Какие свойства хрома в металле

Какие свойства хрома в металле thumbnail

Какие свойства хрома в металле

Хром – не конструкционный материал, но используется довольно широко за счет того, что обладает превосходными антикоррозийными свойствами. Хромирование защищает любой другой сплав от ржавчины. Кроме того, легирование сталей хромом придает им такую же стойкость к коррозии, которая свойственна и самому металлу.

Итак, давайте обсудим сегодня, каковы технические и окислительные характеристики материала хром, основные амфотерные, восстановительные свойства и получение металла также будут затронуты. А еще мы узнаем, каково влияние хрома на свойства стали.

Особенности металла

Хром – металл 4 периода 6 группы побочной подгруппы. Атомный номер 24, атомная масса – 51, 996. Это твердый металл серебристо-голубоватого цвета. В чистом виде отличается ковкостью и вязкостью, но малейшие примеси азота или углерода придают ему хрупкость и твердость.

Хром часто относят к черным металлам за счет цвета его основного минерала – хромистого железняка. А вот свое название – от греческого «цвет», «краска», он получил благодаря своим соединениям: соли и оксиды металла с разной степенью окисления окрашены во все цвета радуги.

  • В нормальных условиях хром инертен и не взаимодействует с кислородом, азотом или водой.
  • На воздухе он сразу же пассивируется – покрывается тонкой оксидной пленкой, которая полностью перекрывает кислороду доступ к металлу. По той же причине вещество не взаимодействует с серной и азотной кислотой.
  • При нагревании металл становится активным и вступает в реакции с водой, кислородом, кислотами и щелочами.

Для него характерна объемно-центрированная кубическая решетка. Фазовые переходы отсутствуют. При температуре в 1830 С возможен переход к гранецентрированной решетке.

Однако у хрома есть одна интересная аномалия. При температуре в 37 С некоторые физические свойства металла резко меняются: изменяется электросопротивление, коэффициент линейного расширения, падает до минимума модуль упругости и повышается внутреннее трение. Связано это с прохождением точки Нееля: при этой температуре вещество меняет свои антиферромагнитные свойства на парамагнитные, что представляет собой переход первого уровня и означает резкое увеличение объема.

Химические свойства хрома и его соединений описаны в этом видео:

Химические и физические свойства хрома

Температура плавления и кипения

Физические характеристики металла зависят от примесей до такой степени, что сложным оказалось установить даже температуру плавления.

  • Согласно современным измерениям температура плавления считается величина в 1907 С. Металл относится к тугоплавким веществам.
  • Температура кипения равна 2671 С.

Ниже будет дана общая характеристика физических и магнитных свойств металла хром.

Общие свойства и характеристики хрома

Какие свойства хрома в металле

Физические особенности

Хром относится к наиболее устойчивым из всех тугоплавких металлов.

  • Плотность в нормальных условиях составляет 7200 кг/куб. м, это меньше чем у железа.
  • Твердость по шкале Мооса составляет 5, по шкале Бринелля 7–9 Мн/м2. Хром является самым твердым металлом из известных, уступает только урану, иридию, вольфраму и бериллию.
  • Модуль упругости при 20 С составляет 294 ГПа. Это довольно умеренный показатель.

Благодаря строению – объемно-центрированная решетка, хром обладает такой характеристикой, как температура хрупко-вязкого периода. Вот только когда речь идет об этом металле, эта величина оказывается сильно зависящей от степени чистоты и колеблется от -50 до +350 С. На практике раскристаллизированный хром никакой пластичностью не обладает, но после мягкого отжига и формовки становится ковким.

Прочность металла также растет при холодной обработке. Легирующие добавки тоже заметно усиливают это качество.

Далее представлена краткая характеристика теплофизических свойств хрома.

Теплофизические характеристики

Как правило, тугоплавкие металлы имеют высокий уровень теплопроводности и, соответственно, низкий коэффициент теплового расширения. Однако хром заметно отличается по своим качествам.

В точке Нееля коэффициент теплового расширения совершает резкий скачок, а затем с увеличением температуры продолжает заметно расти. При 29 С (до скачка) величина коэффициента составляет 6.2 · 10-6 м/(м•K).

Теплопроводность подчиняется этой же закономерности: в точке Нееля она падает, хотя и не столь резко и уменьшается с возрастанием температуры.

  • В нормальных условиях теплопроводность вещества равна 93.7 Вт/(м•K).
  • Удельная теплоемкость в тех же условиях – 0.45 Дж/(г•K).

Электрические свойства

Несмотря на нетипичное «поведение» теплопроводности хром является одним из лучших проводников тока, уступая по этому параметру только серебру, меди и золоту.

  • При нормальной температуре электропроводность металла составит 7.9 · 106 1/(Ом•м).
  • Удельное электрическое сопротивление – 0.127 (Ом•мм2)/м.

До точки Нееля – 38 С, вещество является антиферромагнетиком, то есть, под действием магнитного поля и при его отсутствии никаких магнитных свойств не проявляется. Выше 38 С хром становится парамагнетиком: проявляет магнитные свойства под действием внешнего магнитного поля.

Токсичность

Какие свойства хрома в металлеВ природе хром встречается только в связанном виде, поэтому попадание чистого хрома в организм человека исключено. Однако известно, что металлическая пыль раздражает ткани легких, через кожу не усваивается. Сам металл не токсичен, но о его соединениях этого сказать нельзя.

  • Трехвалентный хром оказывается в окружающей среде при добыче хромовой руды и ее переработке. Однако в организм человека может попасть и в составе пищевой добавки – пиколината хрома, используемой в программах по уменьшению веса. Как микроэлемент трехвалентный металл участвует в синтезе глюкозы и необходим. Избыток его, судя по исследованиям, определенной опасности не представляет, поскольку не всасывается стенками кишечника. Однако в организме он может накапливаться.
  • Соединения шестивалентного хрома токсичны более чем в 100–1000 раз. Попасть в организм он может при производстве хроматов, при хромировании предметов, при некоторых сварочных работах. Соединения шестивалентного элемента являются сильными окислителями. Попадая в ЖКТ, они вызывают кровотечение желудка и кишечника, возможно с прободением кишечника. Через кожу вещества почти не всасываются, но оказывают сильное разъедающее действие – возможны ожоги, воспаления, появление язв.

Такое же действие соединение производит и на дыхательную систему, но учитывая большую чувствительность слизистой, здесь картина более разрушительна.

Хром – обязательный легирующий элемент при получении нержавеющих и жаропрочных сталей. Его способность противостоять коррозии и передавать это качество сплавам остается самым востребованным качеством металла.

Химические свойства соединений хрома и его окислительно-восстановительные свойства рассмотрены в этом видео:


Понравилась статья?
Поделитесь с друзьями в социальных сетях:

Facebook

Twitter

Вконтакте

Одноклассники

Google+

И подписывайтесь на обновления сайта в Контакте,
Одноклассниках,
Facebook,
Google Plus или
Twitter.

Источник

Кристаллы (99,999%) хрома различной формы, полученные разложением йодида хрома.

Кристаллы (99,999%) хрома различной формы, полученные разложением йодида хрома.

Хром — твёрдый металл голубовато-белого цвета. Хром иногда относят к чёрным металлам. Этот металл способен окрашивать соединения в разные цвета, потому и был назван «хром», что означает «краска». Хром – микроэлемент, необходимый для нормального развития и функционирования человеческого организма. Важнейшая его биологическая роль состоит в регуляции углеводного обмена и уровня глюкозы в крови.

СТРУКТУРА

Кристаллическая структура хрома

Кристаллическая структура хрома

В зависимости от типов химической связи — как и все металлы хром имеет металлический тип кристаллической решетки, то есть в узлах решетки находятся атому металла.
В зависимости от пространственной симметрии — кубическая, объемно-центрированная а = 0,28839 нм. Особенностью хрома является резкое изменение его физических свойств при температуре около 37°С. Кристаллическая решетка металла состоит из его ионов и подвижных электронов. Аналогично атом хрома в основном состоянии имеет электронную конфигурацию. При 1830 °С возможно превращение в модификацию с гранецентрированной решеткой, а = 3,69Å.

СВОЙСТВА

Хром

Хром

Хром имеет твердость по шкале Мооса 9, один из самых твердых чистых металлов (уступает только иридию, бериллию, вольфраму и урану). Очень чистый хром достаточно хорошо поддаётся механической обработке. Устойчив на воздухе за счёт пассивирования. По этой же причине не реагирует с серной и азотной кислотами. При 2000 °C сгорает с образованием зелёного оксида хрома(III) Cr2O3, обладающего амфотерными свойствами. При нагревании реагирует со многими неметаллами, часто образуя соединения нестехиометрического состава карбиды, бориды, силициды, нитриды и др. Хром образует многочисленные соединения в различных степенях окисления, в основном +2, +3, +6. Хром обладает всеми характерными для металлов свойствами — хорошо проводит тепло, электрический ток, имеет присущий большинству металлов блеск. Является антиферромагнетиком и парамагнетиком, то есть, при температуре 39 °C переходит из парамагнитного состояния в антиферромагнитное (точка Нееля).

ЗАПАСЫ И ДОБЫЧА

Чистый хром

Чистый хром

Самые большие месторождения хрома находятся в ЮАР (1 место в мире), Казахстане, России, Зимбабве, Мадагаскаре. Также есть месторождения на территории Турции, Индии, Армении, Бразилии, на Филиппинах.nГлавные месторождения хромовых руд в РФ известны на Урале (Донские и Сарановское). Разведанные запасы в Казахстане составляют свыше 350 миллионов тонн (2 место в мире)Хром встречается в природе в основном в виде хромистого железняка Fe(CrO2)2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом). Чтобы получить чистый хром, реакцию ведут следующим образом:
1) сплавляют хромит железа с карбонатом натрия (кальцинированная сода) на воздухе;
2) растворяют хромат натрия и отделяют его от оксида железа;
3) переводят хромат в дихромат, подкисляя раствор и выкристаллизовывая дихромат;
4) получают чистый оксид хрома восстановлением дихромата натрия углём;
5) с помощью алюминотермии получают металлический хром;
6) с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты.

ПРОИСХОЖДЕНИЕ

Кристаллы хрома

Кристаллы хрома

Среднее содержание Хрома в земной коре (кларк) 8,3·10-3% . Этот элемент, вероятно, более характерен для мантии Земли, так как ультраосновные породы, которые, как полагают, ближе всего по составу к мантии Земли, обогащены Хромом (2·10-4%). Хром образует массивные и вкрапленные руды в ультраосновных горных породах; с ними связано образование крупнейших месторождений Хрома. В основных породах содержание Хрома достигает лишь 2·10-2%, в кислых — 2,5·10-3%, в осадочных породах (песчаниках) — 3,5·10-3%, глинистых сланцах — 9·10-3% . Хром — сравнительно слабый водный мигрант; содержание Хрома в морской воде 0,00005 мг/л.
В целом Хром — металл глубинных зон Земли; каменные метеориты (аналоги мантии) тоже обогащены Хромом (2,7·10-1%). Известно свыше 20 минералов Хрома. Промышленное значение имеют только хромшпинелиды (до 54% Сr); кроме того, Хром содержится в ряде других минералов, которые нередко сопровождают хромовые руды, но сами не представляют практическое ценности (уваровит, волконскоит, кемерит, фуксит).
Различают три основных минерала хрома: магнохромит (Mg, Fe)Cr2O4, хромпикотит (Mg, Fe)(Cr, Al)2O4 и алюмохромит (Fe, Mg)(Cr, Al)2O4. По внешнему виду они неразличимы, и их неточно называют «хромиты».

ПРИМЕНЕНИЕ

Хромированная сталь

Хромированная сталь

Хром — важный компонент во многих легированных сталях (в частности, нержавеющих), а также и в ряде других сплавов. Добавка хрома существенно повышает твердость и коррозийную стойкость сплавов. Использование Хрома основано на его жаропрочности, твердости и устойчивости против коррозии. Больше всего Хрома применяют для выплавки хромистых сталей. Алюмино- и силикотермический Хром используют для выплавки нихрома, нимоника, других никелевых сплавов и стеллита.
Значительное количество Хрома идет на декоративные коррозионно-стойкие покрытия. Широкое применение получил порошковый Хром в производстве металлокерамических изделий и материалов для сварочных электродов. Хром в виде иона Cr3+ — примесь в рубине, который используется как драгоценный камень и лазерный материал. Соединениями Хрома протравливают ткани при крашении. Некоторые соли Хрома используются как составная часть дубильных растворов в кожевенной промышленности; PbCrO4, ZnCrO4, SrCrO4 — как художественные краски. Из смеси хромита и магнезита изготовляют хромомагнезитовые огнеупорные изделия.
Используется в качестве износоустойчивых и красивых гальванических покрытий (хромирование).
Хром применяется для производства сплавов: хром-30 и хром-90, незаменимых для производства сопел мощных плазмотронов и в авиакосмической промышленности.

Хром (англ. Chromium) — Cr

Молекулярный вес52.00 г/моль
Происхождение названияот греч. χρῶμα — цвет, краска — из-за разнообразия окраски своих соединений.
IMA статусдействителен

КЛАССИФИКАЦИЯ

Hey’s CIM Ref1.55

Strunz (8-ое издание)1/A.06-10
Nickel-Strunz (10-ое издание)1.AE.05
Dana (7-ое издание)1.1.15.1
Dana (8-ое издание)1.1.12.1

ФИЗИЧЕСКИЕ СВОЙСТВА

Цвет минералабелый
Прозрачностьнепрозрачный
Блескметаллический
Твердость (шкала Мооса)9
Прочностьхрупкий
Плотность (измеренная)7.17 г/см3
Радиоактивность (GRapi)0
Магнетизмпарамагнетик, при 39°С — антиферромагнетик

ОПТИЧЕСКИЕ СВОЙСТВА

Типизотропный
Цвет в отраженном светебелый с желтым оттенком
Люминесценция в ультрафиолетовом излучениине флюоресцентный

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА

Точечная группаm3m (4/m 3 2/m) — гексаоктаэдральный
Пространственная группаIm3m
Сингониякубическая
Параметры ячейкиa = 2.8839Å
Морфологиязерна до 20 микрон

mineralpro.ru  

26.07.2016  

Источник

Содержание:

  • Влияние хрома на структуру и свойства стали

Влияние хрома на структуру и свойства стали

  • Влияние хрома на структуру и свойства стали Хром является мощным карбидообразующим элементом. Используя углерод, он производит различные карбиды, которые являются гораздо более мощными и стабильными, чем cementite. In сталь, карбид хрома всегда двойной или сложный. Часть хрома в нем заменяется железом или другими элементами. В перлитных сталях с Cr 1-2% следовые количества хрома поступают в карбиды и становятся в основном твердыми растворами.

Однако чем больше содержание хрома, тем больше карбидов образуется хромом. На рисунке 63 показано распределение хрома между карбидом и твердым телом 1535 ′ ^ 1390 Семь 910 ′%1 Восемь& =-» (С) Двенадцать ’1′ Я Простите? _ 1510 ′ Икс м / 820 ′ Ноль шесть является Один —. Один б л * б ИГ ИУС это хорошая вещь. —  В 70. В i860 ′ Y) / Сплав на основе Fe-Cr 135 Раствор 0,8% С стали. Здесь горизонтальная ось показывает общее

количество хрома в Стали, а вертикальная ось показывает содержание хрома в карбиде в процентах от общего количества.

Людмила Фирмаль

Этот рисунок показывает, что чем больше содержание хрома в стали, тем сложнее она входит в состав карбидов. Например, при содержании 2% Cr стали около 15% ее общего объема составляет карбид, а в твердых растворах-около 2%. * Яв Установка. Диаграмма 62.Высокий хром х 10000 Сигма Вы также можете использовать его в качестве шаблона для вашего сайта. Cg X Диаграмма 63.Распределение hrosh между твердым раствором карбида и стали 0,8% C Если cr в 85% стали составляет 4%, то около 35%доступного хрома связывается с карбидами, а 65% — с твердым веществом solutions.

At 6.0% Cr в карбидах это уже более 50% (конечно, он содержит достаточное количество углерода), в твердых растворах менее 50% и т. д. В таблице. На рисунке показан примерный состав двойных карбидов хрома, образованных сплавом железо-хром. Карбиды Cr3C присутствуют в перлитных сталях с содержанием хрома до 5%.Такие карбиды более стабильны, чем цементит, и при нагревании они растворяются в Fe ^при гораздо более высокой температуре, чем точка Ast. Карбиды Cr7C3 и Cr2zC6 образуются из Мартенситных и карбидных сталей.

  • Температура диссоциации этих карбидов составляет более 1200°.Карбид Cr3C2 главным образом наблюдается в высоких сплавах Хромия, феррохроме, Стеллите, etc. It является очень стабильным и поэтому полностью растворим только в жидком растворе хромистой стали 136 Таблица 26 Состав комплекса карбидов хрома карбид хрома Sg3S Sg7S3 Sg2zSv Sg3S2 Двойной карбид железа (Феррохром) СК (феррохром), Сз (феррохром) СК (феррохром) С2 Приблизительное соотношение железа и хрома в двойном карбиде 80%Фэ + 20%Хрома 40%Фэ + 60%СГ, 30%Фэ + 70%Хрома, 10%Кэ + 90%Пр В железоуглеродистых сплавах с высоким содержанием хрома очень трудно определить точный состав таких карбидов химическим анализом, так как одновременно могут существовать несколько типов карбидов, и результаты анализа фаз карбидных отложений часто очень различны.

В диаграмме состояния системы Fe-Cr, под влиянием углерода, область гамма-твердого раствора значительно увеличивается, близкая с более высоким содержанием, а не 12,8 кг, как двойные железо-хромовые сплавы. Это объясняется тем, что углерод действует противоположно хрому, то есть увеличивает точку А4, понижая точку L3, и даже в присутствии углерода часть хрома связывается с карбидами. Хром был истощен. 図 фиг, это диаграмма влияния углерода на область FET железо-хромового сплава. Schematic схематическое изображение фиг. Из этого рисунка видно, что при 0.3% C область FeT закрывается на 18% Cg, а при 0.4% C она закрывается только на 25% Cg. Влияние хрома на критическую точку железоуглеродистого сплава показано на рисунке. 65.На рисунке показано, что при увеличении содержания хрома точка L4 резко уменьшается, при этом 12%

Cr почти сливается с точкой Az. Феррит, без фазы 700. Рисунок 64.
Людмила Фирмаль

Влияние углерода на расширение сплава Fe-Fe-Cr-137 Fe-Cr-Cr Преобразование. Под воздействием хрома точки Е и S увеличиваются и одновременно смещаются влево в сторону низкого содержания углерода. На рисунке 66 представлена структурная схема хромистой стали, которая показывает, что хром снижает концентрацию углерода в перлите и аустените. Например, если Cr равен 12%, то перлит содержит только 0,4° / 0 С, а максимальная растворимость углерода в аустените составляет около 1,0%.Верхний левый угол 1600. Одна тысяча триста -Понятия не имею.1200. Тридцать пять Я- икс 900. / / / ( 4. Один • Мне 1 год / Четыре: oC В • — Я. с — — — — — — — — — — — > В — ^1 •- «-. В £• £00 0 0,2 а * С8 0.6 1.0 1.2 1.У 1.6 1.8 г.0 2.2 с% Диаграмма 65. Влияние хрома на диаграммы Fe-C Угол рисунка — это область Альфа-твердого раствора, не имеющая критической точки.

Правая сторона рисунка занята областью красного брикета или карбидной стали: в этом составе структура литой стали исчезает (ломается) после ковки, и в структуре кованой стали появляется большое количество избыточных карбидов. При изотермическом превращении аустенита хром значительно увеличивает инкубационный период и время полного разложения аустенита[71].

Кривая изотермического превращения аустенита хромистой стали, внешний вид которого составляет<0,5-0,8% Cr, практически не отличается от СОБР Кривая углеродистой стали и> 1,0%Cg, на рисунке показаны 2 минимальных значения аустенитной стабильности: 138 градусов Цельсия в диапазоне температур около 600 градусов на хромистую сталь Сталь красного Брита (карбида) и Sautectoid/сталь В температурном диапазоне образования игольчатых ферм превращение твердых тел составляет приблизительно 350°(рис.67). Основываясь на диаграмме изотермического превращения аустенита, перлит хромистой стали во время изотермического отжига, чтобы уменьшить время разложения аустенита, чтобы сфероидизировать карбид, он должен поддерживаться на уровне около 600°, затем 720-740°, чтобы уменьшить твердость.

Поскольку аустенит обладает наибольшей стабильностью при этой температуре, то при ступенчатом упрочнении эту сталь следует поддерживать на уровне 450°. Когда хромистая сталь нагревается, карбид хрома входит в твердый раствор при температуре выше, чем цементит, который ингибирует рост зерен аустенита. Поэтому хромистая сталь менее подвержена перегреву, чем простая углеродистая сталь. Из диаграммы системы Fe-Cr известно, что в чистых (двойных) железохромистых сплавах с повышенным содержанием хрома 7% критическая точка A3 уменьшается. Однако наличие в сплаве определенного количества углерода, то есть тройного сплава Fe_Cr_C, увеличивает критическую точку Ar даже при 1-2°/ocrr.

При термической обработке хромистой стали класса перлита хромом в каждой пропорции температура нагрева повышается на 20-25°по сравнению с обычной углеродистой сталью. Хром-проектированная сталь клонит облегчить хрупкость. Коэффициент чувствительности к скорости охлаждения при высокотемпературном отпуске закаленной хромистой стали достигает 1,5-2,0, поэтому для увеличения вязкости хромистую сталь после высокотемпературного отпуска следует быстро охлаждать (в масле). Фазовая диаграмма системы Fe-Cr показывает, что область Fe замкнута под воздействием хрома.

То есть хром является «ферритообразующим» элементом. Однако, например, в присутствии сложных сплавов с высоким содержанием углерода или легирующих элементов, расширяющих область FeT, хром значительно снижает скорость перехода Fe- » — Fea и повышает стабильность аустенита. То есть она способствует приобретению аустенитной организации. 1.6 2.0 г, и Диаграмма 66.Чертеж структуры хромовой стали. Сплавы серии Fe-Cr 139 При цементировании стали хром практически не влияет на глубину цементного слоя, но на поверхности цементных изделий из хромистой стали концентрация увеличивается.

Дао. 600. +00 ’J00′ Я Один И затем 1=** -. Конечно. ^ » «(на японском языке). ) >- ^- —. — 500. В0 300. с:^ * 600 400. МИ н (= 1 В О. 5HS С ЮО ч ч ч Рисунок 68. влияние хрома на критическую скорость упрочнения доэвтектоидных и эвтектоидных сталей Семь Десять U 3 Шесть Время Второй S5 х ^^ Один Один / Один / Диаграмма 67. С изотермической конверсии 1.0% хромистых сталей™аустенита диаграммы. 2.3%СГ (а) и 0,5% с; 2.2%СГ(б) Содержание углерода и избыток эвтектоидного карбида выделяется, как правило, в виде отдельных шариков, затвердевшая твердая корочка хорошо прижимается к носу. При закалке стали хром резко увеличивает склонность к переохлаждению аустенита и значительно снижает скорость критического упрочнения (рис. 68).

Так, например, в изделиях диаметром 25-30 мм из машиностроения и инструмента хромистую сталь с содержанием хрома более 1% можно закалить не водой, а маслом. Снижая критическую скорость закалки, хром повышает прокаливаемость стали. На рисунке 69 показан график образца baked™диаметром 50 мм, изготовленного из хромистой стали 30х. Ага. 15 10 S OS s / I расстояние от центра, мм 69. 50X (U) хромистая сталь и 50 (2) углеродистая сталь 140 закаливаемость хромистой стали Из углеродистой стали 50: образцы из хромистой стали получат сквозное упрочнение, образцы из углеродистой стали только затвердеют на глубину 8-10 мм.

При упрочнении хромированной конструкционной стали в перлитном классе 0,3-0,5% с хром оказывает слабое влияние на положение и остаточное количество точки мартенсита Пятнадцать с х х / Рисунок 70. Влияние хрома на количество точечного ми и остаточного аустенита при закалке стали при 1,0% С 200. Куо г Cg.% Аустенит в структуре закаленной стали. Однако в хромистых инструментальных сталях, где Cr больше 1% 0,9-1,0% C, точка мартенсита уменьшается на 30-50°(в зависимости от температуры нагрева перед закалкой), уменьшая количество удерживаемого аустенита.

С увеличением содержания хрома, он непрерывно increasing. So, в Стали, где Cr составляет 12% , А C — 2%, после закалки при 1100-1150° вы обнаружите до 80% остаточного аустенита (остаточного мартенсита и карбидов). На рис. 70 приведена диаграмма влияния хрома на мартенситную точку превращения и количество остаточного аустенита в инструментальной стали, закаленной при 800-820°с-1,0%.

Смотрите также:

Решение задач по материаловедению

Источник