Какие свойства характерны для вирусов

Какие свойства характерны для вирусов thumbnail
Сходство с живыми организмами Отличия от живых организмов Специфические черты, характерные только для вирусов
1.способность воспроизводить себе подобные формы (размножаться)
2.обладают наследственностью
3. изменчивость
4. приспосабливаются к изменяющимся условиям среды
1.не проявляют свойства живого
2.не потребляют пищи
3. не вырабатывают энергию
4. не растут
5. нет обмена веществ
6.имеют форму кристаллов, не имеют клеточного строения, т.е. нет цитоплазматической мембраны и цитоплазмы с органоидами
1.очень маленькие размеры
2.простое строение – нуклеиновая кислота (ДНК или РНК) заключенная в белковую оболочку – капсид
3.занимают пограничное положение между живой и неживой материей
4.высокая скорость размножения
5.наследственная информация находится в ДНК или РНК
6.вирусы – обязательные паразиты, вне клетки хозяина существуют в виде вирусной частицы или вириона

Вирусы – это автономные генетические структуры, которым присущи основные признаки живых организмов: размножение, изменчивость и наследственность. С другой стороны вирусы не имеют важных свойств живого – они не питаются, не растут, нет обмена веществ и не способны к самостоятельному размножению вне клетки хозяина. Отличаются от всех организмов тем, что имеют белковую оболочку – капсид, а внутри саркофага заключена наследственная информация в виде нитей ДНК или РНК.

Классификация вирусов.

Все вирусы условно разделяют на две группы:

1. простые 2. сложные.

Простые состоят из нуклеиновой кислоты (ДНК или РНК) и покрывающей их белковой оболочки (капсид), например вирус табачной мозаики. Сложные вирусы на поверхности капсида имеют еще внешнюю оболочку – мембрану, содержащую липиды, белки и углеводы, например вирус гриппа и герпеса.

По наличию той или иной нуклеиновой кислоты вирусы называют ДНК-содержащими или РНК-содержащими. ДНК-содержащие – в них присутствует молекула ДНК в виде цепочки или кольца, хранящая наследственную информацию – это вирусы оспы человека, овец, свиней и герпеса. РНК-содержащие – в них находится цепочка РНК хранительница генетической информации. Это вирусы бешенства, энцефалита, краснухи, кори, СПИДА, лейкоза и гриппа. Некоторые вирусы вообще могут не иметь оболочки.

Как же вирусы попадают в клетки и как ведут себя, проникая в клетки других организмов?

Вирусы попадают внутрь клетки вместе с капельками межклеточной жидкости. Каждый вирус способен проникнуть лишь к определенным клеткам, имеющим на своей поверхности специальные рецепторы. Затем начинается проникновение в клетку хозяина. Помогают проникнуть вирусам в клетку механические повреждения клеточной стенки или мембраны, а так же возможен способ пиноцитоза и фагоцитоза. В отличие от клеточных организмов у вирусов отсутствует собственная система, синтезирующая белки. Вирусы попадая в клетку вносят свою генетическую информацию. Проникая в клетку, вирус изменяет в ней обмен веществ, направляя всю деятельность на производство вирусной нуклеиновой кислоты и вирусных белков. Внутри клетки происходит самосборка вирусных частиц из образованных молекул нуклеиновой кислоты и белков. Накопление вирусных частиц приводит к выходу их из клетки путем «взрыва», в результате чего целостность клетки нарушается и она гибнет, а вирусы начинают проникать в другие клетки.

Таким образом, вирусы являются внутриклеточными паразитами на генетическом уровне, как набор генов, бездействуют, пока не найдет себе пристанище в живой клетке.

Вирусы поражают все живые организмы – растения, животных и человека и вызывают заболевания.

В настоящее время описано более 1 000 различных видов вирусов. Вирусы как возбудители заболеваний человека, животных и растений известны с глубокой древности.

В 1916 году канадский бактериолог Феликс Д’Эрелем описал вирусы бактерий – бактериофаги. Они стали важнейшим объектом исследования в молекулярной биологии. Бактериофаги или фаги, способны проникать в клетки бактерий и разрушать их. Вирусы бактерий имеют головку, содержащую ДНК и хвостовую часть с хвостовыми нитями. Бактериофаги напоминают по своему строению шприц. Фаг частично растворяет клеточную стенку и мембрану бактерии, вводит полый стержень в клетку и за счет сократительной реакции впрыскивает свою ДНК в ее клетку. Геном бактериофага попадает в цитоплазму, а оболочка остается снаружи. Молекула ДНК вирусов может встраиваться в геном клетки хозяина и существовать так долгое время.

Встречаются более 500 видов вирусов у животных, вызывающих такие болезни как ящур, чуму свиней и птиц, инфекционную анемию лошадей, птичий и свиной грипп и другие. Вирус ящура распространяется со скоростью цепной реакции, способен разрушить животноводство в масштабе целой страны. Подобная катастрофа наблюдалась в конце 2000 года в Великобритании, когда вирус ящура поразил крупный рогатый скот в этой стране. В настоящее время от вируса птичьего гриппа погибает огромное количество диких и домашних птиц во многих странах мира.

Читайте также:  Какими свойствами охарактеризовать объекты ручка для письма

Известно более 300 видов вирусов, вызывающих болезни у растений, такие как мозаичная болезнь табака, томатов, огурцов, скручивание листьев, карликовость и другие.

Более 500 видов вирусов могут вызывать разнообразные инфекционные заболевания человека, такие как грипп, свинку, полиомиелит, бешенство, корь, СПИД и многие другие. В прошлые века вирусные инфекции носили характер опустошительных эпидемий и пандемий, охватывающих огромные территории. В Москве в XIII веке оспа уничтожила почти 80% населения. Вирусы герпеса поражают кожные покровы человека. Чаще всего он проявляется при простуде на губах. В состоянии покоя вирус герпеса может долго находиться в клетках и ждать своего часа. Заболевания вирусной природы распространены и в настоящее время.

Поселяясь в клетках живых организмов, вирусы вызывают многие опасные заболевания. Многие успехи вирусологии достигнуты в борьбе с конкретными болезнями – оспой, клещевым энцефалитом, бешенством, желтой лихорадкой и другими болезнями. Перед человечеством стоит множество вирусологических проблем и для их решения требуется знания разнообразных свойств и «повадок» вирусов.

Вирусные заболевания передаются двумя путями: при непосредственном контакте (контагиозный) и воздушно – капельным путем. В результате непосредственного физического контакта с больными людьми или животными передаются немногие болезни. К таким вирусным болезням относят, например трахому – болезнь глаз, очень распространенную в тропических странах, обычные бородавки и обыкновенный герпес.

Капельная инфекция – самый обычный способ распространение респираторных заболеваний. При кашле или чихании в воздух выбрасываются миллионы маленьких капелек слюны и слизи. Эти капли вместе с находящимися в них живыми микроорганизмами могут вдохнуть другие люди и заболеть. Гигиенические требования для защиты от капельной инфекции – пользование носовым платком и повязкой, а так же соблюдение санитарной чистоты.

Некоторые микроорганизмы, такие как вирус оспы, очень устойчивы к высыханию и сохраняются в пыли, содержащей высохшие остатки капель.

Некоторые опасные вирусы получили свое распространение в последние годы, такие как СПИД, грипп и разные его разновидности.

СПИД

В 1981 году появилось новое, ранее не известное науке заболевание, получившее название – синдром приобретенного иммунодефицита человека – сокращенно СПИД. Возбудитель СПИДа является вирус иммунодефицита человека – ВИЧ. Он имеет сферическую форму, диаметром от 100 – 150 нм. Наружная оболочка вируса состоит из мембраны, образованной из клеточной мембраны клетки-хозяина. В мембрану встроены рецепторные образования, напоминающие по внешнему виду грибы. Под наружной оболочкой располагается капсид вируса, образованный особыми белками, внутри которого находятся две молекулы вирусной РНК. Каждая молекула РНК содержит 9 генов ВИЧ и фермент, синтезирующий ДНК с молекулы вирусной РНК.

В первую очередь ВИЧ поражает Т – лимфоциты крови (хелперы), на поверхности которых есть рецепторы, способные связываться с белками ВИЧ. Т-лимфоциты крови обеспечивают человеку клеточный и гуморальный иммунитет. ВИЧ проникает в клетки центральной нервной системы, кишечника, клетки нейроны. В результате организм человека утрачивает свои защитные свойства и оказывается не в состоянии противостоять возбудителям разных инфекций. Средняя продолжительность жизни инфицированного человека составляет 7 – 10 лет.

Источником заражения СПИДом является человек – носитель вируса иммунодефицита. Это может быть больной с различными проявлениями болезни или бессимптомный вирусоноситель. СПИД передается только от человека к человеку такими способами: 1. половым путем 2. через кровь и ткани, содержащие вирус 3. от матери к плоду. ВИЧ может попасть в организм при сексуальном контакте с больным человеком, при введении внутривенно наркотиков, при переливании крови от зараженного донора. Известны случаи заражения детей во время родов и через молоко больной матери.

Несмотря на то, что вирус СПИДа обнаруживается в секретах человеческого тела (в слюне, слезе, молоке), однако нет доказательств передачи его при бытовом контакте.

В последние годы наблюдается рост количества ВИЧ – инфицированных людей в России. Преобладающее их число составляет молодежь. Проблема борьбы со СПИДом остается одной из главных для общества, для здравоохранения.

Источник

Вирусы — это микроскопические патогены, заражающие клетки живых организмов для самовоспроизводства. Они состоят из одного вида нуклеиновой кислоты (или ДНК или РНК, но не обе вместе), которая защищена оболочкой, содержащей белки, липиды, углеводы или их комбинацию. Размер типичного вируса варьируется от 15 до 350 нм, поэтому его можно увидеть только с помощью электронного микроскопа.

В 1892 году русский ученый Д.И. Ивановский впервые доказал существование ранее неизвестного типа возбудителя болезней, это был вирус мозаичной болезни табака. А в 1898 году Фридрих Лоффлер и Пол Фрош нашли доказательства того, что причиной ящура у домашнего скота была инфекционная частица, которая меньше, чем любая бактерия. Это были первые шаги к изучению природы вирусов, генетических образований, которые лежат где-то в серой зоне между живыми и неживыми состояниями материи. На текущий момент описано около 6 тыс. вирусов, но их существует несколько миллионов.

Читайте также:  Какими свойствами обладает эфирное масло чайного дерева

Строение вирусов

Вне клеток-хозяев вирусы существуют в виде белковой оболочки (капсида), иногда заключенного в белково-липидную мембрану. Капсид обволакивает собой либо ДНК, либо РНК, которая кодирует элементы вируса. Находясь в такой форме вне клетки, вирус метаболически инертен и называется вирионом.

Строение вируса

Простая структура, отсутствие органелл и собственного метаболизма позволяет некоторым вирусам кристаллизоваться, т.е. они могут вести себя подобно химическим веществам. С появлением электронных микроскопов было установлено, что их кристаллы состоят из тесно прижатых друг к другу нескольких сотен миллиардов частиц. В одном кристалле вируса полиомиелита столько частиц, что ими можно заразить не по одному разу всех жителей Земли.

Формы вирусов

Вирусы встречаются в трех основных формах. Они бывают:

  1. Сферическими (кубическими или полигидральными). Вирусы герпеса, типулы, полиомы и т.д.
  2. Спиральными (цилиндрическими или стержнеобразными). Вирусы табачной мозаики, гриппа, эпидемического паротита и др.
  3. Сложными. Например, бактериофаги.

Сфера, спираль и сложная ассиметричная формы вирусов (ПостНаука/YouTube)

Проникновение вирусов в клетку-хозяина

Капсид в основном защищает нуклеиновую кислоту от действия клеточного нуклеазного фермента. Но некоторые белки капсида способствуют связыванию вируса с поверхностью клеток-хозяев, и работают, как ключики, вставляемые в нужные замочки. Другие поверхностные белки действуют как ферменты, они растворяют поверхностный слой клетки-хозяина и таким образом помогают проникновению нуклеиновой кислоты вируса в клетку-хозяина.

Вирусные популяции используют механизмы и метаболизм клетки-хозяина, чтобы произвести множество своих копий, которые собираются в клетке, пока не «выжмут из нее все соки», а затем выходят из погибшей клетки. Это наиболее частый сценарий, но не единственный.

Жизненный цикл вирусов сильно отличается у разных видов, но существует шесть основных этапов жизненного цикла вирусов:

  1. Прикрепление
  2. Проникновение
  3. Сброс капсида («раздевание»)
  4. Репликация
  5. Сборка
  6. Выход из клетки

Присоединение к клетке-хозяину представляет собой специфическое связывание между вирусными капсидными белками и рецепторами на клеточной поверхности. Эта специфика определяет хозяина вируса.

Проникновение следует за прикреплением: вирионы проникают в клетку-хозяина через рецептор-опосредованный эндоцитоз или слияние мембран. Это часто называют вирусной записью.

Проникновение вирусов в клетку достигается за счет:

  • Образования пор
  • Слияния мембран
  • Ретракции пилуса
  • Выброса
  • Проницаемости
  • Механизмов эндоцитоза

Мембраны растительных и грибковых клеток отличаются от мембран животных клеток. Растения имеют жесткую клеточную стенку из целлюлозы, а грибы – из хитина, поэтому большинство вирусов могут проникать внутрь этих клеток только после травмы («пробивания») клеточной стенки. Бактерии, как и растения, имеют прочные клеточные стенки, которые вирус должен разрушить, чтобы заразить клетку. Учитывая, что бактериальные клеточные стенки намного тоньше стенок растительных клеток из-за их гораздо меньшего размера, некоторые вирусы выработали механизмы ввода своего генома в бактериальную клетку через клеточную стенку, оставляя вирусный капсид снаружи. У прокариот происходит слияние мембран, образование пор через прокалывающее устройство.

Размножение вирусов

После того, как вирусный геном освобождается от капсида, начинается его транскрипция или трансляция. Именно эта стадия вирусной репликации сильно различается между ДНК- и РНК-вирусами и вирусами с противоположной полярностью нуклеиновой кислоты. Этот процесс завершается синтезом новых вирусных белков и генома (точных копий внедрённых).

Механизм репликации зависит от вирусного генома.

  • ДНК-вирусы обычно используют белки и ферменты клетки-хозяина для получения дополнительной ДНК, она транскрибируется в РНК-мессенджер (мРНК), которая затем используется для управления синтезом белка.
  • РНК-вирусы обычно используют ядро ​​РНК в качестве матрицы для синтеза вирусной геномной РНК и мРНК. Вирусная мРНК направляет клетку-хозяина на синтез вирусных ферментов и капсидных белков и сборку новых вирионов. Конечно, есть исключения из этого шаблона. Если клетка-хозяин не обеспечивает ферменты, необходимые для репликации вируса, вирусные гены предоставляют информацию для прямого синтеза отсутствующих белков.

Чтобы преобразовать РНК в ДНК, вирусы должны содержать гены, которые кодируют вирус-специфический фермент обратной транскриптазы. Она транскрибирует матрицу РНК в ДНК. Обратная транскрипция никогда не происходит в неинфицированных клетках. Необходимый фермент, обратная транскриптаза, происходит только от экспрессии вирусных генов в инфицированных клетках.

После того, как процесс репликации «поставлен на поток», готовые копии вируса отпочковываются и заражают другие клетки-хозяина. Другим вариантом выхода вируса из клетки является лизис. В этом случае клетка разрывается, высвобождая копии вируса.

Читайте также:  Какими полезными свойствами обладает кедровое масло

Вироиды

Вироиды – это наименьшие из известных патогенов, они представляют собой голые круглые одноцепочечные молекулы РНК, которые не кодируют белок капсида, а реплицируются автономно при попадании в клетку растения-хозяина. Первый вироид был открыт в 1971 году, и он вызывает болезнь картофеля («веретенообразность» клубней). С тех пор было обнаружено 29 других вироидов длиной от 120 до 475 нуклеотидов.

Вироиды заражают только растения. Одни вызывают экономически важные заболевания сельскохозяйственных культур, в то время как другие являются доброкачественными. Двумя примерами экономически важных вироидов являются кокосный cadang-cadang (он вызывает массовую гибель кокосовых пальм) и вироид рубцовой кожицы яблок, который безнадежно портит товарный вид яблок.

30 известных вироидов были классифицированы в две семьи.

  • Члены семейства Pospiviroidae, названные по имени вироида клубневого веретена картофеля, имеют палочковидную вторичную структуру с небольшими одноцепочечными областями, имеет центральную консервативную область, и реплицируются в ядре клетки.
  • Avsunviroidae, названный в честь вироида авокадо, имеет как палочковидную, так и разветвленную области, но не имеет центральной консервативной области и реплицируется в хлоропластах растительной клетки.

В отличие от вирусов, которые являются паразитами механизма трансляции хозяина, вироиды являются паразитами клеточных транскрипционных белков.

Бактериофаги

Бактериофаги являются вирусами, которые заражают и используют для своего размножения бактерии. Эти вирусы были независимо обнаружены Фредериком У. Твортом в Великобритании (1915 г.) и Феликсом д’Эрелем во Франции (1917 г.). D’Hérelle ввел термин бактериофаг, означающий «пожиратель бактерий», чтобы описать бактерицидную способность открытого им инфекционного агента.

Характеристика бактериофагов

Существуют тысячи разновидностей фагов, каждый из которых может заразить только один тип или несколько близких типов бактерий или архей. Фаги классифицируются по ряду семейств вирусов; например:

  • Inoviridae
  • Microviridae
  • Rudiviridae
  • Tectiviridae и т.д.

Как и все вирусы, фаги являются простыми организмами, которые состоят из ядра генетического материала (нуклеиновой кислоты), окруженного капсидом белка. Нуклеиновая кислота может представлять собой либо ДНК, либо РНК, и может быть двухцепочечной или одноцепочечной.

Существует три основных структурных формы фага:

  1. Икосаэдрическая (20-сторонняя) головка с хвостом
  2. Икосаэдрическая головка без хвоста
  3. Нитевидная форма

Вирулентные и умеренные фаги

Во время заражения фаг прикрепляется к бактерии и вставляет в нее свой генетический материал. После этого фаг обычно следует одному из двух жизненных циклов: литическому (вирулентному) или лизогенному (умеренному).

Литические, или вирулентные, фаги захватывают механизм клетки, чтобы скопировать компоненты фага. Затем они разрушают или лизируют клетку, высвобождая новые частицы фага.

Лизогенные, или умеренные, фаги включают свою нуклеиновую кислоту в хромосому клетки-хозяина и реплицируются с ней как единое целое, не разрушая клетку. При определенных условиях лизогенные фаги могут индуцироваться в соответствии с литическим циклом.

Существуют и другие жизненные циклы, в т.ч. псевдолизогенез и хроническая инфекция. При псевдолизогении бактериофаг проникает в клетку, но не использует механизм репликации клеток и не интегрируется в геном хозяина, просто как бы прячется внутри бактерии, не нанося ей никакого вреда. Псевдолизогенез возникает, когда клетка-хозяин сталкивается с неблагоприятными условиями роста и, по-видимому, играет важную роль в выживании фага, обеспечивая сохранение генома фага до тех пор, пока условия роста хозяина снова не станут благоприятными.

При хронической инфекции новые фаговые частицы образуются непрерывно и длительно, но без явного уничтожения клеток.

Фаговая терапия

Вскоре после открытия фаги начали использовать для лечения бактериальных заболеваний человека, таких как бубонная чума и холера. Но фаговая терапия тогда не была успешной, и после открытия антибиотиков в 1940-х годах она была практически заброшена. Однако с появлением устойчивых к антибиотикам бактерий терапевтическому потенциалу фагов уделяется все больше внимания.

Наше время с антибиотиками заканчивается. В 2016 году женщина в штате Невада умерла от бактериальной инфекции, вызванной Klebsiella pneumoniae, которая была устойчивой ко всем известным антибиотикам. Бактерии, устойчивые к колистину, антибиотику последней инстанции, были обнаружены на свинофермах в Китае. В настоящее время бактерии приспосабливаются к антибиотикам быстрее, чем когда-либо.

Тем временем ученым требуется десять или более лет, чтобы разработать новый антибиотик и получить разрешение на его применение. В итоге мы проигрываем бактериям в этой «гонке вооружений». Человечеству срочно нужен альтернативный метод борьбы с бактериальными инфекциями. Одним из самых перспективных методов уничтожения бактерий является использование бактериофагов: вирусов, которые заражают и убивают бактерии.

Источник