Какие свойства химических элементов изменяются периодически

Какие свойства химических элементов изменяются периодически thumbnail

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке “Файлы работы” в формате PDF

Введение

  • Периодический закон был сформулирован Д.И. Менделеевым в ходе работы над текстом учебника “Основы химии”, когда он столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 года, обдумывая структуру учебника, он постепенно пришел к выводу, что между свойствами и атомными массами элементов существует какая-то закономерность.

  • Первым шагом к появлению Периодического закона стала таблица “Опыт системы элементов, основанной на их атомном весе и химическом сходстве”. Позднее Д.И. Менделеев сформулировал сам закон: “Свойства элементов, а потому и свойства образуемых ими простых и сложных тел находятся в периодической зависимости от их атомного веса”.

  • Положив в основу своего закона сходство элементов и их соединений, Менделеев не стал слепо следовать принципу возрастания атомных масс. Он учитывал, что для некоторых элементов атомные массы могли быть определены недостаточно точно.

Актуальность

  • Периодический закон сыграл огромную роль в развитии химии и других естественных наук.

  • Используя Периодический закон, Д.И. Менделеев стал первым исследователем, сумевшим решить проблемы прогнозирования в химии.

  • Периодический закон является универсальным законом. Он относится к числу таких общих научных закономерностей, которые реально существуют в природе и поэтому в процессе эволюции наших знаний никогда не потеряют своего значения.

Периодичность

Периодичность – это повторяемость свойств химических и некоторых физических свойств у простых веществ и их соединений при изменении порядкового номера элементов. Она связана, в первую очередь, с повторяемостью электронного строения атомов по мере увеличения порядкового номера (а, следовательно, заряда ядра и числа электронов в атоме).

Химическая периодичность проявляется в аналогии химического поведения, однотипности химических реакций. При этом число валентных электронов, характерные степени окисления, формулы соединений могут быть разными. Периодически повторяются не только сходные черты, но и существенные различия химических свойств элементов по мере роста их порядкового номера.

Некоторые физико-химические свойства атомов (потенциал ионизации, атомный радиус), простых и сложных веществ могут быть не только качественно, но и количественно представлены в виде зависимостей от порядкового номера элемента, причем для них периодически проявляются четко выраженные максимумы и минимумы.

Виды периодичности

Общее описание периодичности свойств

По периоду слева направо:

  • заряд ядра атома – увеличивается;

  • радиус атома – уменьшается;

  • количество электронов на внешнем уровне – увеличивается;

  • электроотрицательность – увеличивается;

  • отдача электронов – уменьшается;

  • прием электронов – увеличивается.

По группе сверху вниз:

  • заряд ядра атома – увеличивается;

  • радиус атома – увеличивается;

  • количество электронов на внешнем уровне – неизменяется;

  • электроотрицательность – уменьшается;

  • отдача электронов – увеличивается;

  • прием электронов – уменьшается.

Вертикальная периодичность

Вертикальная периодичность заключается в повторяемости свойств простых веществ и соединений в вертикальных столбцах Периодической системы. Это основной вид периодичности, в соответствии с которым все элементы объединены в группы. Элементы одной группы имеет однотипные электронные конфигурации. Химия элементов и их соединений обычно рассматривается на основе этого вида периодичности.

Вертикальная периодичность обнаруживается и в некоторых физических свойствах атомов, например, в энергиях ионизации Ei (кДж/моль):

IA-группа

IIA-группа

VIIIA-группа

Li 520

Be 900

Ne 2080

Na 490

Mg 740

Ar 1520

K 420

Ca 590

Kr 1350

Энергия ионизации – разновидность энергии связи, представляет собой наименьшую энергию, необходимую для удаления электрона от свободного атома в его низшем энергетическом (основном) состоянии на бесконечность. Энергия ионизации является одной из главных характеристик атома, от которой в значительной степени зависят природа и прочность образуемых атомом химических связей. От энергии ионизации атома существенно зависят также восстановительные свойства соответствующего простого вещества.

Горизонтальная периодичность

Элемент

Li

Be

 

C

 

O

F

Ne

Ei

520

900

801

1086

1402

1314

1680

2080

Ae

−60

−27

−122

+7

−141

−328

Электронная формула (валентные электроны)

2s1

2s2

2s22p1

2s22p2

2s22p3

2s22p4

2s22p5

2s22p6

Число неспаренных электронов

1

1

2

3

2

1

Горизонтальная периодичность заключается в появлении максимальных и минимальных значений свойств простых веществ и соединений в пределах каждого периода. Она особенно заметна для элементов VIIIБ-группы и лантаноидов (например, лантаноиды с четными порядковыми номерами более распространены, чем с нечетными).

В таких физических свойствах, как энергия ионизации и сродство к электрону, также проявляется горизонтальная периодичность, связанная с периодическим изменением числа электронов на последних энергетических подуровнях:

Сродство к электрону – способность некоторых нейтральных атомов, молекул и свободных радикалов присоединять добавочные электроны, превращаясь в отрицательные ионы. Мерой этой способности служит положительная энергия. Сродство к электрону, равная разности энергии нейтрального атома (молекулы) в основном состоянии и энергии основного состояния отрицательного иона, образовавшегося после присоединения электрона.

Диагональная периодичность

Диагональная периодичность – повторяемость свойств простых веществ и соединений по диагоналям Периодической системы. Она связана с возрастание неметаллических свойств в периодах слева направо и в группах снизу вверх. Поэтому литий похож на магний, бериллий на алюминий, бор на кремний, углерод на фосфор. Так, литий и магний образуют много алкильных и арильных соединений, которые часто используют в органической химии. Бериллий и алюминий имеют сходные значения окислительно-восстановительных потенциалов. Бор и кремний образуют летучие, весьма реакционноспособные молекулярные гидриды.

Диагональную периодичность не следует понимать как абсолютное сходства атомных, молекулярных, термодинамических и других свойств. Та, в своих соединениях атом лития имеет степень окисления (+I), а атом магния – (+II). Однако свойства ионов Li+ и Mg2+ очень близки, проявляясь, в частности, в малой растворимости карбонатов и ортофосфатов.

В результате объединения вертикальной, горизонтальной и диагональной периодичности появляется так называемая звездная периодичность. Так, свойства германия напоминают свойства окружающих его галлия, кремния, мышьяка и олова. На основании таких “геохимических звезд” можно предсказать присутствие элемента в минералах и рудах.

Вторичная периодичность

Многие свойства элементов в группах изменяются не монотонно, а периодически, особенно для элементов IIIA-VIIA-групп. Такое явление носит название вторичной периодичности. Так, германий по своим свойствам больше похож на углерод, чем на кремний. Известно, что силан реагирует с гидроксид-ионами в водном растворе с выделением водорода, а метан и герман не взаимодействуют даже с избытком гидроксид-ионов.

Читайте также:  Нефрит имеет свойства какие

Подобные аномалии в химическом поведении элементов наблюдаются и в других группах. Так, например, для элементов 4-го периода, находящихся в VA-VIIA-группах, (As, Se, Br) характерна малая устойчивость соединений в высшей степени окисления. В то время как для фосфора и сурьмы известны пентафториды, пентахлориды и пентаиодиды, в случае мышьяка до сих получен только пентафторид. Гексафторид селена менее устойчив, чем соответствующие фториды серы и теллура. В группе галогенов хлор(VII) и иод(VII) образуют устойчивые кислородсодержание анионы, тогда как пербромат-ион, синтезированный лишь в 1968 г., является очень сильным окислителем.

Вторичная периодичность связана, в частности, с относительной инертностью валентных s-электронов за счет так называемого “проникновения к ядру”, поскольку увеличение электронной плотности вблизи ядра при одном и том же главном квантовом числе уменьшается в последовательности ns > np > nd >nf.

Поэтому элементы, которые в Периодической системе стоят непосредственно после элементов со впервые заполненным p-, d– или f-подуровнем, характеризуются понижением устойчивости их соединений в высшей степени окисления. Это натрий и магний (идут после элементов с впервые заполненным р-подуровнем), р-элементы 4-го периода от галлия до криптона (заполнен d-подуровень), а также послелантаноидные элементы от гафния до радона.

Периодическое изменение атомных радиусов

Согласно представлениям квантовой механики, атомы не имеют четких границ, однако вероятность найти электрон, связанный с данным ядром, на определенном расстоянии от этого ядра быстро убывает с увеличением расстояния. Поэтому атому приписывают некоторый радиус, полагая, что в сфере этого радиуса заключена бóльшая часть электронной плотности (более 90%).

Радиусы атомов элементов находятся в периодической зависимости от их порядкового номера.

В периодах по мере увеличения заряда ядра радиусы атомов, в общем, уменьшаются, что связано с усилением притяжения внешних электронов к ядру. Наибольшее уменьшение атомных радиусов наблюдается у элементов малых периодов. В группах элементов радиусы атомов, в общем, увеличиваются, так как растет число электронных слоев. Таким образом, в изменении атомных радиусов элементов просматриваются разные виды периодичности: вертикальная, горизонтальная и диагональная.

Небольшие размеры атомов элементов второго периода приводят к устойчивости кратных связей, образованных при дополнительном перекрывании р-орбиталей, ориентированных перпендикулярно межъядерной оси. Так, диоксид углерода − газообразные мономер, молекула которого содержит две двойные связи, а диоксид кремния − кристаллический полимер со связями Si−O. При комнатной температуре азот существует в виде устойчивых молекул N2, в которых атомы азота соединены прочной тройной связью. Белый фосфор состоит из молекул Р4, а черный фосфор представляет собой полимер.

По-видимому, для элементов третьего периода образование нескольких одинарных связей выгоднее формирования одной кратной связи. Вследствие дополнительного перекрывания р-орбиталей для углерода и азота характерны анионы СО32− и NO3− (форма треугольника), а для кремния и фосфора более устойчивы тетраэдрические анионы SiO44− и PO43−.

Значение Периодического закона. Заключение

Периодический закон сыграл огромную роль в развитии химии и других естественных наук. Была открыта взаимная связь между всеми элементами, их физическими и химическими свойствами. Это поставило перед естествознанием научно-философскую проблемы огромной важности: эта взаимная связь должно получить объяснение. После открытия Периодического закона стало ясно, что атомы всех элементов должны быть построены по единому принципу, а их строение должно отображать периодичность свойств элементов. Таким образом, периодический закон стал важным звеном в эволюции атомно-молекулярного учения, оказав значительное влияние на разработку теории строения атома. Он также способствовал формулировке современного понятия “химический элемент” и уточнению представлений о простых и сложных веществах.

Используя Периодический закон, Д.И. Менделеев стал первым исследователем, сумевшим решить проблемы прогнозирования в химии. Это проявилось уже через несколько лет после создания Периодической системы элементов, когда были открыты предсказанные Менделеевым новые химические элементы. Периодический закон помог также уточнить многие особенности химического поведения уже открытых элементов. Успехи атомной физики, включая ядерную энергетику и синтез искусственных элементов, стали возможными лишь благодаря Периодическому закону. В свою очередь, они расширили и углубили сущность закона Менделеева, расширили пределы Периодической системы элементов.

Периодический закон является универсальным законом. Он относится к числу таких общих научных закономерностей, которые реально существуют в природе и поэтому в процессе эволюции наших знаний никогда не потеряют своего значения. Установлено, что периодичности подчиняются не только электронное строение атома, но и тонкая структура атомных ядер, что говорит о периодическом характере свойств в мире элементарных частиц.

Со временем роль Периодического закона не уменьшается. Он стал важнейшей основой неорганической химией. Он используется, например, при синтезе веществ с заранее заданными свойствами, создании новых материалов, подборе эффективных катализаторов.

Неоценимо значение Периодического закона в преподавании общей и неорганической химии. Его открытие было связано с созданием учебника по химии, когда Менделеев пытался предельно четко изложить сведения об известных на тот момент 63 химических элементах. Сейчас число элементов увеличилось почти вдвое (118), и Периодический закон позволяет предсказать сходство и закономерности свойств различных химических элементов с использованием их положения в Периодической системе.

Источник

В современной науке таблицу Д. И. Менделеева называют периодической системой химических элементов, т. к. общие закономерности в изменении свойств атомов, простых и сложных веществ, образованных химическими элементами, повторяются в этой системе через определенные интервалы — периоды. Таким образом, все существующие в мире химические элементы подчиняются единому, объективно действующему в природе периодическому закону, графическим отображением которого является периодическая система элементов. Этот закон и система носят имя великого русского химика Д. И. Менделеева.

Периоды — это ряды элементов, расположенные горизонтально, с одинаковым максимальным значением главного квантового числа валентных электронов. Номер периода соответствует числу энергетических уровней в атоме элемента. Периоды состоят из определенного количества элементов: первый — из 2 , второй и третий — из 8 , четвертый и пятый — из 18, шестой период включает 32 элемента. Это зависит от количества электронов на внешнем энергетическом уровне. Седьмой период является незавершенным. Все периоды (исключение составляет первый) начинаются щелочным металлом (s-элементом), а заканчиваются благородным газом. Когда начинает заполняться новый энергетический уровень, начинается новый период. В периоде с увеличением порядкового номера химического элемента слева направо металлические свойства простых веществ уменьшаются, а неметаллические возрастают.

Читайте также:  Какие из галогенов могут проявлять восстановительные свойства

Металлические свойства — это способность атомов элемента при образовании химической связи отдавать свои электроны, а неметаллические свойства — это способность атомов элемента при образовании химической связи присоединять электроны других атомов. У металлов электронами заполняется внешний s-подуровень, что подтверждает металлические свойства атома. Неметаллические свойства простых веществ проявляются при формировании и заполнении электронами внешнего р-подуровня. Неметаллические свойства атома усиливаются в процессе заполнения электронами р-подуровня (от 1 до 5). Атомы с полностью заполненным внешним электронным слоем (ns2np6) образуют группу благородных газов, которые являются химически инертными.

В малых периодах с ростом положительного заряда ядер атомов возрастает число электронов на внешнем уровне (от 1 до 2 — в первом периоде и от 1 до 8 — во втором и третьем периодах), что объясняет изменение свойств элементов: в начале периода (кроме первого периода) находится щелочной металл, затем металлические свойства постепенно ослабевают и усиливаются неметаллические. В больших периодах с ростом заряда ядер заполнение уровней электронами происходит сложнее, что объясняет и более сложное изменение свойств элементов по сравнению с элементами малых периодов. Так, в четных рядах больших периодов с ростом заряда число электронов на внешнем уровне остается постоянным и равно 2 или 1. Поэтому, пока идет заполнение электронами следующего за внешним (второго снаружи) уровня, свойства элементов в четных рядах изменяются крайне медленно. Лишь в нечетных рядах, когда с ростом заряда ядра увеличивается число электронов на внешнем уровне (от 1 до 8), свойства элементов начинают изменяться так же, как у типических.

Группы — это вертикальные столбцы элементов с одинаковым числом валентных электронов, равных номеру группы. Существует деление на главные и побочные подгруппы. Главные подгруппы состоят из элементов малых и больших периодов. Валентные электроны этих элементов расположены на внешних ns- и nр-подуровнях. Побочные подгруппы состоят из элементов больших периодов. Их валентные электроны находятся на внешнем ns-подуровне и внутреннем (n — 1) d -подуровне (или (n — 2) f-подуровне). В зависимости от того, какой подуровень (s-, p-, d- или f-) заполняется валентными электронами, элементы разделяются на:

1) s-элементы — элементы главной подгруппы I и II групп;

2) р-элементы — элементы главных подгрупп Ш—VII групп;

3) d -элементы — элементы побочных подгрупп;

4) f-элементы — лантаноиды, актиноиды.

Сверху вниз в главных подгруппах металлические свойства усиливаются, а неметаллические ослабевают. Элементы главных и побочных групп отличаются по свойствам. Номер группы показывает высшую валентность элемента. Исключение составляют кислород, фтор, элементы подгруппы меди и восьмой группы. Общими для элементов главных и побочных подгрупп являются формулы высших оксидов (и их гидратов). У высших оксидов и их гидратов элементов I—III групп (исключение составляет бор) преобладают основные свойства, с IV по VIII — кислотные. Для элементов главных подгрупп формулы водородных соединений общие. Элементы I—III групп образуют твердые вещества — гидриды, так как степень окисления водорода -1 . Элементы IV-VII групп — газообразные. Водородные соединения элементов главных подгрупп IV группы (ЭН4) — нейтральны, V группы (ЭН3) являются основаниями, VI и VII групп (Н2Э и НЭ) — кислотами.

Радиусы атомов, их периодические изменения в системе химических элементов

Радиус атома с увеличением зарядов ядер атомов в периоде уменьшается, т. к. притяжение ядром электронных оболочек усиливается. Происходит своеобразное их «сжатие». От лития к неону заряд ядра постепенно увели-чивается (от 3 до 10), что обуславливает возрастание сил притяжения электронов к ядру, размеры атомов уменьшаются. Поэтому в начале периода расположены элементы с небольшим числом электронов на внешнем электронном слое и большим радиусом атома. Электроны, находящиеся дальше от ядра, легко от него отрываются, что характерно для элементов-металлов.

В одной и той же группе с увеличением номера периода атомные радиусы возрастают, т. к. увеличение заряда атома оказывает противоположный эффект. С точки зрения теории строения атомов принадлежность элементов к металлам или неметаллам определяется способностью их атомов отдавать или присоединять электроны. Атомы металлов сравнительно легко отдают электроны и не могут их присоединять для достраивания своего внешнего электронного слоя.

Радиусы атомов

Закономерности изменения химических свойств элементов и их соединений по периодам и группам

Д. И. Менделеев в 1869 г. сформулировал периодический закон, который звучит так: свойства химических элементов и образованных ими веществ находятся в периодической зависимости от относительных атомных масс элементов. Систематизируя химические элементы на основе их относительных атомных масс, Менделеев уделял большое внимание также свойствам элементов и образованных ими веществ, распределяя элементы со сходными свойствами в вертикальные столбцы — группы. В соответствии с современными представлениями о строении атома, основой классификации химических элементов являются заряды их атомных ядер, и современная формулировка периодического закона такова: свойства химических элементов и образованных ими веществ находятся в периодической зависимости от зарядов их атомных ядер. Периодичность в изменении свойств элементов объясняется периодической повторяемостью в строении внешних энергетических уровней их атомов. Именно число энергетических уровней, общее число расположенных на них электронов и число электронов на внешнем уровне отражают принятую в периодической системе символику.

Периодическая система химических элементов

a) Закономерности, связанные с металлическими и неметаллическими свойствами элементов.

  • При перемещении СПРАВА НАЛЕВО вдоль ПЕРИОДА МЕТАЛЛИЧЕСКИЕ свойства р-элементов УСИЛИВАЮТСЯ. В обратном направлении — возрастают неметаллические. Это объясняется тем, что правее находятся элементы, электронные оболочки которых ближе к октету. Элементы в правой части периода менее склонны отдавать свои электроны для образования металлической связи и вообще в химических реакциях.
  • Например, углерод — более выраженный неметалл, чем его сосед по периоду бор, а азот обладает еще более яркими неметаллическими свойствами, чем углерод. Слева направо в периоде также увеличивается и заряд ядра. Следовательно, увеличивается притяжение к ядру валентных электронов и затрудняется их отдача. Наоборот, s-элементы в левой части таблицы имеют мало электронов на внешней оболочке и меньший заряд ядра, что способствует образованию именно металлической связи. За понятным исключением водорода и гелия (их оболочки близки к завершению или завершены!), все s-элементы являются металлами; p-элементы могут быть как металлами, так и неметаллами, в зависимости от того — в левой или правой части таблицы они находятся.
  • У d- и f-элементов, как мы знаем, есть «резервные» электроны из «предпоследних» оболочек, которые усложняют простую картину, характерную для s- и p-элементов. В целом d- и f-элементы гораздо охотнее проявляют металлические свойства.
  • Подавляющее число элементов является металлами и только 22 элемента относят к неметаллам: H, B, C, Si, N, P, As, O, S, Se, Te, а также все галогены и инертные газы. Некоторые элементы в связи с тем, что они могут проявлять лишь слабые металлические свойства, относят к полуметаллам. Что такое полуметаллы? Если выбрать из Периодической таблицы p-элементы и записать их в отдельный «блок» (это сделано в “длинной” форме таблицы), то обнаружится закономерность, показанная на Левая нижняя часть блока содержит типичные металлы, правая верхняя — типичные неметаллы. Элементы, занимающие места на границе между металлами и неметаллами, называются полуметаллами.
  • Полуметаллы расположены примерно вдоль диагонали, проходящей по p-элементам от левого верхнего к правому нижнему углу Периодической таблицы
  • Полуметаллы имеют ковалентную кристаллическую решетку при наличии металлической проводимости (электропроводности). Валентных электронов у них либо недостаточно для образования полноценной «октетной» ковалентной связи (как в боре), либо они не удерживаются достаточно прочно (как в тeллуре или полонии) из-за больших размеров атома. Поэтому связь в ковалентных кристаллах этих элементов имеет частично металлический характер. Некоторые полуметаллы (кремний, германий) являются полупроводниками. Полупроводниковые свойства этих элементов объясняются многими сложными причинами, но одна из них — существенно меньшая (хотя и не нулевая) электропроводность, объясняемая слабой металлической связью. Роль полупроводников в электронной технике чрезвычайно важна.
  • При перемещении СВЕРХУ ВНИЗ вдоль групп УСИЛИВАЮТСЯ МЕТАЛЛИЧЕСКИЕ свойства элементов. Это связано с тем, что ниже в группах расположены элементы, имеющие уже довольно много заполненных электронных оболочек. Их внешние оболочки находятся дальше от ядра. Они отделены от ядра более толстой «шубой» из нижних электронных оболочек и электроны внешних уровней удерживаются слабее.
Читайте также:  Какие полезные свойства имеет ромашка

б) Закономерности, связанные с окислительно-восстановительными свойствами. Изменения электроотрицательности элементов.

  • Перечисленные выше причины объясняют, почему СЛЕВА НАПРАВО УСИЛИВАЮТСЯ ОКИСЛИТЕЛЬНЫЕ свойства, а при движении СВЕРХУ ВНИЗ — ВОССТАНОВИТЕЛЬНЫЕ свойства элементов.
  • Последняя закономерность распространяется даже на такие необычные элементы, как инертные газы. У «тяжелых» благородных газов криптона и ксенона, которые находятся в нижней части группы, удается «отобрать» электроны и получить их соединения с сильными окислителями (фтором и кислородом), а для «легких» гелия, неона и аргона это осуществить не удается.
  • В правом верхнем углу таблицы находится самый активный неметалл-окислитель фтор (F), а в левом нижнем углу — самый активный металл-восстановитель цезий (Cs). Элемент франций (Fr) должен быть еще более активным восстановителем, но его химические свойства изучать крайне трудно из-за быстрого радиоактивного распада.
  • По той же причине, что и окислительные свойства элементов, их ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ ВОЗРАСТАЕТ тоже СЛЕВА НАПРАВО, достигая максимума у галогенов. Не последнюю роль в этом играет степень завершенности валентной оболочки, ее близость к октету.
  • При перемещении СВЕРХУ ВНИЗ по группам ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ УМЕНЬШАЕТСЯ. Это связано с возрастанием числа электронных оболочек, на последней из которых электроны притягиваются к ядру все слабее и слабее.
  • в) Закономерности, связанные с размерами атомов.
  • Размеры атомов (АТОМНЫЕ РАДИУСЫ) при перемещении СЛЕВА НАПРАВО вдоль периода УМЕНЬШАЮТСЯ. Электроны все сильнее притягиваются к ядру по мере возрастания заряда ядра. Даже увеличение числа электронов на внешней оболочке (например, у фтора по сравнению с кислородом) не приводит к увеличению размеров атома. Наоборот, размеры атома фтора меньше, чем атома кислорода.
  • При перемещении СВЕРХУ ВНИЗ АТОМНЫЕ РАДИУСЫ элементов РАСТУТ, потому что заполнено больше электронных оболочек.

г) Закономерности, связанные с валентностью элементов.

  • Элементы одной и той же ПОДГРУППЫ имеют аналогичную конфигурацию внешних электронных оболочек и, следовательно, одинаковую валентность в соединениях с другими элементами.
  • s-Элементы имеют валентности, совпадающие с номером их группы.
  • p-Элементы имеют наибольшую возможную для них валентность, равную номеру группы. Кроме того, они могут иметь валентность, равную разности между числом 8 (октет) и номером их группы (число электронов на внешней оболочке).
  • d-Элементы обнаруживают много разных валентностей, которые нельзя точно предсказать по номеру группы.
  • Не только элементы, но и многие их соединения — оксиды, гидриды, соединения с галогенами — обнаруживают периодичность. Для каждой ГРУППЫ элементов можно записать формулы соединений, которые периодически «повторяются» (то есть могут быть записаны в виде обобщенной формулы).

Итак, подытожим закономерности изменения свойств, проявляемые в пределах периодов:

Изменение некоторых характеристик элементов в периодах слева направо:

  • заряд ядер атомов увеличивается;
  • радиус атомов уменьшается;
  • электроотрицательность элементов увеличивается;
  • количество валентных электронов увеличивается от 1 до 8 (равно номеру группы);
  • высшая степень окисления увеличивается (равна номеру группы);
  • число электронных слоев атомов не изменяется;
  • металлические свойства уменьшается;
  • неметаллические свойства элементов увеличивается.

Изменение некоторых характеристик элементов в группе сверху вниз:

  • заряд ядер атомов увеличивается;
  • радиус атомов увеличивается;
  • число энергетических уровней (электронных слоев) атомов увеличивается (равно номеру периода);
  • число электронов на внешнем слое атомов одинаково (равно номеру группы);
  • прочность связи электронов внешнего слоя с ядром уменьшается;
  • электроотрицательность уменьшается;
  • металличность элементов увеличивается;
  • неметалличность элементов уменьшается.

Z — порядковый номер, равен числу протонов; R — радиус атома; ЭО — электроотрицательность; Вал е- —количество валентных электронов; Ок. св. — окислительные свойства; Вос. св. — востановительные свойства; Эн. ур. — энергитические уровни; Ме — металические свойства; НеМе — неметаллические свойства; ВСО — высшая степень окисления

Шпаргалки

Справочный материал для прохождения тестирования:

Источник