Какие свойства имеют элементарные частицы

Какие свойства имеют элементарные частицы thumbnail

Запрос «Элементарные частицы» перенаправляется сюда; см. также другие значения.

Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые на практике невозможно расщепить на составные части[1].

Следует иметь в виду, что некоторые элементарные частицы (электрон, нейтрино, кварки и т. д.) на данный момент считаются бесструктурными и рассматриваются как первичные фундаментальные частицы[2]. Другие элементарные частицы (так называемые составные частицы, в том числе частицы, составляющие ядро атома — протоны и нейтроны) имеют сложную внутреннюю структуру, но тем не менее, по современным представлениям, разделить их на части невозможно по причине эффекта конфайнмента.

Всего вместе с античастицами открыто более 350 элементарных частиц. Из них стабильны фотон, электронное и мюонное нейтрино, электрон, протон и их античастицы. Остальные элементарные частицы самопроизвольно распадаются по экспоненциальному закону с постоянной времени от приблизительно 1000 секунд (для свободного нейтрона) до ничтожно малой доли секунды (от 10−24 до 10−22 с для резонансов).

Строение и поведение элементарных частиц изучается физикой элементарных частиц.

Все элементарные частицы подчиняются принципу тождественности (все элементарные частицы одного вида во Вселенной полностью одинаковы по всем своим свойствам) и принципу корпускулярно-волнового дуализма (каждой элементарной частице соответствует волна де-Бройля).

Все элементарные частицы обладают свойством взаимопревращаемости, являющегося следствием их взаимодействий: сильного, электромагнитного, слабого, гравитационного. Взаимодействия частиц вызывают превращения частиц и их совокупностей в другие частицы и их совокупности, если такие превращения не запрещены законами сохранения энергии, импульса, момента количества движения, электрического заряда, барионного заряда и др.

Основные характеристики элементарных частиц: время жизни, масса, спин, электрический заряд, магнитный момент, барионный заряд, лептонный заряд, странность, очарование, прелесть, истинность, изотопический спин, чётность, зарядовая чётность, G-чётность, CP-чётность, T-чётность, R-чётность, P-чётность.

Классификация[править | править код]

По времени жизни[править | править код]

Все элементарные частицы делятся на два класса:

  • Стабильные элементарные частицы — частицы, имеющие бесконечно большое время жизни в свободном состоянии (протон, электрон, нейтрино, фотон, гравитон и их античастицы).
  • Нестабильные элементарные частицы — частицы, распадающиеся на другие частицы в свободном состоянии за конечное время (все остальные частицы).

По массе[править | править код]

Все элементарные частицы делятся на два класса:

  • Безмассовые частицы — частицы с нулевой массой (фотон, глюон).
  • Частицы с ненулевой массой (все остальные частицы).

По величине спина[править | править код]

Все элементарные частицы делятся на два класса:

  • бозоны — частицы с целым спином[3] (например, фотон, глюон, мезоны, бозон Хиггса);
  • фермионы — частицы с полуцелым спином[3] (например, электрон, протон, нейтрон, нейтрино).

По видам взаимодействий[править | править код]

Элементарные частицы делятся на следующие группы:

Составные частицы[править | править код]

  • Адроны — частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на:
    • мезоны — адроны с целым спином, то есть являющиеся бозонами;
    • барионы — адроны с полуцелым спином, то есть фермионы. К ним, в частности, относятся частицы, составляющие ядро атома, — протон и нейтрон.

Фундаментальные (бесструктурные) частицы[править | править код]

  • Лептоны — фермионы, которые имеют вид точечных частиц (то есть не состоящих ни из чего) вплоть до масштабов порядка 10−18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов.
  • Кварки — дробно заряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента). Как и лептоны, делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.
  • Калибровочные бозоны — частицы, посредством обмена которыми осуществляются взаимодействия:
    • фотон — частица, переносящая электромагнитное взаимодействие;
    • восемь глюонов — частиц, переносящих сильное взаимодействие;
    • три промежуточных векторных бозона W+, W− и Z0, переносящие слабое взаимодействие;
    • гравитон — гипотетическая частица, переносящая гравитационное взаимодействие. Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц.

Адроны и лептоны образуют вещество. Калибровочные бозоны — это кванты разных типов взаимодействий.

Кроме того, в Стандартной модели с необходимостью присутствует хиггсовский бозон, предсказанный в 1964 году и обнаруженный в 2012 году на Большом адронном коллайдере.

Читайте также:  Какие полезные свойства тыквы

Размеры элементарных частиц[править | править код]

Несмотря на большое разнообразие элементарных частиц, их размеры укладываются в две группы. Размеры адронов (как барионов, так и мезонов) составляют около 10−15 м, что близко к среднему расстоянию между входящими в них кварками. Размеры фундаментальных, бесструктурных частиц — калибровочных бозонов, кварков и лептонов — в пределах погрешности эксперимента согласуются с их точечностью (верхний предел диаметра составляет около 10−18 м) (см. пояснение). Если в дальнейших экспериментах окончательные размеры этих частиц не будут обнаружены, то это может свидетельствовать о том, что размеры калибровочных бозонов, кварков и лептонов близки к фундаментальной длине (которая весьма вероятно[4] может оказаться планковской длиной, равной 1,6·10−35 м).

Следует отметить, однако, что размер элементарной частицы является достаточно сложной концепцией, не всегда согласующейся с классическими представлениями. Во-первых, принцип неопределённости не позволяет строго локализовать физическую частицу. Волновой пакет, представляющий частицу как суперпозицию точно локализованных квантовых состояний, всегда имеет конечные размеры и определённую пространственную структуру, причём размеры пакета могут быть вполне макроскопическими — например, электрон в эксперименте с интерференцией на двух щелях «чувствует» обе щели интерферометра, разнесённые на макроскопическое расстояние. Во-вторых, физическая частица меняет структуру вакуума вокруг себя, создавая «шубу» из кратковременно существующих виртуальных частиц — фермион-антифермионных пар (см. Поляризация вакуума) и бозонов-переносчиков взаимодействий. Пространственные размеры этой области зависят от калибровочных зарядов, которыми обладает частица, и от масс промежуточных бозонов (радиус оболочки из массивных виртуальных бозонов близок к их комптоновской длине волны, которая, в свою очередь, обратно пропорциональна их массе). Так, радиус электрона с точки зрения нейтрино (между ними возможно только слабое взаимодействие) примерно равен комптоновской длине волны W-бозонов, ~3×10−18 м, а размеры области сильного взаимодействия адрона определяются комптоновской длиной волны легчайшего из адронов, пи-мезона (~10−15 м), выступающего здесь как переносчик взаимодействия.

История[править | править код]

Первоначально термин «элементарная частица» подразумевал нечто абсолютно элементарное, первокирпичик материи. Однако, когда в 1950-х и 1960-х годах были открыты сотни адронов с похожими свойствами, стало ясно, что по крайней мере адроны обладают внутренними степенями свободы, то есть не являются в строгом смысле слова элементарными. Это подозрение в дальнейшем подтвердилось, когда выяснилось, что адроны состоят из кварков.

Таким образом, физики продвинулись ещё немного вглубь строения вещества: самыми элементарными, точечными частями вещества сейчас считаются лептоны и кварки. Для них (вместе с калибровочными бозонами) применяется термин «фундаментальные частицы».

В активно разрабатываемой примерно с середины 1980-х теории струн предполагается, что элементарные частицы и их взаимодействия являются следствиями различных видов колебаний особо малых «струн».

Стандартная модель[править | править код]

Стандартная модель элементарных частиц включает в себя 12 ароматов фермионов, соответствующие им античастицы, а также калибровочные бозоны (фотон, глюоны, W– и Z-бозоны), которые переносят взаимодействия между частицами, и обнаруженный в 2012 году бозон Хиггса, отвечающий за наличие инертной массы у частиц. Однако Стандартная модель в значительной степени рассматривается скорее как теория временная, а не действительно фундаментальная, поскольку она не включает в себя гравитацию и содержит несколько десятков свободных параметров (массы частиц и т. д.), значения которых не вытекают непосредственно из теории. Возможно, существуют элементарные частицы, которые не описываются Стандартной моделью — например, такие, как гравитон (частица, гипотетически переносящая гравитационные силы) или суперсимметричные партнёры обычных частиц. Всего модель описывает 61 частицу[5].

Фермионы[править | править код]

12 ароматов фермионов разделяются на 3 семейства (поколения) по 4 частицы в каждом. Шесть из них — кварки. Другие шесть — лептоны, три из которых являются нейтрино, а оставшиеся три несут единичный отрицательный заряд: электрон, мюон и тау-лептон.

Античастицы[править | править код]

Также существуют 12 фермионных античастиц, соответствующих вышеуказанным двенадцати частицам.

Кварки[править | править код]

Основная статья: Кварк

Кварки и антикварки никогда не были обнаружены в свободном состоянии — это объясняется явлением конфайнмента. На основании симметрии между лептонами и кварками, проявляемой в электромагнитном взаимодействии, выдвигаются гипотезы о том, что эти частицы состоят из более фундаментальных частиц — преонов.

Читайте также:  Какие особенности строения придают воде уникальные свойства без которых невозможна жизнь

Неизвестные частицы[править | править код]

По мнению большинства физиков, существуют неизвестные доселе типы частиц, из которых состоит тёмная материя[6]

См. также[править | править код]

Примечания[править | править код]

Литература[править | править код]

  • Лоуренс Краусс. Почему мы существуем. Величайшая из когда-либо рассказанных историй = Krauss. The Greatest Story Ever Told – So Far: Why Are We Here?. — М.: Альпина Нон-фикшн, 2018. — ISBN 978-5-91671-948-2.
  • Главный редактор А. М. Прохоров. Физическая энциклопедия. — М.: Советская энциклопедия.

Ссылки[править | править код]

  • Хроника открытий в физике ядра и частиц, подготовленная сотрудниками физического факультета МГУ им М. В. Ломоносова
  • Физика элементарных частиц на Scientific.ru
  • Полная таблица элементарных частиц, подготовленная Particle Data Group (англ.)
  • Физика элементарных частиц — в мире, в ИЯФ, на кафедре ФЭЧ
  • Имена: поэзия элементарных частиц (англ.)

Источник

      
Для того чтобы объяснить свойства и поведение элементарных частиц, их приходится наделять, кроме массы, электрического заряда и типа, рядом дополнительных, характерных для них величин (квантовых чисел), о которых мы поговорим ниже.

      
Элементарные частицы обычно подразделяются на четыре класса. Помимо этих классов, предполагается существование ещё одного класса частиц – гравитонов (квантов гравитационного поля). Экспериментально эти частицы ещё не обнаружены.

      
Дадим краткую характеристику четырем классам элементарных частиц.

      
К одному из них относится только одна частица – фотон.

      
Фотоны Какие свойства имеют элементарные частицы (кванты электромагнитного поля) участвуют в электромагнитных взаимодействиях, но не обладают сильным и слабым взаимодействием.

      
Второй класс образуют лептоны, третий – адроны и, наконец, четвертый – калибровочные бозоны (табл. 2)

Таблица 2

Элементарные частицы

Лептоны

Калибровочные

бозоны

Адроны

Какие свойства имеют элементарные частицы

Какие свойства имеют элементарные частицы

Какие свойства имеют элементарные частицы

Барионы

Какие свойства имеют элементарные частицы

Мезоны

Какие свойства имеют элементарные частицы

n, p,

гипероны

Какие свойства имеют элементарные частицы

и др.

Барионные

резонансы

Какие свойства имеют элементарные частицы

и др.

Мезонные

резонансы

      
Лептоны (греч. «лептос» – лёгкий) – частицы, участвующие в электромагнитных и слабых взаимодействиях. К ним относятся частицы, не обладающие сильным взаимодействием: электроны ( Какие свойства имеют элементарные частицы ), мюоны ( Какие свойства имеют элементарные частицы ), таоны ( Какие свойства имеют элементарные частицы ), а также электронные нейтрино ( Какие свойства имеют элементарные частицы ), мюонные нейтрино ( Какие свойства имеют элементарные частицы ) и тау-нейтрино ( Какие свойства имеют элементарные частицы ). Все лептоны имеют спины, равные 1/2 Какие свойства имеют элементарные частицы , и следовательно являются фермионами. Все лептоны обладают слабым взаимодействием. Те из них, которые имеют электрический заряд (т.е. мюоны и электроны), обладают также и электромагнитным взаимодействием. Нейтрино участвуют только в слабых взаимодействиях.

      
Адроны (греч. «адрос» – крупный, массивный)частицы, участвующие в сильных, электромагнитных и слабых взаимодействиях. Сегодня известно свыше сотни адронов и их подразделяют на барионы и мезоны.

      
Барионыадроны, состоящие из трёх кварков (qqq) и имеющие барионное число B = 1.

      
Класс барионов объединяет в себе нуклоны (p, n) и нестабильные частицы с массой большей массы нуклонов, получившие название гиперонов ( Какие свойства имеют элементарные частицы ). Все гипероны обладают сильным взаимодействием, и следовательно активно взаимодействуют с атомными ядрами. Спин всех барионов равен Какие свойства имеют элементарные частицы 1/2 Какие свойства имеют элементарные частицыКакие свойства имеют элементарные частицы , так что барионы являются фермионами. За исключением протона, все барионы нестабильны. При распаде бариона, наряду с другими частицами, обязательно образуется барион. Эта закономерность является одним из проявлений закона сохранения барионного заряда.

      
Мезоныадроны, состоящие из кварка и антикварка ( Какие свойства имеют элементарные частицы ) и имеющие барионное число B = 0.

      
Мезоны – сильно взаимодействующие нестабильные частицы, не несущие так называемого барионного заряда. К их числу принадлежат Какие свойства имеют элементарные частицы -мезоны или пионы ( Какие свойства имеют элементарные частицы ), K-мезоны, или каоны ( Какие свойства имеют элементарные частицы ), и Какие свойства имеют элементарные частицы -мезоны. Массы Какие свойства имеют элементарные частицы и Какие свойства имеют элементарные частицы мезонов одинакова и равна 273,1 Какие свойства имеют элементарные частицы , Какие свойства имеют элементарные частицы 264,1 Какие свойства имеют элементарные частицы время жизни, соответственно, Какие свойства имеют элементарные частицы и Какие свойства имеют элементарные частицы с. Масса К-мезонов составляет 970 Какие свойства имеют элементарные частицы . Время жизни К-мезонов имеет величину порядка Какие свойства имеют элементарные частицы с. Масса эта-мезонов 1074 Какие свойства имеют элементарные частицы , время жизни порядка Какие свойства имеют элементарные частицы с. В отличие от лептонов, мезоны обладают не только слабым (и если они заряжены, электромагнитным), но также и сильным взаимодействием, проявляющимся при взаимодействии их между собой, а также при взаимодействии между мезонами и барионами. Спин всех мезонов равен нулю, так что они являются бозонами.

      
Калибровочные бозонычастицы, осуществляющие взаимодействие между фундаментальными фермионами (кварками и лептонами). Это частицы W+, W–, Z0 и восемь типов глюонов g. Сюда же можно отнести и фотон γ.

Свойства элементарных частиц

Читайте также:  Какое свойство воды позволяет существовать мировому круговороту

      
Каждая частица описывается набором физических величин – квантовых чисел, определяющих её свойства. Наиболее часто употребляемые характеристики частиц следующие.

      
Масса частицы, m. Массы частиц меняются в широких пределах от 0 (фотон) до 90 ГэВ (Z-бозон). Z-бозон – наиболее тяжелая из известных частиц. Однако могут существовать и более тяжелые частицы. Массы адронов зависят от типов входящих в их состав кварков, а также от их спиновых состояний.

      
Время жизни, τ. В зависимости от времени жизни частицы делятся на стабильные частицы, имеющие относительно большое время жизни, и нестабильные.

      
К стабильным частицам относят частицы, распадающиеся по слабому или электромагнитному взаимодействию. Деление частиц на стабильные и нестабильные условно. Поэтому к стабильным частицам принадлежат такие частицы, как электрон, протон, для которых в настоящее время распады не обнаружены, так и π0-мезон, имеющий время жизни τ = 0.8×10-16 с.

      
К нестабильным частицам относят частицы, распадающиеся в результате сильного взаимодействия. Их обычно называют резонансами. Характерное время жизни резонансов – 10-23-10-24 с.

      
Спин J. Величина спина измеряется в единицах ħ и может принимать 0, полуцелые и целые значения. Например, спин π-, К-мезонов равен 0. Спин электрона, мюона равен 1/2. Спин фотона равен 1. Существуют частицы и с большим значением спина. Частицы с полуцелым спином подчиняются статистике Ферми-Дирака, с целым спином – Бозе–Эйнштейна.

      
Электрический заряд q. Электрический заряд является целой кратной величиной от е = 1,6×10-19 Кл, называемой элементарным электрическим зарядом. Частицы могут иметь заряды 0, ±1, ±2.

      
Внутренняя четность Р. Квантовое число Р характеризует свойство симметрии волновой функции относительно пространственных отражений. Квантовое число Р имеет значение +1, -1.

      
Наряду с общими для всех частиц характеристиками, используют также квантовые числа, которые приписывают только отдельным группам частиц.

      
Квантовые числа: барионное число В, странность s, очарование (charm) с, красота (bottomness или beauty) b, верхний (topness) t, изотопический спин I приписывают только сильновзаимодействующим частицам – адронам.

      
Лептонные числа Le, Lμ, Lτ. Лептонные числа приписывают частицам, образующим группу лептонов. Лептоны e, μ и τ участвуют только в электромагнитных и слабых взаимодействиях. Лептоны νe, nμ и nτ участвуют только в слабых взаимодействиях. Лептонные числа имеют значения Le, Lμ, Lτ = 0, +1, -1. Например, e-, электронное нейтрино ne имеют Le = +l; Какие свойства имеют элементарные частицы , Какие свойства имеют элементарные частицы имеют Le = – l. Все адроны имеют Какие свойства имеют элементарные частицы .

      
Барионное число В. Барионное число имеет значение В = 0, +1, -1. Барионы, например, n, р, Λ, Σ, нуклонные резонансы имеют барионное число В = +1. Мезоны, мезонные резонансы имеют В = 0, антибарионы имеют В = -1.

      
Странность s. Квантовое число s может принимать значения -3, -2, -1, 0, +1, +2, +3 и определяется кварковым составом адронов. Например, гипероны Λ, Σ имеют s = -l; K+- , K–- мезоны имеют s = + l.

      
Charm с. Квантовое число с может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружены частицы, имеющие с = 0, +1 и -1. Например, барион Λ+ имеет с = +1.

      
Bottomness b. Квантовое число b может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружены частицы, имеющие b = 0, +1, -1. Например, В+-мезон имеет b = +1.

      
Topness t. Квантовое число t может принимать значения -3, -2, -1, 0, +1, +2, +3. В настоящее время обнаружено всего одно состояние с t = +1.

      
Изоспин I. Сильновзаимодействующие частицы можно разбить на группы частиц, обладающих схожими свойствами (одинаковое значение спина, чётности, барионного числа, странности и др. квантовых чисел, сохраняющихся в сильных взаимодействиях) – изотопические мультиплеты. Величина изоспина I определяет число частиц, входящих в один изотопический мультиплет, n и р составляет изотопический дуплет I = 1/2; Σ+, Σ-, Σ0, входят в состав изотопического триплета I = 1, Λ – изотопический синглет I = 0, число частиц, входящих в один изотопический мультиплет, 2I + 1.

      
G четность – это квантовое число, соответствующее симметрии относительно одновременной операции зарядового сопряжения с и изменения знака третьего компонента I изоспина. G-четность сохраняется только в сильных взаимодействиях.

Источник