Какие свойства химических элементов и почему изменяются периодически
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке “Файлы работы” в формате PDF
Введение
Периодический закон был сформулирован Д.И. Менделеевым в ходе работы над текстом учебника “Основы химии”, когда он столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 года, обдумывая структуру учебника, он постепенно пришел к выводу, что между свойствами и атомными массами элементов существует какая-то закономерность.
Первым шагом к появлению Периодического закона стала таблица “Опыт системы элементов, основанной на их атомном весе и химическом сходстве”. Позднее Д.И. Менделеев сформулировал сам закон: “Свойства элементов, а потому и свойства образуемых ими простых и сложных тел находятся в периодической зависимости от их атомного веса”.
Положив в основу своего закона сходство элементов и их соединений, Менделеев не стал слепо следовать принципу возрастания атомных масс. Он учитывал, что для некоторых элементов атомные массы могли быть определены недостаточно точно.
Актуальность
Периодический закон сыграл огромную роль в развитии химии и других естественных наук.
Используя Периодический закон, Д.И. Менделеев стал первым исследователем, сумевшим решить проблемы прогнозирования в химии.
Периодический закон является универсальным законом. Он относится к числу таких общих научных закономерностей, которые реально существуют в природе и поэтому в процессе эволюции наших знаний никогда не потеряют своего значения.
Периодичность
Периодичность – это повторяемость свойств химических и некоторых физических свойств у простых веществ и их соединений при изменении порядкового номера элементов. Она связана, в первую очередь, с повторяемостью электронного строения атомов по мере увеличения порядкового номера (а, следовательно, заряда ядра и числа электронов в атоме).
Химическая периодичность проявляется в аналогии химического поведения, однотипности химических реакций. При этом число валентных электронов, характерные степени окисления, формулы соединений могут быть разными. Периодически повторяются не только сходные черты, но и существенные различия химических свойств элементов по мере роста их порядкового номера.
Некоторые физико-химические свойства атомов (потенциал ионизации, атомный радиус), простых и сложных веществ могут быть не только качественно, но и количественно представлены в виде зависимостей от порядкового номера элемента, причем для них периодически проявляются четко выраженные максимумы и минимумы.
Виды периодичности
Общее описание периодичности свойств
По периоду слева направо:
заряд ядра атома – увеличивается;
радиус атома – уменьшается;
количество электронов на внешнем уровне – увеличивается;
электроотрицательность – увеличивается;
отдача электронов – уменьшается;
прием электронов – увеличивается.
По группе сверху вниз:
заряд ядра атома – увеличивается;
радиус атома – увеличивается;
количество электронов на внешнем уровне – неизменяется;
электроотрицательность – уменьшается;
отдача электронов – увеличивается;
прием электронов – уменьшается.
Вертикальная периодичность
Вертикальная периодичность заключается в повторяемости свойств простых веществ и соединений в вертикальных столбцах Периодической системы. Это основной вид периодичности, в соответствии с которым все элементы объединены в группы. Элементы одной группы имеет однотипные электронные конфигурации. Химия элементов и их соединений обычно рассматривается на основе этого вида периодичности.
Вертикальная периодичность обнаруживается и в некоторых физических свойствах атомов, например, в энергиях ионизации Ei (кДж/моль):
IA-группа | IIA-группа | VIIIA-группа |
Li 520 | Be 900 | Ne 2080 |
Na 490 | Mg 740 | Ar 1520 |
K 420 | Ca 590 | Kr 1350 |
Энергия ионизации – разновидность энергии связи, представляет собой наименьшую энергию, необходимую для удаления электрона от свободного атома в его низшем энергетическом (основном) состоянии на бесконечность. Энергия ионизации является одной из главных характеристик атома, от которой в значительной степени зависят природа и прочность образуемых атомом химических связей. От энергии ионизации атома существенно зависят также восстановительные свойства соответствующего простого вещества.
Горизонтальная периодичность
Элемент | Li | Be | C | O | F | Ne | ||
Ei | 520 | 900 | 801 | 1086 | 1402 | 1314 | 1680 | 2080 |
Ae | −60 | −27 | −122 | +7 | −141 | −328 | ||
Электронная формула (валентные электроны) | 2s1 | 2s2 | 2s22p1 | 2s22p2 | 2s22p3 | 2s22p4 | 2s22p5 | 2s22p6 |
Число неспаренных электронов | 1 | 1 | 2 | 3 | 2 | 1 |
Горизонтальная периодичность заключается в появлении максимальных и минимальных значений свойств простых веществ и соединений в пределах каждого периода. Она особенно заметна для элементов VIIIБ-группы и лантаноидов (например, лантаноиды с четными порядковыми номерами более распространены, чем с нечетными).
В таких физических свойствах, как энергия ионизации и сродство к электрону, также проявляется горизонтальная периодичность, связанная с периодическим изменением числа электронов на последних энергетических подуровнях:
Сродство к электрону – способность некоторых нейтральных атомов, молекул и свободных радикалов присоединять добавочные электроны, превращаясь в отрицательные ионы. Мерой этой способности служит положительная энергия. Сродство к электрону, равная разности энергии нейтрального атома (молекулы) в основном состоянии и энергии основного состояния отрицательного иона, образовавшегося после присоединения электрона.
Диагональная периодичность
Диагональная периодичность – повторяемость свойств простых веществ и соединений по диагоналям Периодической системы. Она связана с возрастание неметаллических свойств в периодах слева направо и в группах снизу вверх. Поэтому литий похож на магний, бериллий на алюминий, бор на кремний, углерод на фосфор. Так, литий и магний образуют много алкильных и арильных соединений, которые часто используют в органической химии. Бериллий и алюминий имеют сходные значения окислительно-восстановительных потенциалов. Бор и кремний образуют летучие, весьма реакционноспособные молекулярные гидриды.
Диагональную периодичность не следует понимать как абсолютное сходства атомных, молекулярных, термодинамических и других свойств. Та, в своих соединениях атом лития имеет степень окисления (+I), а атом магния – (+II). Однако свойства ионов Li+ и Mg2+ очень близки, проявляясь, в частности, в малой растворимости карбонатов и ортофосфатов.
В результате объединения вертикальной, горизонтальной и диагональной периодичности появляется так называемая звездная периодичность. Так, свойства германия напоминают свойства окружающих его галлия, кремния, мышьяка и олова. На основании таких “геохимических звезд” можно предсказать присутствие элемента в минералах и рудах.
Вторичная периодичность
Многие свойства элементов в группах изменяются не монотонно, а периодически, особенно для элементов IIIA-VIIA-групп. Такое явление носит название вторичной периодичности. Так, германий по своим свойствам больше похож на углерод, чем на кремний. Известно, что силан реагирует с гидроксид-ионами в водном растворе с выделением водорода, а метан и герман не взаимодействуют даже с избытком гидроксид-ионов.
Подобные аномалии в химическом поведении элементов наблюдаются и в других группах. Так, например, для элементов 4-го периода, находящихся в VA-VIIA-группах, (As, Se, Br) характерна малая устойчивость соединений в высшей степени окисления. В то время как для фосфора и сурьмы известны пентафториды, пентахлориды и пентаиодиды, в случае мышьяка до сих получен только пентафторид. Гексафторид селена менее устойчив, чем соответствующие фториды серы и теллура. В группе галогенов хлор(VII) и иод(VII) образуют устойчивые кислородсодержание анионы, тогда как пербромат-ион, синтезированный лишь в 1968 г., является очень сильным окислителем.
Вторичная периодичность связана, в частности, с относительной инертностью валентных s-электронов за счет так называемого “проникновения к ядру”, поскольку увеличение электронной плотности вблизи ядра при одном и том же главном квантовом числе уменьшается в последовательности ns > np > nd >nf.
Поэтому элементы, которые в Периодической системе стоят непосредственно после элементов со впервые заполненным p-, d– или f-подуровнем, характеризуются понижением устойчивости их соединений в высшей степени окисления. Это натрий и магний (идут после элементов с впервые заполненным р-подуровнем), р-элементы 4-го периода от галлия до криптона (заполнен d-подуровень), а также послелантаноидные элементы от гафния до радона.
Периодическое изменение атомных радиусов
Согласно представлениям квантовой механики, атомы не имеют четких границ, однако вероятность найти электрон, связанный с данным ядром, на определенном расстоянии от этого ядра быстро убывает с увеличением расстояния. Поэтому атому приписывают некоторый радиус, полагая, что в сфере этого радиуса заключена бóльшая часть электронной плотности (более 90%).
Радиусы атомов элементов находятся в периодической зависимости от их порядкового номера.
В периодах по мере увеличения заряда ядра радиусы атомов, в общем, уменьшаются, что связано с усилением притяжения внешних электронов к ядру. Наибольшее уменьшение атомных радиусов наблюдается у элементов малых периодов. В группах элементов радиусы атомов, в общем, увеличиваются, так как растет число электронных слоев. Таким образом, в изменении атомных радиусов элементов просматриваются разные виды периодичности: вертикальная, горизонтальная и диагональная.
Небольшие размеры атомов элементов второго периода приводят к устойчивости кратных связей, образованных при дополнительном перекрывании р-орбиталей, ориентированных перпендикулярно межъядерной оси. Так, диоксид углерода − газообразные мономер, молекула которого содержит две двойные связи, а диоксид кремния − кристаллический полимер со связями Si−O. При комнатной температуре азот существует в виде устойчивых молекул N2, в которых атомы азота соединены прочной тройной связью. Белый фосфор состоит из молекул Р4, а черный фосфор представляет собой полимер.
По-видимому, для элементов третьего периода образование нескольких одинарных связей выгоднее формирования одной кратной связи. Вследствие дополнительного перекрывания р-орбиталей для углерода и азота характерны анионы СО32− и NO3− (форма треугольника), а для кремния и фосфора более устойчивы тетраэдрические анионы SiO44− и PO43−.
Значение Периодического закона. Заключение
Периодический закон сыграл огромную роль в развитии химии и других естественных наук. Была открыта взаимная связь между всеми элементами, их физическими и химическими свойствами. Это поставило перед естествознанием научно-философскую проблемы огромной важности: эта взаимная связь должно получить объяснение. После открытия Периодического закона стало ясно, что атомы всех элементов должны быть построены по единому принципу, а их строение должно отображать периодичность свойств элементов. Таким образом, периодический закон стал важным звеном в эволюции атомно-молекулярного учения, оказав значительное влияние на разработку теории строения атома. Он также способствовал формулировке современного понятия “химический элемент” и уточнению представлений о простых и сложных веществах.
Используя Периодический закон, Д.И. Менделеев стал первым исследователем, сумевшим решить проблемы прогнозирования в химии. Это проявилось уже через несколько лет после создания Периодической системы элементов, когда были открыты предсказанные Менделеевым новые химические элементы. Периодический закон помог также уточнить многие особенности химического поведения уже открытых элементов. Успехи атомной физики, включая ядерную энергетику и синтез искусственных элементов, стали возможными лишь благодаря Периодическому закону. В свою очередь, они расширили и углубили сущность закона Менделеева, расширили пределы Периодической системы элементов.
Периодический закон является универсальным законом. Он относится к числу таких общих научных закономерностей, которые реально существуют в природе и поэтому в процессе эволюции наших знаний никогда не потеряют своего значения. Установлено, что периодичности подчиняются не только электронное строение атома, но и тонкая структура атомных ядер, что говорит о периодическом характере свойств в мире элементарных частиц.
Со временем роль Периодического закона не уменьшается. Он стал важнейшей основой неорганической химией. Он используется, например, при синтезе веществ с заранее заданными свойствами, создании новых материалов, подборе эффективных катализаторов.
Неоценимо значение Периодического закона в преподавании общей и неорганической химии. Его открытие было связано с созданием учебника по химии, когда Менделеев пытался предельно четко изложить сведения об известных на тот момент 63 химических элементах. Сейчас число элементов увеличилось почти вдвое (118), и Периодический закон позволяет предсказать сходство и закономерности свойств различных химических элементов с использованием их положения в Периодической системе.
Источник
Анонимный вопрос
30 октября 2018 · 279,9 K
По каким закономерностям изменяются свойства элементов в таблице Менделеева?
Подготовила к ЕГЭ по химии 5000 учеников. С любого уровня до 100 в режиме онлайн 🙂 · vk.com/mendo_him
При движении по группе главной подгруппы сверху вниз⬇️
????Радиус атома увеличтвается
????Электроотрицательность уменьшается
????Окислительные свойства ослабевают
????Восстановительные свойства усиливаются
????Неметаллические ослабевают
????Металлические усиливаются
По периоду слева направо всё наоброт????
????Радиус уменьшается
????ЭО возрастает
????Окислительные свойства усиливаются
????Восстановительные ослабевают
????Неметаллические увеличиваются
????Металлические свойства ослабевают
Педагог, музыкант, начинающий путешественник и немножко психолог
В периодах (слева направо): увеличивается заряд ядра, число электронов на внешнем уровне, уменьшается радиус атомов, в связи с этим увеличивается прочность связи электронов с ядром и электроотрицательность, что в свою очередь ведет к усилению окислительных свойств (неметаличности) и ослаблению восстановительных (металличности).
В группах (сверху… Читать далее
Можете зайти на этот форум и найти нужный вам ответ!!Осень будем рады вас там видеть!♥️https://blog.pachca.com/post… Читать дальше
Могут ли или существуют ли вещества во Вселенной, которых нет в таблице Менделеева?
ALBA synchrotron, postdoc
Безусловно. Потому что в таблице Менделеева вообще нет веществ, там только элементы.
Могут ли быть элементы, которых нет в таблице Менделеева? Тоже да. Можно делать атомы не только из протонов, нейтронов и электронов. Есть позитроний, есть мюоний, есть мюонные атомы. Для них в принципе нет места в таблице, но их умеют делать и даже заставлять вступать в реакции.
Далее, по сути, любая нейтронная звезда – это огромное атомное ядро, при желании можно прикинуть количество оставшихся в живых после коллапса протонов и выдать получившемуся атому полагающееся ему место в периодической системе.
Прочитать ещё 2 ответа
Как узнать сколько протонов, нейтронов и электронов находится в атоме фтора?
Книги, звери и еда – это хобби навсегда.
Количество протонов в атоме совпадает с количеством электронов, поскольку атом электрически нейтрален, и совпадает с порядковым номером элемента в периодической таблице Менделеева. Поскольку номер фтора 9, то атом фтора содержит 9 протонов и 9 электронов. Число нейтронов является разностью между массой атома и количеством протонов. Для фтора единственный стабильный изотоп имеет массу 19, он содержит 19-9=10 нейтронов.
Как определить валентность по таблице менделеева?
Номер группы, в которой расположен атом в периодической таблице равен его высшей валентности. Низшая валентность определяется разницей между числом восемь и номером группы. Натрий и алюминий имеют только одно значение валентности, равное номеру группы.
Объясните гуманитарию, что означает понятие “энтропия”?
Филолог, мечтающий стать астрофизиком
Я понимаю так (если понимаю неправильно, пусть знающие люди меня поправят), что, в общем смысле, энтропия – это степень упорядоченности какой-либо системы, мера беспорядка, хаоса. И чем выше беспорядок, тем, соответственно, выше энтропия. И наоборот. Понятие энтропии используется во многих науках, но чаще, как правило, связывается со вторым законом термодинамики, который гласит, что в изолированной системе энтропия не может уменьшаться. Если говорить совсем простыми словами, то система – это нечто организованное, то, что имеет свою структуру, а изолированной можно назвать систему, на которую не оказывается воздействие извне (хотя совсем уж независимую систему найти трудно, так как все предметы и объекты друг с другом взаимодействуют, но это детали). Так вот, оставленное на солнце яблоко со временем сгниет, человек постареет. Энтропия всегда растет. Вселенная стремится к беспорядку. И именно из-за действия энтропии, как предполагается, время не может идти назад, хотя в физике не существует точного закона, постулирующего, что время обязательно должно идти только вперед. Если время пойдет назад, то все явления и вещи начнут сами по себе магическим образом упорядочиваться: разлетевшиеся бумаги сложатся ровной стопочкой, разбитый стакан соберется в целый без единой трещины, люди начнут молодеть. Повернуть время вспять значит упорядочить систему, то есть нарушить второй закон термодинамики. Нет, разбитый стакан, конечно, можно склеить в целый, и дома можно сделать уборку, однако при этом придется затратить какую-то часть энергии, и никакого нарушения в итоге не выйдет. Склеивание стакана и уборка дома – это только видимость уменьшения энтропии, так как даже аккуратно разложенные по местам вещи имеют свойство со временем разлагаться, так что от вездесущей энтропии нам не уйти.
Такие дела.
Прочитать ещё 5 ответов
Источник