окислителями:
9. При действии водоотнимающих веществ на кислоты и соли:
10. Взаимодействие солей слабых неустойчивых кислот с более сильными кислотами:
Примечания[править | править код]
Ссылки[править | править код]
- Таблица классификации оксидов
- Видеоурок про оксиды
Источник
Оксиды — это неорганические соединения, состоящие из двух химических элементов, одним из которых является кислород в степени окисления -2. Единственным элементом, не образующим оксид, является фтор, который в соединении с кислородом образует фторид кислорода. Это связано с тем, что фтор является более электроотрицательным элементом, чем кислород.
Данный класс соединений является очень распространенным. Каждый день человек встречается с разнообразными оксидами в повседневной жизни. Вода, песок, выдыхаемый нами углекислый газ, выхлопы автомобилей, ржавчина — все это примеры оксидов.
Классификация оксидов
Все оксиды, по способности образовать соли, можно разделить на две группы:
- Солеобразующие оксиды (CO2, N2O5,Na2O, SO3 и т. д.)
- Несолеобразующие оксиды(CO, N2O,SiO, NO и т. д.)
В свою очередь, солеобразующие оксиды подразделяют на 3 группы:
- Основные оксиды — (Оксиды металлов — Na2O, CaO, CuO и т д)
- Кислотные оксиды — (Оксиды неметаллов, а так же оксиды металлов в степени окисления V-VII — Mn2O7,CO2, N2O5, SO2, SO3 и т д)
- Амфотерные оксиды (Оксиды металлов со степенью окисления III-IV а так же ZnO, BeO, SnO, PbO)
Данная классификация основана на проявлении оксидами определенных химических свойств. Так, основным оксидам соответствуют основания, а кислотным оксидам — кислоты. Кислотные оксиды реагируют с основными оксидами с образованием соответствующей соли, как если бы реагировали основание и кислота, соответствующие данным оксидам:Аналогично, амфотерным оксидам соответствуют амфотерные основания, которые могут проявлять как кислотные, так и основные свойства:Химические элементы проявляющие разную степень окисления, могут образовывать различные оксиды. Чтобы как то различать оксиды таких элементов, после названия оксиды, в скобках указывается валентность.
CO2 – оксид углерода (IV)
N2O3 – оксид азота (III)
Физические свойства оксидов
Оксиды весьма разнообразны по своим физическим свойствам. Они могут быть как жидкостями (Н2О), так и газами (СО2, SO3) или твёрдыми веществами (Al2O3, Fe2O3). Приэтом оснОвные оксиды, как правило, твёрдые вещества. Окраску оксиды также имеют самую разнообразную — от бесцветной (Н2О, СО) и белой (ZnO, TiO2) до зелёной (Cr2O3) и даже чёрной (CuO).
Химические свойства оксидов
Основные оксиды
Некоторые оксиды реагируют с водой с образованием соответствующих гидроксидов (оснований):Основные оксиды реагируют с кислотными оксидами с образованием солей:Аналогично реагируют и с кислотами, но с выделением воды:Оксиды металлов, менее активных чем алюминий, могут восстанавливаться до металлов:
Кислотные оксиды
Кислотные оксиды в реакции с водой образуют кислоты:Некоторые оксиды (например оксид кремния SiO2) не взаимодействуют с водой, поэтому кислоты получают другими путями.
Кислотные оксиды взаимодействуют с основными оксидами, образую соли:Таким же образом, с образование солей, кислотные оксиды реагируют с основаниями:Если данному оксиду соответствует многоосновная кислота, то так же может образоваться кислая соль:Нелетучие кислотные оксиды могут замещать в солях летучие оксиды:
Амфотерные оксиды
Как уже говорилось ранее, амфотерные оксиды, в зависимости от условий, могут проявлять как кислотные, так и основные свойства. Так они выступают в качестве основных оксидов в реакциях с кислотами или кислотными оксидами, с образованием солей: И в реакциях с основаниями или основными оксидами проявляют кислотные свойства:
Получение оксидов
Оксиды можно получить самыми разнообразными способами, мы приведем основные из них.
Большинство оксидов можно получить непосредственным взаимодействием кислорода с химических элементом: При обжиге или горении различных бинарных соединений:Термическое разложение солей, кислот и оснований :Взаимодействие некоторых металлов с водой:
Применение оксидов
Оксиды крайне распространены по всему земному шару и находят применение как в быту, так и в промышленности. Самый важный оксид — оксид водорода, вода — сделал возможной жизнь на Земле. Оксид серы SO3 используют для получения серной кислоты, а также для обработки пищевых продуктов — так увеличивают срок хранения, например, фруктов.
Оксиды железа используют для получения красок, производства электродов, хотя больше всего оксидов железа восстанавливают до металлического железа в металлургии.
Оксид кальция, также известный как негашеная известь, применяют в строительстве. Оксиды цинка и титана имеют белый цвет и нерастворимы в воде, потому стали хорошим материалом для производства красок — белил.
Оксид кремния SiO2 является основным компонентом стекла. Оксид хрома Cr2O3 применяют для производства цветных зелёных стекол и керамики, а за счёт высоких прочностных свойств — для полировки изделий (в виде пасты ГОИ).
Оксид углерода CO2, который выделяют при дыхании все живые организмы, используется для пожаротушения, а также, в виде сухого льда, для охлаждения чего-либо.
Источник
Свойства оксидов
Оксиды – это сложные химические вещества, представляющие собой химические соединения простых элементов с кислородом. Они бывают солеобразующими и не образующие соли.
При этом солеобразующие бывают 3-х типов: основными (от слова “основание”), кислотными и амфотерными.
Примером окислов, не образующих соли, могут быть: NO (окись азота) – представляет собой бесцветный газ, без запаха. Он образуется во время грозы в атмосфере. CO (окись углерода) – газ без запаха, образуется при сгорании угля. Его обычно называют угарным газом. Существуют и другие окислы, не образующие соли.
Теперь разберём подробнее каждый вид солеобразующих окислов.
Основные оксиды
Основные оксиды – это сложные химические вещества, относящиеся к окислам, которые образуют соли при химической реакции с кислотами или кислотными оксидами и не реагируют с основаниями или основными оксидами. Например, к основным относятся следующие:
K2O (окись калия), CaO (окись кальция), FeO (окись железа 2-валентного).
Рассмотрим химические свойства оксидов на примерах
1. Взаимодействие с водой:
– взаимодействие с водой с образованием основания (или щёлочи)
CaO+H2O→ Ca(OH)2 (известная реакция гашения извести, при этом выделяется большое количества тепла!)
2. Взаимодействие с кислотами:
– взаимодействие с кислотой с образованием соли и воды (раствор соли в воде)
CaO+H2SO4→ CaSO4+ H2O (Кристаллы этого вещества CaSO4 известны всем под названием “гипс”).
3. Взаимодействие с кислотными оксидами: образование соли
CaO+CO2→ CaCO3 (Это вещество известно всем – обычный мел!)
Кислотные оксиды
Кислотные оксиды – это сложные химические вещества, относящиеся к окислам, которые образуют соли при химическом взаимодействии с основаниями или основными оксидами и не взаимодействуют с кислотными оксидами.
Примерами кислотных окислов могут быть:
CO2 (всем известный углекислый газ), P2O5 – оксид фосфора (образуется при сгорании на воздухе белого фосфора), SO3 – триокись серы – это вещество используют для получения серной кислоты.
– химическая реакция с водой
CO2+H2O→ H2CO3 – это вещество – угольная кислота – одна из слабых кислот, её добавляют в газированную воду для “пузырьков” газа. С повышением температуры растворимость газа в воде уменьшается, а его излишек выходит в виде пузырьков.
– реакция с щелочами (основаниями):
CO2+2NaOH→ Na2CO3+H2O- образовавшееся вещество (соль) широко используется в хозяйстве. Её название – кальцинированная сода или стиральная сода, – отличное моющее средство для подгоревших кастрюль, жира, пригара. Голыми руками работать не рекомендую!
– реакция с основными оксидами:
CO2+MgO→ MgCO3 – получившая соль – карбонат магния – ещё называется “горькая соль”.
Амфотерные оксиды
Амфотерные оксиды – это сложные химические вещества, также относящиеся к окислам, которые образуют соли при химическом взаимодействии и с кислотами (или кислотными оксидами) и основаниями (или основными оксидами). Наиболее частое применение слово “амфотерный” в нашем случае относится к оксидам металлов.
Примером амфотерных оксидов могут быть:
ZnO – окись цинка (белый порошок, часто применяемый в медицине для изготовления масок и кремов), Al2O3 – окись алюминия (называют еще “глинозёмом”).
Химические свойства амфотерных оксидов уникальны тем, что они могут вступать в химические реакции, соответствующие как основаниями так и с кислотами. Например:
– реакция с кислотным оксидом:
ZnO+H2CO3→ ZnCO3 + H2O – Образовавшееся вещество – раствор соли “карбоната цинка” в воде.
– реакция с основаниями:
ZnO+2NaOH→ Na2ZnO2+H2O – полученное вещество – двойная соль натрия и цинка.
Получение оксидов
Получение оксидов производят различными способами. Это может происходить физическим и химическим способами. Самым простым способом является химическое взаимодействие простых элементов с кислородом. Например, результатом процесса горения или одним из продуктов этой химической реакции являются оксиды.
Например, если раскалённое железный прутик, да и не только железный (можно взять цинк Zn, олово Sn, свинец Pb, медь Cu, – вообщем то, что имеется под рукой) поместить в колбу с кислородом, то произойдёт химическая реакция окисления железа, которая сопровождается яркой вспышкой и искрами. Продуктом реакции будет чёрный порошок оксида железа FeO:
2Fe+O2→ 2FeO
Полностью аналогичны химические реакции с другими металлами и неметаллами.
Цинк сгорает в кислороде с образованием окисла цинка
2Zn+O2→ 2ZnO
Горение угля сопровождается образованием сразу двух окислов: угарного газа и углекислого газа
2C+O2→ 2CO – образование угарного газа.
C+O2→ CO2 – образование углекислого газа. Этот газ образуется если кислорода имеется в более, чем достаточном количестве, то есть в любом случае сначала протекает реакция с образованием угарного газа, а потом угарный газ окисляется, превращаясь в углекислый газ.
Получение оксидов можно осуществить другим способом – путём химической реакции разложения.
Например, для получения окисла железа или окисла алюминия необходимо прокалить на огне соответствующие основания этих металлов:
Fe(OH)2→ FeO+H2O
Твёрдый оксид алюминия – минерал корундОксид железа (III). Поверхность планеты Марс имеет красновато-оранжевый цвет из-за наличия в грунте оксида железа (III).Твёрдый оксид алюминия – корундРастворы оксидов
2Al(OH)3→ Al2O3+3H2O,
а также при разложении отдельных кислот:
H2CO3→ H2O+CO2 – разложение угольной кислоты
H2SO3→ H2O+SO2 – разложение сернистой кислоты
Получение оксидов можно осуществить из солей металлов при сильном нагревании:
CaCO3→ CaO+CO2 – прокаливанием мела получают окись кальция (или негашенную известь) и углекислый газ.
2Cu(NO3)2→ 2CuO + 4NO2 + O2 – в этой реакции разложения получается сразу два окисла: меди CuO (чёрного цвета) и азота NO2 (его ещё называют бурым газом из-за его действительно бурого цвета).
Ещё одним способом, которым можно осуществить получение окислов – это окислительно-восстановительные реакции
Cu + 4HNO3(конц.)→ Cu(NO3)2 + 2NO2 + 2H2O
S + 2H2SO4(конц.)→ 3SO2 + 2H2O
Оксиды хлора
Молекула ClO2Молекула Cl2O7Закись азота N2OАзотистый ангидрид N2O3Азотный ангидрид N2O5Бурый газ NO2
Известны следующие оксиды хлора: Cl2O, ClO2, Cl2O6, Cl2O7.
Все они, за исключением Cl2O7, имеют желтую или оранжевую окраску и не устойчивы, особенно ClO2, Cl2O6. Все оксиды хлора взрывоопасны и являются очень сильными окислителями.
Реагируя с водой, они образуют соответствующие кислородсодержащие и хлорсодержащие кислоты:
Так, Cl2O – кислотный оксид хлора хлорноватистой кислоты.
Cl2O + H2O→ 2HClO – Хлорноватистая кислота
ClO2 – кислотный оксид хлора хлорноватистой и хлорноватой кислоты, так как при химической реакции с водой образует сразу две этих кислоты:
ClO2 + H2O→ HClO2 + HClO3
Cl2O6 – тоже кислотный оксид хлора хлорноватой и хлорной кислот:
Cl2O6 + H2O→ HClO3 + HClO4
И, наконец, Cl2O7 – бесцветная жидкость – кислотный оксид хлора хлорной кислоты:
Cl2O7 + H2O→ 2HClO4
Оксиды азота
Азот – газ, который образует 5 различных соединений с кислородом – 5 оксидов азота. А именно:
– N2O – гемиоксид азота. Другое его название известно в медицине под названием веселящий газ или закись азота – это бесцветный сладковатый и приятный на вкус на газ.
– NO – моноксид азота – бесцветный, не имеющий ни запаха ни вкуса газ.
– N2O3 – азотистый ангидрид – бесцветное кристаллическое вещество
– NO2 – диоксид азота. Другое его название – бурый газ – газ действительно имеет буро-коричневый цвет
– N2O5 – азотный ангидрид – синяя жидкость, кипящая при температуре 3,5 0C
Из всех этих перечисленных соединений азота наибольший интерес в промышленности представляют NO – моноксид азота и NO2 – диоксид азота. Моноксид азота (NO) и закись азота N2O не реагируют ни с водой, ни с щелочами. Азотистый ангидрид (N2O3) при реакции с водой образует слабую и неустойчивую азотистую кислоту HNO2, которая на воздухе постепенно переходит в более стойкое химическое вещество азотную кислоту
Рассмотрим некоторые химические свойства оксидов азота:
Реакция с водой:
2NO2 + H2O→ HNO3 + HNO2 – образуется сразу 2 кислоты: азотная кислота HNO3 и азотистая кислота.
Реакция с щелочью:
2NO2 + 2NaOH→ NaNO3 + NaNO2 + H2O – образуются две соли: нитрат натрия NaNO3 (или натриевая селитра) и нитрит натрия (соль азотистой кислоты).
Реакция с солями:
2NO2 + Na2CO3→ NaNO3 + NaNO2 + CO2 – образуются образуются две соли: нитрат натрия и нитрит натрия, и выделяется углекислый газ.
Получают диоксид азота (NO2) из моноксида азота (NO) с помощью химической реакции соединения c кислородом:
2NO + O2→ 2NO2
Оксиды железа
Железо образует два оксида: FeO – оксид железа (2-валентный) – порошок чёрного цвета, который получают восстановлением оксида железа (3-валентного) угарным газом по следующей химической реакции:
Fe2O3+CO→ 2FeO+CO2
Этот основной оксид, легко вступающий в реакции с кислотами. Он обладает восстановительными свойствами и быстро окисляется в оксид железа (3-валентный).
4FeO +O2→ 2Fe2O3
Оксид железа (3-валентный) – красно-бурый порошок (гематит), обладающий амфотерными свойствами (может взаимодействовать и с кислотами и со щелочами). Но кислотные свойства этого оксида выражены настолько слабо, что наиболее часто он его используют, как основной оксид .
Есть ещё так называемы смешанный оксид железа Fe3O4. Он образуется при горении железа, хорошо проводит электрический ток и обладает магнитными свойствами (его называют магнитным железняком или магнетитом).
Если железо сгорает, то в результате реакции горения образуется окалина, состоящая сразу из двух оксидов: оксида железа (III) и (II) валентные.
Оксид серы
Сернистый газ SO2
Оксид серы SO2 – или сернистый газ относится к кислотным оксидам, но кислоту не образует, хотя отлично растворяется в воде – 40л оксида серы в 1 л воды (для удобства составления химических уравнений такой раствор называют сернистой кислотой).
При нормальных обстоятельствах – это бесцветный газ с резким и удушливым запахом горелой серы. При температуре всего -10 0C его можно перевести в жидкое состояние.
В присутствии катализатора -оксида ванадия (V2O5) оксид серы присоединяет кислород и превращается в триоксид серы
2SO2 +O2→ 2SO3
Растворённый в воде сернистый газ – оксид серы SO2 – очень медленно окисляется, в результате чего сам раствор превращается в серную кислоту
Если сернистый газ пропускать через раствор щелочи, например, гидроксида натрия, то образуется сульфит натрия (или гидросульфит – смотря сколько взять щёлочи и сернистого газа)
NaOH + SO2→ NaHSO3 – сернистый газ взят в избытке
2NaOH + SO2→ Na2SO3 + H2O
Если сернистый газ не реагирует с водой, то почему его водный раствор даёт кислую реакцию?! Да, не реагирует, но он сам окисляется в воде, присоединяя к себе кислород. И получается, что в воде накапливаются свободные атомы водорода, которые и дают кислую реакцию (можете проверить каким-нибудь индикатором!)
Источник