Какие свойства характерны для веществ с ионной кристаллической решеткой

Какие свойства характерны для веществ с ионной кристаллической решеткой thumbnail

Ионными называют кристаллические решетки, в узлах которых находятся ионы. Их образуют вещества с ионной связью. Ионные кристаллические решётки имеют соли, некоторые оксиды и гидроксиды металлов. Рассмотрим строение кристалла поваренной соли, в узлах которого находятся ионы хлора и натрия.

Связи между ионами в кристалле очень прочные и устойчивые.Поэтому вещества с ионной решёткой обладают высокой твёрдостью и прочностью, тугоплавки и нелетучи.

Вещества с ионной кристаллической решеткой обладают следующими свойствами:

1. Относительно высокой твердостью и прочностю;

2. Хрупкостью;

3. Термостойкостью;

4. Тугоплавкостью;

5. Нелетучестью.

Примеры: соли – хлорид натрия, карбонат калия, основания – гидрооксид кальция, гидрооксид натрия.

4. Механизм образования ковалентной связи (обменный и донорно-акцепторный).

Каждый атом стремится завершить свой внешний электронный уровень, чтобы уменьшить потенциальную энергию. Поэтому ядро одного атома притягивается к себе электронную плотность другого атома и наоборот, происходит наложение электронных облаков двух соседних атомов.

Демонстрация аппликации и схемы образования ковалентной неполярной химической связи в молекуле водорода. (Учащиеся записывают и зарисовывают схемы).

Вывод: Связь между атомами в молекуле водорода осуществляется за счет общей электронной пары. Такая связь называется ковалентной.

Прочитать стр. 33 в учебнике и записать определение.

Какую связь называют ковалентной неполярной? (Учебник стр. 33).

Составление электронных формул молекул простых веществ неметаллов:

•• ••

•• CI •• CI •• – электронная формула молекулы хлора,

•• ••

CI — CI – структурная формула молекула хлора.

••

•• N •• N •• – электронная формула молекулы азота,

••

N ≡ N – структурная формула молекулы азота.

Электроотрицательность. Ковалентные полярная и неполярная связи. Кратность ковалентной связи.

Но молекулы могут образовывать и разные атомы неметаллов и в этом случае общая электронная пара будет смещаться к более электроотрицательному химическому элементу.

Изучить материал учебника на стр. 34

Вывод: Металлы имеют более низкое значение электроотрицательности, чем неметаллы. И между ними она сильно отличается.

Демонстрация схемы образования полярной ковалентной связи в молекуле хлороводорода.

Общая электронная пара смещена к хлору, как более электроотрицательному. Значит это ковалентная связь. Она образована атомами, электроотрицательности которых несильно отличаются, поэтому это ковалентная полярная связь.

Составление электронных формул молекул йодоводорода и воды:

••

H •• J •• – электронная формула молекулы йодоводорода,

••

H → J – структурная формула молекулы йодоводорода.

••

H •• O •• – электронная формула молекулы воды,

••

H

Н →О – структурная формула молекулы воды.

Н

Самостоятельная работа с учебником: выписать определение электроотрицательности.

Молекулярные и атомные кристаллические решетки. Свойства веществ с молекулярными и атомными кристаллическими решетками

Самостоятельная работа с учебником.

Вопросы для самоконтроля

– Атом, какого химического элемента имеет заряд ядра +11

– Записать схему электронного строения атома натрия

– Внешний слой завершен?

– Как добиться завершения заполнения электронного слоя?

– Составить схему отдачи электрона

– Сравнить строение атома и иона натрия

– Сравнить строение атома и иона инертного газа неона.

– Определить атом, какого элемента с количеством протонов 17.

– Запишите схему электронного строения атома.

– Слой завершен? Как этого добиться.

– Составить схему завершения электронного слоя хлора.

Задание по группам:

1-3 группа: Cоставьте электронные и структурные формулы молекул веществ и укажите тип связи Br2 ; NH3.

4-6 группы: Cоставьте электронные и структурные формулы молекул веществ и укажите тип связи F2 ; HBr.

Два ученика работают у дополнительной доски с этим же заданием для образца к самопроверке.

Устный опрос.

1. Дайте определение понятия «электроотрицательность».

2. От чего зависит электроотрицательность атома?

3. Как изменяется электроотрицательность атомов элементов в периодах?

4. Как изменяется электроотрицательность атомов элементов в главных подгруппах?

5. Сравните электроотрицательность атомов металлов и неметаллов. Отличаются ли способы завершения внешнего электронного слоя, характерные для атомов металлов и неметаллов? Каковы причины этого?

7. Какие химические элементы способны отдавать электроны, принимать электроны?

Что происходит между атомами при отдаче и принятии электронов?

Как называют частицы, образовавшиеся из атома в результате отдачи или присоединения электронов?

8. Что произойдет при встрече атомов металла и неметалла?

9. Как образуется ионная связь?

10. Химическая связь, образуемая за счет образования общих электронных пар называется …

11. Ковалентная связь бывает … и …

12. В чем сходство ковалентной полярной и ковалентной неполярной связи? От чего зависит полярность связи?

13. В чем различие ковалентной полярной и ковалентной неполярной связи?

ПЛАН ЗАНЯТИЯ № 8

Дисциплина: Химия.

Тема:Металлическая связь. Агрегатные состояния веществ и водородная связь.

Цель занятия: Сформировать понятие об химических связях на примере металлической связи. Добиться понимания механизма образования связи.

Планируемые результаты

Предметные: формировании кругозора и функциональной грамотности человека для решения практических задач; умение обрабатывать, объяснять результаты; готовность и способность применять методы познания при решении практических задач;

Метапредметные: использование различных источников для получения химической информации, умение оценить ее достоверность для достижения хороших результатов в профессиональной сфере;

Личностные: умение использовать достижения современной химической науки и химических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

Норма времени:2 часа

Вид занятия:Лекция.

План занятия:

1. Металлическая связь. Металлическая кристаллическая решетка и металлическая химическая связь.

2. Физические свойства металлов.

3. Агрегатные состояния веществ. Переход вещества из одного агрегатного состояния в другое.

4. Водородная связь

Оснащение: Периодическая система химических элементов, кристаллическая решетка, раздаточный материал.

Литература:

1. Химия 11 класс: учеб. для общеобразоват. организаций Г.Е. Рудзитис, Ф.Г. Фельдман. – М.:Просвещение, 2014. -208 с.: ил..

2. Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования / О.С.Габриелян, И.Г. Остроумов. – 5 – изд., стер. – М.: Издательский центр «Академия», 2017. – 272с., с цв. ил.

Преподаватель: Тубальцева Ю.Н.

Источник

Кристаллической решеткой называют пространственное расположение атомов или ионов в кристалле. Точки
кристаллической решетки, в которых расположены атомы или ионы, называют узлами кристаллической решетки.

Кристаллические решетки подразделяют на молекулярные, атомные, ионные и металлические.

Кристаллические решетки

Очень важно не перепутать вид химической связи и кристаллической решетки. Помните, что кристаллические решетки отражают
пространственное расположение атомов.

Молекулярная кристаллическая решетка

В узлах молекулярной решетки расположены молекулы. При обычных условиях молекулярную решетку имеют большинство газов и жидкостей.
Связи чаще всего ковалентные полярные или неполярные.

Классическим примером вещества с молекулярной решеткой является вода, так что ассоциируйте свойства этих веществ с водой. Вещества с
молекулярной решеткой непрочные, имеют небольшую твердость, летучие, легкоплавкие, способны к возгонке, для них характерны небольшие
температуры кипения.

Примеры: NH3, H2O, Cl2, CO2, N2, Br2, H2, I2.
Особо хочется отметить белый фосфор, ромбическую, пластическую и моноклинную серу, фуллерен. Эти аллотропные модификации мы
подробно изучили в статье, посвященной классификации веществ.

Молекулярная решетка

Ионная кристаллическая решетка

В узлах ионной решетки находятся атомы, связанные ионной связью. Этот тип решетки характерен для веществ, обладающих ионной связь: соли,
оксиды и гидроксиды металлов.

Ассоциируйте этот ряд веществ с поваренной солью – NaCl. Веществе с ионной решеткой имеют высокие температуры плавления и кипения, легко
растворимы в воде, хрупкие, твердые, их растворы и расплавы проводят электрический ток.

Примеры: NaCl, MgCl2, NH4Br, KNO3, Li2O, Na3PO4.

Ионная решетка

Металлическая кристаллическая решетка

В узлах металлической решетки находятся атомы металла. Этот тип решетки характерен для веществ, образованных металлической связью.

Ассоциируйте свойства этих веществ с медью. Они обладают характерным металлическим блеском, ковкие и пластичные, хорошо проводят
электрический ток и тепло, имеют высокие температуры плавления и кипения.

Примеры: Cu, Fe, Zn, Al, Cr, Mn.

Металлическая решетка

Атомная кристаллическая решетка

В узлах атомной решетки находятся атомы, связанные ковалентной полярной или неполярной связью.

Ассоциируйте эти вещества с песком. Они очень твердые, очень тугоплавкие (высокая температура плавления), нелетучие, прочные,
нерастворимы в воде.

Примеры: SiO2, B, Ge, SiC, Al2O3. Особенно хочется выделить: алмаз и графит (C), красный и черный фосфор (P).

Атомная решетка

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

По характеру структуры кристаллические решетки всех веществ относят к одному из четырех основных типов:

а) молекулярная решетка,

б) атомная,

в) ионная,

г) металлическая.

В основу этой классификации положен род структурных частиц (молекулы-атомы-ионы), находящихся в узлах кристаллической решетки.

Молекулярная решетка

В узлах молекулярной решетки находятся полярные или неполярные молекулы, связанные между собой слабыми силами межмолекулярного взаимодействия (силами Ван-дер-Ваальса). Молекулы в кристалле способны совершать незначительные колебания различного характера. Вещества с молекулярным типом решетки, например, органические вещества, кристаллы инертных газов и большинства неметаллов, сухой лед (СО2 тверд.) обладают малой твердостью, низкими температурами плавления и кипения. Эти характеристики объясняются тем, что при приложении незначительной  энергии межмолекулярные связи разрываются и кристалл разрушается с образованием отдельных молекул, что и наблюдается  при плавлении и при испарении кристаллов. Внутри отдельных молекул атомы связаны значительно более прочными связями (ковалентными полярными или неполярными). Эти связи разрушаются при более высокой температуре, и молекулы распадаются на составляющие их атомы (происходит термическая диссоциация).

Атомная решетка

В узлах атомной кристаллической решетки находятся атомы. Роль сил межмолекулярного взаимодействия здесь играют достаточно прочные ковалентные связи. Выделить из общей массы атомов один невозможно. Вещества с атомным типом кристаллической решетки (алмаз, бор, кремний, карборунд SiC, нитрид алюминия и другие) характеризуются очень большой твердостью, иногда сочетающейся с хрупкостью, нерастворимостью в обычных растворителях, очень высокими температурами плавления и кипения. Все связи в кристалле равноценны. При разрыве этих связей, достигаемом лишь при высокой температуре, кристалл диссоциирует на отдельные атомы: плавление, кипение и термическая диссоциация практически совпадают.

Ионная (координационная) решетка

В узлах ионной кристаллической решетки находятся чередующиеся положительные и отрицательные ионы, связанные между собой силами кулоновского взаимодействия. Особенностью этих сил является их ненасыщаемость. Это приводит к тому, что отдельный ион координирует вокруг себя несколько ионов противоположного заряда. Ионы в кристаллах совершают упорядоченные колебания. Энергия связей между противоположно заряженными ионами очень велика, и такие кристаллы, казалось бы, должны обладать наиболее высокой твердостью и высокими температурами плавления и кипения. На самом деле эти свойства у них ниже, чем у кристаллов с атомной структурой. Причина заключается в том, что наряду с силами притяжения в кристалле действуют силы отталкивания между одноименно заряженными ионами, причем соотношение этих сил приводит к определенному равновесному состоянию. Вещества с ионной решеткой растворимы в той или иной степени в полярных растворителях.

Металлическая решетка

В узлах металлической решетки находятся положительно заряженные ионы металлов, окруженные электронами. Эти электроны, связанные отчасти с ионами силами электростатического взаимодействия, являются «полусвободными», иначе говоря «не прикреплены» к отдельным ионам, а более или менее свободно перемещаются между ними. Этот «электронный газ» обусловливает типичные для металлов свойства: тепло- и электропроводность, серовато-серебристый (у большинства металлов) цвет, металлический блеск (отражательную способность), способность отражать радиоволны, пластичность, ковкость и в то же время достаточную прочность (результат обволакивания ионов «электронным газом»). Подходя к катиону металла, электроны образуют с ним на мгновение электронейтральную частицу, которая быстро разрушается и через мгновение такой же непрочный «атом» образуется с этим или другим электроном и другим ионом металла. Между «атомами» возникают мгновенные ковалентные связи. Это и приводит к возникновению особой металлической связи, промежуточной по характеру между ионной и ковалентной, качественно отличающейся от той и другой и наблюдаемой лишь в куске металла. Энергия электронов в металле недостаточна, чтобы они могли «оторваться» от катионов металла и самопроизвольно покинуть металлическую решетку. Но при подведении энергии извне выход электронов наблюдается: фотоэлектрический эффект, термоэлектронная эмиссия. Прочность и температуры плавления и кипения у металлов не всегда имеют промежуточные значения между этими же свойствами у веществ с атомными и ионными решетками. Это зависит от природы металла. Интересно, что заряд ионов в металлах не всегда отвечает номеру группы периодической системы, в которой металл находится. Например, в кристаллической решетке алюминия ионы имеют средний заряд +2. Это можно объяснить двумя способами:

а) все атомы алюминия отдали по два электрона в «электронный газ»;

б) все атомы отдали по три электрона, но в среднем одна треть образовавшихся ионов Al+3 снова образует «атомы», поэтому средний заряд всех структурных частиц +2.

Таким образом, металлическое состояние в упрощенном представлении подобно атомарному ввиду его суммарной электронейтральности; это сосуществование и взаимосвязь «атомов»-ионов-электронов.

Типы кристаллических решеток и свойства веществ

Тип кристаллической решетки

Структурные частицы кристалла

Характер связи между структурными частицами кристалла

Характер связи в молекулах

Примеры кристаллических веществ

Характерные свойства

1.

Молекулярная

Полярные молекулы – диполи

1. Электростатическое взаимодействие диполей.
2. Силы Ван-дер-Ваальса (средние)

Ковалентные полярные

HF, H2O, HCl, H2S, PCl3, NH3 (твердые)

Межмолекулярное взаимодействие средней силы.
Растворимы в полярных растворителях, малая термическая устойчивость, слабая электропроводность, летучесть средняя, слабые механические свойства.

Неполярные молекулыСилы Ван-дер-Ваальса (слабые)Ковалентные неполярные и ковалентные полярныеH2, Cl2, O2, N2, F2, СО2, SO3 (образованы молекулами симметричного строения)Межмолекулярное взаимодействие слабое.
Растворимы в неполярных растворителях, очень малая термическая устойчивость, очень слабая электропроводность, легкая летучесть (очень низкие температуры плавления и кипения), очень слабые механические свойства.

2.

Атомная

Атомы

Ковалентные связи

C, Si, SiC, AlN, ВеО (образованы элементами, среднее арифметическое номеров групп которых равно 4)

Нерастворимы в обычных растворителях, термически устойчивы, неэлектропроводны, температуры плавления и кипения очень высокие; твердые, но хрупкие, прочность связей между частицами очень высокая.

3.

Ионная

Ионы: катионы, анионы

1. Электростатическое взаимодействие.
2. Значительные силы Ван-дер-Ваальса.

CsF, KCl, CaF2, CsH, NaF,  ВаCl2

Растворимы в полярных растворителях, термическая устойчивость высокая, большая электропроводность в растворах и расплавах, высокие температуры плавления; вещества твердые, но хрупкие, прочность связей между частицами высокая.

4.

Металлическая

Катионы, «атомы», электроны

1. Электростатическое притяжение ионов и электронов.
2. Мгновенные ковалентные связи между «атомами».

Na, K, Cu, Zn, Fe, Pt, Pb

Растворимы в расплавленных металлах, термическая устойчивость различная, электропроводность высокая, температуры плавления и кипения лежат в широких пределах; вещества пластичные, твердость, как и прочность связей между частицами, различная.

Источник

Химическая связь — это взаимодействие атомов, осуществляемое путем обмена электронами.

Химическая связь подразделяется на

Внутримолекулярные 
Межмолекулярные

Характеристики химической связи
Длина связи – расстояние между ядрами атомов в молекуле; зависит от количества электронных уровней у каждого элемента.

Энергия связи – энергия, затрачиваемая на разрушение связи. Чем больше длина связи, тем меньше энергия.

Полярность молекулы определяется разностью электроотрицательностей атомов. Чем больше разность электроотрицательностей, тем больше полярность связи.

Ковалентная неполярная связь

Образуют атомы с одинаковой электроотрицательностью, чаще атомы одного и того же химического элемента (неметалла).Например:Cl2.Как образуется ковалентная неполярная связь?
Образуются общие электронные пары. Электронная пара принадлежит в равной мере обоим атомам.

Ковалентная полярная связь

Образуют атомы неметаллов с разной электроотрицательностью. Пример:HCl.

Ионная связь

Образуется между атомами металлов и неметаллов, т.е. между атомами резко отличающимися друг от друга по электроотрицательности.

Пример: NaCl Как образуется ионная связь?

!!!!!Обрати внимание: существуют вещества, в молекуле которых одновременно присутствуют и ионные, и ковалентные связи. Например, NaOH, KNO3.

Металлическая связь

Образуется в металлах или сплавах.

 Примеры: Fe

Как образуется металлическая связь?

Атомы металлов слабо удерживают свои внешние электроны. Поэтому эти электроны покидают свои атомы, превращая их в положительно заряженные ионы. Эти электроны передвигаются в пространстве между катионами металлов и удерживают их вместе.

Водородная связь

Связь между атомами водорода одной молекулы и сильно электроотрицательными элементами (O, N, F) другой молекулы.

Ван-Дер-Ваальсова связь

Это силы притяжения между молекулами.

Что такое кристаллическая решетка?
Это каркас вещества, который получится, если частицы вещества соединить линиями.

Ионная кристаллическая решетка

Ионными называют решётки, в узлах которых находятся ИОНЫ.

Свойства веществ с ионными кристаллическими решетками:

1) все вещества при обычных условиях твердые

2) хрупкие

3) имеют высокие температуры кипения и плавления

4) нелетучесть

5) многие растворимы в воде

6) расплавы и растворы проводят электрический ток

Металлические кристаллические решетки
Металлическими называют решётки, которые состоят из положительных ионов и атомов металла и свободных электронов.

Свойства веществ с металлическими кристаллическими решетками

1)Твердость

2)Электро- и теплопроводность

3)Металлический блеск

4)Ковкость, пластичность

Атомная кристаллическая решетка
Это кристаллические решётки, в узлах которых находятся отдельные атомы, соединенные ковалентными связями.

Свойства веществ с атомными решетками:

1) очень высокая твердость, прочность

2) очень высокая Тпл (алмаз 3500°С)

3) тугоплавкость

4) практически нерастворимы

5) нелетучесть

Примеры веществ атомного строения: углерод,алмаз, бор, оксид кремния.

Молекулярные кристаллические решетки
Это решётки, в узлах которых находятся молекулы, связанные слабым межмолекулярным взаимодействием.

Примеры веществ: газы, органические вещества, вода.

Свойства веществ с молекулярными решетками:

1) малая твердость, прочность

2) низкие Тпл и Ткип

3) при комнатной температуре обычно жидкости или газы

4) высокая летучесть

5) растворы и расплавы проводят электрический ток

Источник