Какие свойства характерны для волн

Какие свойства характерны для волн thumbnail

Естествознание
10 класс

   
   

Бросая в воду камешки, смотри на

круги, ими образуемые, иначе такое

бросание будет пустою забавою

Козьма Прутков

Какие свойства обнаруживают волны? Какие свойства являются общими для волн и частиц?

Урок-лекция

Последуем совету Козьмы Пруткова и будем наблюдать за волнами, пытаясь разобраться в их природе и свойствах.

ФОРМА ВОЛН. Из двух примеров волн, приведенных в предыдущей параграфе, колебания которых можно увидеть, следует, что форма волн может сильно различаться. Волна от брошенного в воду камня имеет форму расширяющихся кругов. Волна в натянутой веревке — изгиб, движущийся вдоль веревки. О том, насколько разнообразна форма волн, можно судить по волнам на море или большом озере. Оказывается, что и форма невидимых волн может тоже быть самой разнообразной. Наблюдая за волной от брошенного камня, можно сделать вывод, что форма волны изменяется по мере распространения волны, на большом расстоянии волна сглаживается и пропадает. Это свойство характерно для волн любой природы.

Волны могут иметь самую разнообразную форму, которая может изменяться по мере распространения волны.

ПРИНЦИП СУПЕРПОЗИЦИИ ВОЛН. Бросим теперь в воду два камня. Мы увидим, что по мере распространения волны проходят одна через другую, складываясь. В тех местах, где каждая из волн имеет горб, поверхность воды поднимется на высоту, равную сумме высот каждого из горбов. То же самое можно заметить для точек, в которых обе волны имеют впадины. Если же в какой-то точке одна волна имела горб, а другая — впадину, то, складываясь, волны гасят друг друга. Явление взаимоусиления или взаимогашения двух или более волн называют интерференцией.

Наблюдая за распространением волн от двух камней, несложно заметить, что на большом расстоянии от камней уже нельзя увидеть две волны. Что же произошло — две волны превратились в одну? Но в какой момент это происходит? Правильнее и проще считать. что в момент падения камней образовалась одна волна, равная сумме двух волн, которая изменяла форму по мере распространения, т. е. при сложении двух или более волн образуется новая волна. Это правило называется принципом суперпозиции волн.

Сложение нескольких волн приводит к образованию новой волны. Любую волну можно представить как сумму нескольких волн, причем это можно сделать многими способами.

МОНОХРОМАТИЧЕСКИЕ ВОЛНЫ. Составление из нескольких волн одной новой напоминает детскую игрушку, в которой из деталей разнообразной формы нужно составить исходную картинку. А как подобрать универсальные элементы, чтобы из них можно было составить любую картинку? Наверное, вы знаете ответ. Любое изображение на экране телевизора или на листе бумаги формируется из множества цветных точек — «элементарных кирпичиков» изображения. Точно так же вещество состоит из таких «элементарных кирпичиков», как атомы, молекулы, ядра, электроны. Может быть, такие «элементарные кирпичики» существуют и в «мире волн»? Это действительно так: любую волну можно однозначно представить в виде суммы монохроматических волн.

На рисунке 67 приведены графики зависимости давления в звуковой волне от координаты X, вдоль которой распространяется волна, и от времени.

Какие свойства характерны для волн

Рис. 67. График зависимости давления в звуковой монохроматической волне от расстояния в некоторый момент t0 (а) и в некоторый последующий момент времени t0 + Δt (б). График зависимости той же волны от времени в некоторой точке пространства (в)

Монохроматической волной называют волну, изменяющуюся во времени и в пространстве по синусоидальному закону.

«Монохроматическая» в дословном переводе означает «одноцветная». Какое отношение имеет цвет к звуковой волне? Как уже говорилось, свет представляет собой электромагнитную волну. При разложении света призмой (см. рис. 19) каждой узкой одноцветной полоске, например полоске в спектре натрия (см. рис. 20), соответствует волна, близкая к синусоидальной. В данном случае одноцветная волна имеет явный смысл. Эта терминология была перенесена на волны другой природы.

На рисунке 67 приведены также некоторые параметры, характеризующие монохроматическую волну. Периодом волны T называют время, за которое происходит одно колебание (измеряется в секундах). Длиной волны λ, называют пространственный интервал, соответствующий одному периоду волны. Помимо этого, вводят понятие «частота волны» v = 1/T — число колебаний волны в одну секунду (измеряется в герцах). Эти параметры связаны со скоростью распространения волны и соотношением V = λv. Амплитудой волны (на рисунке она обозначена через А. однако для разных типов волн могут применяться различные обозначения) называется максимальное отклонение параметра, характеризующего волну, от положения равновесия.

Монохроматические (синусоидальные) волны представляют собой «элементарные кирпичики», при сложении которых можно получить любую волну. Для этих волн определяются такие параметры, как длина волны, период волны, частота волны, амплитуда волны.

Разложение произвольной волны на монохроматические составляющие называют спектральным представлением волны. Совокупность частот (или длин) монохроматических волн, составляющих некоторую волну, и определяет спектр волны. Призма является одним из простейших приборов, осуществляющим разложение электромагнитной волны видимого диапазона.

Монохроматические волны обладают рядом замечательных свойств. В частности, при распространении монохроматической волны ее форма не изменяется.

Следует заметить, что, строго говоря, синусоида монохроматической волны бесконечна во времени и в пространстве. Монохроматическая волна, таким образом, является идеализацией, такой же, как, например, материальная точка. В природе не бывает монохроматических волн, однако многие волны по свойствам очень близки к монохроматическим.

Читайте также:  Какие свойствами обладает цитоплазматическая

ДИФРАКЦИЯ ВОЛН. Если вы внимательно наблюдали за рябью на поверхности воды, то могли заметить, что мелкие предметы (торчащие из воды ветки, небольшие камни) не являются препятствиями для волн. Волны практически «не замечают» их. Однако за препятствием с большими размерами (например, плавающий в воде плот) волны исчезают. Вывод, который можно сделать, оказывается справедлив для волн любой природы: волны свободно огибают препятствия, размеры которых сравнимы или меньше длины волны. Такое явление называют дифракцией.

Дифракцией называют явление огибания препятствий волнами различной природы. Волны любой природы свободно огибают препятствия с размерами, сравнимыми или меньшими длины волны.

Именно дифракция не дает возможности увидеть атомы и молекулы в микроскоп со сколь угодно большим увеличением. Размеры атомов и молекул много меньше длины волны видимого света.

ОБЩИЕ СВОЙСТВА ВОЛН И ЧАСТИЦ. Такой объект природы, как волны, совсем не похож на частицы, а «элементарные кирпичики», из которых можно составить любую волну, бесконечны в пространстве и во времени. Тем не менее у волн и частиц есть общие свойства. Начнем с примера. Бросив камень в окно, можно разбить стекло. Но, как вы, наверное, знаете, оконные стекла разбиваются и при взрывах, в результате которых образуется ударная звуковая волна (см. рис. 66). Следовательно, такая волна действует с некоторой силой на стекло. Какими должны быть свойства брошенного камня, чтобы он разбил стекло? У него должна быть достаточно большая масса и достаточно большая скорость. Как вы знаете, произведение этих двух величин дает импульс тела, т. е. камень разобьет стекло при достаточно большом импульсе. Из аналогии между камнем и ударной волной можно сделать вывод, что волна обладает импульсом и переносит импульс через пространство. Это свойство характерно для волн любой природы.

Помимо импульса, волны обладают энергией и переносят энергию через пространство. То, что электромагнитная волна, приходящая к нам от Солнца, снабжает нас энергией, необходимой для жизни, вы, конечно, знаете. Однако энергией обладают любые волны. В последнее время, например, ведутся активные работы по использованию энергии морских волн для производства электроэнергии.

Волны и частицы обладают некоторыми общими свойствами. Волна любой природы переносит энергию и импульс через пространство

  • Что общего у волн и частиц?
  • Приведите примеры приборов, отличных от призмы, разлагающих волну в спектр.
  • Проведите простейший эксперимент: направьте луч солнца, отраженный от компакт-диска, на белый экран. Что вы наблюдаете? Как объяснить результат наблюдения?

Источник

Естествознание, 10 класс

Урок 39. Свойства волн

Перечень вопросов, рассматриваемых в теме:

  • Что понимают под волнами;
  • Какие бывают волны;
  • Где в природе наблюдаются волны;
  • Что такое электромагнитные волны;
  • Как проявляются в жизни ЭМВ различных диапазонов;

Глоссарий по теме:

Волна – распространение колебаний в пространстве

Длина волны – расстояние, пройденное волной за время равное периоду

Частота – число колебаний за единицу времени

Период – время одного полного колебания

Амплитуда – максимальное смещение от положения равновесия

Монохроматические волны – «Одноцветные» – волна, изменяющаяся во времени и пространстве по синусоидальному закону

Интерференция – наложение волн, за счет которого происходит взаимоусиление или взаимогашение их.

Дифракция – огибание волнами препятствий

Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):

Список литературы

  • Естествознание. 10 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд., испр. – М.: Просвещение, 2017. – §55, С. 166-168.
  • Физика. 11 класс [Текст]: учебник для общеобразоват. учреждений: базовый уровень; профильный уровень/А.В. Грачев, В.А. Погожев, А.М. Салецкий и др.- Вентана-Граф, 2011

Открытые электронные ресурсы по теме урока (при наличии);

Теоретический материал для самостоятельного изучения

Каждый человек хоть раз в жизни кидал камешки в воду, не обращая внимания на круги, которые они оставляют. Так давайте с помощью этой «забавы» понаблюдаем за волнами и попытаемся разобраться в их природе и свойствах.

Наблюдая за волной от брошенного камня, можно сделать вывод, что форма волны изменяется по мере распространения волны, на большом расстоянии волна сглаживается и пропадает. Это свойство характерно для волн любой природы.

Рассматривая на прошлом уроке шкалу электромагнитных волн, мы говорили, что видимый свет это полихроматическая волна, которая включает в себя спектр цветов от красного к фиолетовому.

Сегодня мы рассмотрим монохроматические волны. И начнем с таких их характеристик, как период, частота, амплитуда и длина волны.

Какие свойства характерны для волн

Период – это время одного полного колебания. Период колебаний вычисляется по формуле

Какие свойства характерны для волн;

[T] = секунда.

Частота – число колебаний за единицу времени. Частота вычисляется по формуле

Какие свойства характерны для волн;

[ν] = Герц.

Амплитуда – максимальное смещение от положения равновесия.

Читайте также:  Какие свойства у тюльпана кроме цвета окружающий мир

Длина волны – расстояние, пройденное волной за время, равное периоду.

Какие свойства характерны для волн

[λ] = метр.

А теперь, рассмотрим свойства волн: интерференцию и дифракцию.

Интерференция – это явление взаимоусиления либо взаимогашения двух или более волн. Условием интерференции является когерентность и синфазность волн. То есть, у волн должна быть одинаковая длина волны и одинаковая во времени разность фаз.

Дифракция – это явление огибания волнами препятствий, которое происходит только тогда, когда препятствие меньше или равно длине волны. Длину световой волны можно определить с помощью дифракционной решетки.

Волны и частицы обладают некоторыми общими свойствами. Волна любой природы переносит энергию и импульс через пространство.

В заключении отметим, что энергией обладают любые волны. В последнее время, например, ведутся активные работы по использованию энергии морских волн для производства электроэнергии.

Текст задания 1:

Установите последовательность по возрастанию длины волны электромагнитных волн:

Варианты ответов:

  1. Рентгеновское излучение
  2. Видимый свет
  3. Гамма-излучение
  4. Радиоволны

Правильные варианты:

  1. Гамма-излучение
  2. Рентгеновское излучение
  3. Видимый свет
  4. Радиоволны

Текст задания 2:

Вставьте пропущенные слова, выбирая из списка правильные ответы:

Волна любой природы переносит __________ и ________ через пространство

Варианты ответов:

частицы, импульс, поля, энергию.

Правильный вариант: импульс, энергию или энергию, импульс

Источник

Анонимный вопрос

18 января 2019  · 3,3 K

к.п.н., широкий круг интересов

Основными свойствами механических волн являются:

отражение и преломление – изменение направления волнового фронта на границе двух сред

интерференция – изменение амплитуды результирующей волны при сложении двух или нескольких когерентных волн;

дифракция – отклонение направления распространения волны от прямолинейного направления у границы преграды;

дисперсия – зависимость скорость распространения волны в среде от частоты;

поляризация – выделение одной из плоскости колебания поперечной волны.

Если цвет – это электромагнитная волна, то что ее излучает? Как и чем живые и неживые объекты производят эти волны?

Researcher, Institute of Physics, University of Tartu

Цвет – это не электромагнитные волны. Цвет – это результат неполного поглощения электромагнитных волн видимого диапазона. Источником этих волн являются источники света. В первую очередь – солнце, ну, и всякие лампочки. Эти источники в большинстве случаев излучают более менее белый свет, то есть свет, покрывающий весь видимый диапазон длин волн, причем интенсивность излучения на каждой из этих длин волн более менее одинаковая (в первом приближении, на самом деле для искуственных источников света это часто совсем не так, но тем не менее).
Когда такой белый свет попадает на какой-то непрозрачный предмет, то он может быть частично или полностью поглощен. Остальная часть света рассеется. Многие материалы в видимом диапазоне поглощают очень неравномерно, то есть в некоторой части спектра поглощение интенсивное, а в некоторой – наоборот, его почти нет. Тогда получается ситуация, при которой рассеянный свет от предмета (тот, что не поглотился) уже не будет белым, то есть, интенсивность на разных длинах волн будет разная, там где хорошее поглощение будет маленькая интенсивность, где плохое – в сумме примерно как у падающего света. Это и есть цвет. Мы видим предмет окращенным в цвет дополнительный к тому, который он поглотил. Можно погуглить таблицу дополнительных цветов из которой видно, в какой части видимого спектра предмет должен поглощать, чтобы выглядеть окрашенным в тот или иной цвет.

Прочитать ещё 1 ответ

По Эйнштейну, чем ближе тело или частица к скорости света, тем огромнее становится его масса. И вот,в Большом адронном коллайдере, протоны и ионы, движутся почти со скоростью света, и что это значит?

Сусанна Казарян, США, Физик

Релятивистской массы нет в природе и, согласно релятивистской механике Эйнштейна, масса остаётся инвариантной и равной массе покоя всегда, независимо от скорости (недоверчивым сюда).

Темп роста энергии частицы (E) с ростом скорости β = v/c (в единицах скорости света c) получен мною здесь. Если тело обладало скоростью β₁ = 0,9 при энергии Е₁, то для достижения скорости β₂ = 0,9…999 (n девятoк после запятой), потребуется энергия E₂ = (3,16)ⁿ⁻¹⋅Е₁. Получается, что с каждой новой девяткой в величине скорости (β), энергия должна быть увеличена в 3,16 раз. Таким образом, неограниченный рост числа девяток (n) в численном значении скорости (β), приводит к неограниченному росту энергии.

Mаксимальная скорость зарегистрированного материального объекта (протона), ускоренного до околосветовых скоростей в космическом пространстве, равна β = 0,9…999 (всего 23 девятки), а соответствующая энергия, E ~ 10¹¹ ГэВ. Области в галактиках и механизмы ускорения до этих скоростей пока неизвестны. Максимальные энергии столкновения протонов, достигнутые на ускорителе БАК (LHC) в ЦЕРН, равны 1,3×10⁴ ГэВ, что в системе отсчёта неподвижной мишени соответствует энергии протона = 9×10⁷ ГэВ или скорости протона β = 0,999 999 999 999 9999 (16 девяток). В обоих случаях масса протона остаётся неизменной и равной массе покоя, 0.938 ГэВ.

Согласно релятивистской механике, со скоростью света (β = 1) могут лететь только безмассовые частицы (фотоны), но и у них есть недостаток − они не могут лететь медленнее.

Читайте также:  Какие свойства кислот характерны для всех карбоновых кислот

Прочитать ещё 9 ответов

Какие физические величины влияют на скорость распространения волны?

Мои интересы: разнообразны, но можно выделить следующие: литература, история…

Скорость распространения зависит от длины волны и частоты волны. Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней. Частота волны – число полных колебаний или циклов волны, совершенных в единицу времени.

Какова природа электромагнитных волн?

Вы замахиваетесь на вопрос, ответ на который может стать новой эпохой в познании нашего мира. С одной стороны, электромагнитные волны – это решение уравнений Максвелла в виде распространяющихся в пространстве совместных синусоидальных возмущений электрического и магнитного полей. С другой стороны, это поток корпускул, имеющих массу и импульс, то есть фотонов эл.-магнитного излучения. В целом это проявление электромагнитного взаимодействия – одного из четырёх известных фундаментальных взаимодействий. А какова природа этих фундаментальных взаимодействий – это мы пока можем только догадываться.

Впрочем, такое положение вещей не мешает активно изучать свойства электромагнитных волн и успешно их использовать в практических целях.

Как максимально простыми словами объяснить явления электромагнитных волн, дисперсии, дифракции и интерференции?

Бродяга по жизни, бандит по нужде,
кайфарик по масти, романтик в душе.

Я за физику не особо дыбаю, но кое чего смогу пояснить.
Вот предположим по району двигаешься ты, а тебе в след орут: “Слыш, пидрила!” И тут вроде как нужно честь отстоять и в грязь лицом не упасть, вот тут физика на помощь и приходит.

Ты должен им в ответ крикнуть слово в слово, но не торопись, это я без негатива конкретно к тебе, ты слушай дальше, при наложении двух или нескольких когерентных волн происходит усиление или ослабление волны результирующей, ну тут зависит от соотношения фаз на самом деле, вот это и есть интерференция. 

Обнял.

Прочитать ещё 1 ответ

Источник

С волнами любого происхождения при определённых условиях можно наблюдать четыре ниже перечисленных явления, которые мы рассмотрим на примере звуковых волн в воздухе и волн на поверхности воды.

Отражение волн. Проделаем опыт с генератором тока звуковой частоты, к которому подключён громкоговоритель (динамик), как показано на рис. «а». Мы услышим свистящий звук. На другом конце стола поставим микрофон, соединённый с осциллографом. Поскольку на экране возникает синусоида с малой амплитудой, значит, микрофон воспринимает слабый звук.

Расположим теперь сверху над столом доску, как показано на рис.«б». Поскольку амплитуда на экране осциллографа возросла, значит, звук, доходящий до микрофона, стал громче. Этот и многие другие опыты позволяют утверждать, что механические волны любого происхождения обладают способностью отражаться от границы раздела двух сред.

Преломление волн. Обратимся к рисунку, где изображены волны, набегающие на прибрежную мель (вид сверху). Серо-жёлтым цветом изображён песчаный берег, а голубым – глубокая часть моря. Между ними есть песчаная мель – мелководье.

Волны, бегущие по глубокой воде, распространяются в направлении красной стрелки. В месте набегания на мель волна преломляется, то есть изменяет направление распространения. Поэтому синяя стрелка, указывающая новое направление распространения волны, расположена иначе.

Это и многие другие наблюдения показывают, что механические волны любого происхождения могут преломляться при изменении условий распространения, например, на границе раздела двух сред.

Дифракция волн. В переводе с латинского «дифрактус» означает «разломанный». В физике дифракцией называется отклонение волн от прямолинейного распространения в одной и той же среде, приводящее к огибанию ими препятствий.

Взгляните теперь на другой рисунок волн на поверхности моря (вид с берега). Волны, бегущие к нам издалека, заслоняются большой скалой слева, но при этом частично огибают её. Скала меньших размеров справа и вовсе не является преградой для волн: они полностью её огибают, распространяясь в прежнем направлении.

Опыты показывают, что дифракция наиболее отчётливо проявляется, если длина набегающей волны больше размеров препятствия. Позади него волна распространяется так, как будто препятствия не было.

Интерференция волн. Мы рассмотрели явления, связанные с распространением одной волны: отражение, преломление и дифракцию. Рассмотрим теперь распространение с наложением друг на друга двух или более волн – явление интерференции (от лат. «интер» – взаимно и «ферио» – ударяю). Изучим это явление на опыте.

К генератору тока звуковой частоты присоединим два динамика, соединённые параллельно. Приёмником звука, как и в первом опыте, будет микрофон, подключённый к осциллографу.

Начнём двигать микрофон вправо. Осциллограф покажет, что звук становится то слабее, то сильнее, несмотря на то, что микрофон удаляется от динамиков. Вернём микрофон на среднюю линию между динамиками, а затем будем двигать его влево, снова удаляя от динамиков. Осциллограф вновь покажет нам то ослабление, то усиление звука.

Этот и многие другие опыты показывают, что в пространстве, где распространяются несколько волн, их интерференция может приводить к возникновению чередующихся областей с усилением и ослаблением колебаний.

Источник