Какие свойства характерны для твердых тел

Твердые тела обладают рядом специфических признаков и свойств. Они определяются различными параметрами и характерными чертами. В основе изучения этих свойств лежит познавательный процесс всего окружающего нас мира. Это входит в фундаментальные основы физики. Исследование сегодня проводятся не только на макроуровне, но и постигаются признаки привычных нам твердых тел, из которых состоит практически все вокруг.

Рисунок 1. Основные свойства твердых тел. Автор24 — интернет-биржа студенческих работ

Типы твердых тел

Все твердые тела делятся на два основных типа:

  • аморфные тела;
  • тела с кристаллической структурой.

Твердые тела состоят из многообразия бесконечных молекулярных связей. Без использования различных твердых тел, которые обладают отличными друг от друга специфическими свойствами невозможно сегодня представить себе развитие науки и техники. В настоящее время металлы и другие диэлектрики активно используются в электротехники, электронике различного уровня.

В основе такого оборудования лежат полупроводники, которые обладают уникальными свойствами, позволяющими совершать научно-технический прогресс ускоренными темпами. Это и различные магниты, сверхпроводники, иные новые материалы с полезными характеристиками. Поэтому изучение физики твердого тела напрямую связано с дальнейшим развитием науки и технологий.

Готовые работы на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Взаимодействие частиц порождают появление особенных свойств у твердых тел с кристаллической структурой внутреннего строения. Коллективные свойства электронов могут определять степень электропроводности различных твердых тел. Характер коллективного колебания атомов при взаимодействии определенной температурой позволяет говорить о способности к теплоемкости. Оно возникает в том случае, когда тела могут поглощать тепло в определенных пределах. Одни твердые тела более предрасположены к поглощению тепла и нагреваются сильнее, другие – нет.

В кристаллах внутренняя структура вещества предполагает наличие кристаллической решетки. В таких твердых телах молекулы или атомы выстраиваются совершенно определенным и упорядоченным образом в пространстве. Кристаллы имеют плоские грани, а также строгую периодичность расположения узлов и элементов всей конструкции. По-иному устроены твердые тела аморфного типа. Они состоят из большого и беспорядочного скопления атомов.

Кристаллические тела обладают свойствами анизотропности, что предполагает зависимость физических свойств от направления внутри кристалла. Все металлы имеют кристаллическую структуру, поэтому именно их человечество сегодня использует в качестве основного материала для строительства. Однако металлы в обычном своем состоянии не обнаруживают свойств анизотропности.

Есть случаи, когда одно и то же вещество может находиться в аморфном и кристаллическом состоянии.

Свойства аморфных тел

Аморфные твердые тела имеют признаки изотропности. Иными словами, физические свойства таких тел будут иметь одинаковые показатели по всем направления изучения. К таким телам часто относят стекло, смолу, леденцы. При определенном уровне внешних силовых воздействиях такие твердые тела преобразуются в иное состояние или приобретают иные признаки. К основным свойствам аморфных тел относят:

  • упругость;
  • текучесть.

Упругость при этом подобно основным параметрам всех твердых тел, а текучесть имеет признаки жидкости. Такие тела при кратковременном силовом физическом воздействии ведут себя как твердые тела, обладая упругостью. Однако при более сильных и активных воздействиях могут расколоться на части. Если взаимодействия происходят интенсивно и на протяжении большого количества времени, тогда твердые тела подвержены текучести.

Рисунок 2. Особые свойства твердых тел. Автор24 — интернет-биржа студенческих работ

Молекулы и атомы аморфных тел, как и в жидкостях имеют определенное время колебаний около положения равновесия. Время такого положения в отличие жидкости не такое большое, поэтому их по внутренним свойствам приближают к кристаллическим. Атомы не перестраиваются из одного положения в другое постоянно и надолго. Состояние равновесия атомов сохраняется практически без изменений. Аморфные тела при низких температурах полностью соответствуют свойствам твердых тел. Если температура стремится к повышению, связи на молекулярном уровне также изменяются. Эти тела приближенно напоминают свойства жидкостей.

Аморфные тела занимают промежуточное положение между кристаллическими твердыми телами и жидкостями. Их атомы или молекулы располагаются в относительном порядке. Если происходит понимание свойств указанных веществ, то можно создавать такие материалы, которые будут соответствовать определенным характеристикам и свойствам.

Пластичность и хрупкость

Существуют такие материалы, которые испытывают пластичные деформации при относительно небольшом воздействии внешних факторов. Свойства пластичности характерны для аморфных твердых тел. Если тело способно разрушаться при небольших деформациях, тогда стоит говорить о твердых телах со свойствами хрупкости. Это специфическое физическое свойство имеет более важное значение на практике, чем упругость и пластичность.

В качестве наиболее хрупких материалов можно привести в пример изделия из фарфора. Все знают, что посуда может разбиваться на куски во время падения с высоты. Мрамор, чугун и янтарь также можно причислить к материалам, которые обладают довольно большой степенью хрупкости. Остальные металлы обычно не предполагают наличия таких свойств и выдерживают серьезные нагрузки до момент деформации или разрушения.

Специалисты неохотно делят твердые тела на пластичные и упругие, поскольку это деление носит условный характер. Это означает, что один и тот же материал способен приобретать те или иные свойства исходя из внешних факторов. Один материал может обладать свойствами упругости и пластичности в зависимости от возникающих напряжений.

Также у различных материалов есть собственный предел прочности. Он возникает в момент, когда напряжение в материале значительно превышает предел упругости. В этом случае, подверженный нагрузкам предмет не принимает исходных размеров и остается в деформированном виде.

При увеличении нагрузки на твердое тело процесс деформации происходит с новой силой и быстрее. При достижении максимума в определенной точке происходит разрыв материала. Напряжение в этот отрезок времен достигает предельного максимального значения. Деталь растягивается без увеличения внешней нагрузки до полного или частичного разрушения. Подобная величина будет зависеть от определенного материала и качества его обработки.

Источник

  1. Основные свойства твердых тел
  2. Типы твердых тел
  3. Свойства твердых веществ аморфного типа
  4. Особые свойства твердых тел
  5. Пластичность и хрупкость

Твёрдые тела отличаются от других тел рядом признаков и свойств. Все они имеют сходные между собой характеристики. Все эти свойства и характеристики изучаются в ходе постоянно совершенствующегося познавательного процесса окружающего мира.

Твердые тела физика изучает на протяжении всего своего существования как науки. Исследования, в том числе и при которых изучаются свойства тел, проводятся на микро и макроуровнях. Изучение физических тел, включая свойства твёрдых тел – один из основных вопросов современной физики.

Основные свойства твердых тел

Твердым телам свойственны: упругость, пластичность и хрупкость.

Упругость – свойство тела возвращать форму в исходное положение после прекращения действия физической силы извне. К примерам можно отнести резину.

Пластичность – свойство, заключающееся в закреплении приобретенной формы после остановки или прекращения внешнего воздействия. Это свойство не восстанавливать свою форму. Примеры: пластилин, глина.

Хрупкость – свойство тела разрушаться при малых деформациях. Примеры: стекло, фарфор.

Типы твердых тел

Зависимо от степени проявления тех или иных свойств, все твердые тела можно поделить на такие основные типы:

  • Аморфные
  • С кристаллической структурой

Огромное разнообразие твердых тел по сути можно рассматривать как бесконечное количество молекулярных связей. Без использования всего разнообразия твердых тел с различными свойствами и характеристиками невозможно было бы представить себе текущий уровень развития науки и техники. Множество приборов и серьезного научного оборудования созданы на основании знаний того, какими свойствами обладают твердые тела, например, огромное количество электронного оборудования использует полупроводники со своими уникальными свойствами и возможностями. Речь идет о магнитах, сверхпроводниках и прочих материалах, без которых было бы невозможным такое стремительное развитие науки.

Таким образом, твёрдые тела это один из важнейших предметов изучения физики и одно из важнейших предпосылок к перспективам развития науки. В частности, сегодня ученых интересуют свойства твердых тел с кристаллической структурой внутреннего строения, которые проявляются в результате взаимодействия частиц.

Коллективные свойства электронов дают возможность электропроводности тех или иных тел, тип коллективного колебания, возникающего при поглощении тепла, определяет степень теплоемкости. Определено, что тепловые свойства твердых тел разные: некоторым твердым телам более свойственно поглощение тепла и соответственного нагревания, а некоторым – меньше. На основании получаемых данных рассматриваются варианты, при которых управление свойствами твердых тел используется в полезных практических и научных целях.

Свойства кристаллических твердых тел предполагают наличие кристаллической решетки. В этих телах частицы имеют четкую структуру, четкую периодичность и порядок размещения структурных единиц и составляющих элементов всей конструкции. Свойства твердого вещества аморфного типа – совершенно иные. Они представляют собой огромное количество хаотичного скопления атомов.

Еще одной отличительной чертой кристаллического тела является анизотропность. Данная характеристика твердых тел-кристаллов предполагает зависимость свойств тела от направления внутри кристалла.

Кристаллическая структура присуща всем металлам, именно поэтому они – лучшие материалы для строительства. Однако важно обратить внимание на то, что анизотропность не проявляется постоянно. В обычном состоянии эта характеристика никак не проявляется у металлов. Оказывается, в некоторых случаях вещество может пребывать в аморфном и кристаллическом состоянии одновременно.

Свойства твердых веществ аморфного типа

Для тел аморфного типа свойственна изотропность, которая предполагает равные показатели по всем направлениям. Приведем в пример стекло, леденцы. При достаточных внешних воздействиях эти тела приобретут другую форму и другие признаки.

К основным свойствам аморфных тел относятся:

  • Упругость
  • Текучесть

Упругие свойства твердых тел проявляются во всех твердых телах, а текучесть – это признак жидкости.

Такая характеристика твердых тел как упругость проявляется при кратковременных силовых воздействиях. Стоит же применить больше силы, и они могут расколоться на частицы. При интенсивном же и длительном взаимодействии твердые тела могут проявлять текучесть.

Особые свойства твердых тел

  • Анизотропия – одно из свойств твердого вещества, которое заключается в зависимости физических свойств от направления в кристалле.
  • Изотропия – отсутствие зависимости свойства тела от направления
  • Полиформизм – особое свойство, которое заключается в способности твёрдых тел находиться в состоянии с различной кристаллической решёткой. Свойство присуще только твердому агрегатному состоянию веществ.

Молекулы и атомы тел типа аморфные поддаются колебаниям, однако незначительным по сравнению с жидкостью, поэтому по внутренним свойствам их можно приравнять к кристаллическим.

Их атомы не находятся в постоянном процессе перестраивания из одного положения в другое, поэтому их состояние равновесия характеризуется как неменяющееся. Аморфные тела в состоянии низкой температуры отвечают свойствам твердых тел. При повышении температуры – меняются связи на молекулярном уровне, а тела начинают напоминать по своим свойствам жидкость.

Аморфные тела имеют одновременно схожесть и с кристаллическими, и с твердыми телами, и с жидкими. Из частицы находятся в определенном порядке, что позволяет создавать материалы, вещества, предметы с заданными и ожидаемыми свойствами. Управляемые свойства твердых тел физика рассматривает как одно из самых основных направлений практически ориентированного изучения того, какими общими свойствами обладают твердые тела и как этими свойствами управлять.

Пластичность и хрупкость

Есть ряд материалов, которые претерпевают деформацию при небольшом внешнем воздействии. Это свойство пластичности, которое отличает аморфные твердые тела.

Другая группа материалов – это материалы, способные разрушиться при незначительном воздействии. Это свойство хрупкости, оно на практике оказывается более востребованным, чем упругость и пластичность. Одним из наиболее хрупких материалов является фарфор. Нам известно, что будет с фарфоровым предметом, если уронить его с высоты.

Один и тот же материал условно способен приобретать упругость или пластичность зависимо от возникающих напряжений. У разных материалов свой предел прочности: при определенной нагрузке происходит разрыв материала. В таком случае говорят, что напряжение в этом момент достигло своего максимального значения. Эта величина зависит от материала и качества его обработки.

Источник

Твердое тело является одним из трех основных состояний материи, наряду с жидкостью и газом. Материя – это вещество вселенной, атомы, молекулы и ионы, которые составляют все физические вещества. В твердом теле, эти частицы плотно упакованы вместе и не могут свободно перемещаться внутри вещества. Молекулярное движение для частиц в твердом теле ограничено очень малыми колебаниями атомов вокруг их фиксированных положений; поэтому твердые тела имеют фиксированную форму, которую трудно изменить. Твердые тела также имеют определенный объем, то есть они сохраняют свой размер независимо от того, как вы пытаетесь их изменить. 

Твердые вещества делятся на две основные категории: кристаллические твердые вещества и аморфные твердые вещества, основанные на том, как расположены частицы.

Кристаллические твердые вещества

Кристаллические твердые вещества или кристаллы рассматриваются как настоящие твердые тела. Минералы представляют собой кристаллические твердые вещества. Обычная поваренная соль является одним из примеров такого твердого вещества. В кристаллических твердых телах атомы, ионы или молекулы расположены упорядоченно и симметрично во всем кристалле. Самая маленькая повторяющаяся структура твердого тела называется элементарной ячейкой, которая похожа на кирпич в стене. Элементарные ячейки объединяются в сеть, называемую кристаллической решеткой. Существует 14 типов решеток, называемых решетками Браве (названных в честь Августа Браве, французского физика 19-го века), и они классифицируются на семь кристаллических систем, основанных на расположении атомов – кубическую, гексагональную, тетрагональную, ромбоэдрическую, орторомбическую, моноклинную и триклинную.

Кроме регулярного расположения частиц, твердые тела обладают несколькими другими характерными свойствами. Они, как правило, вообще несжимаемы, а это означает то, что их нельзя сжать в более мелкую форму. Из-за повторяющейся геометрической структуры кристалла, все связи между частицами имеют равную силу. Это значит, что кристаллическое твердое тело будет иметь определенную точку плавления, поскольку применение тепла одновременно разрушит все связи.

Кристаллические твердые вещества также проявляют анизотропию. Это означает, что такие свойства, как показатель преломления (сколько света изгибается при прохождении вещества), проводимость (насколько хорошо он проводит электричество) и прочность на растяжение (сила, необходимая для его разрыва), будут варьироваться в зависимости от направления, от которого была применена сила. Кристаллические твердые вещества также проявляют свойство расщепления – при разрыве части будут иметь выровненную поверхность или прямые края.

Типы кристаллических твердых веществ

Существует четыре типа кристаллических твердых тел: ионные твердые тела, молекулярные твердые тела, сетевые ковалентные твердые тела и металлические твердые тела.

Ионные твердые тела

Ионные соединения образуют кристаллы, которые состоят из противоположно заряженных ионов – положительно заряженного катиона и отрицательно заряженного аниона. Из-за сильного притяжения между противоположными зарядами требуется много энергии для преодоления ионных связей. Это означает, что ионные соединения имеют очень высокую температуру плавления, часто между 300 и 1000 градусов по Цельсию.

Хотя сами кристаллы являются твердыми, хрупкими и непроводящими, большинство ионных соединений можно растворить в воде, образуя раствор свободных ионов, который будет проводить электричество. Они могут быть простыми двойными солями, такими как хлорид натрия NaCl или поваренная соль, где один атом металлического элемента – натрия, связан с одним атомом неметаллического элемента – хлора. Они также могут состоять из многоатомных ионов, таких как нитрат аммония NH4NO3. Многоатомные ионы представляют собой группы атомов, которые разделяют электроны – это называется ковалентная связь, они функционируют в соединении, как если бы они составляли один заряженный ион.

Молекулярные твердые вещества

Молекулярные твердые вещества состоят из ковалентно связанных молекул, притягиваемых друг к другу электростатическими силами – это называется Силы ВандерВаальса. Поскольку ковалентная связь предполагает совместное использование электронов, а не прямой перенос этих частиц, общие электроны могут проводить больше времени в электронном облаке более крупного атома, вызывая слабую или смещающуюся полярность. Это электростатическое притяжение между двумя полюсами – диполями, значительно слабее, чем ионное или ковалентное связывание, поэтому молекулярные твердые тела, как правило, мягче, чем ионные кристаллы, и имеют более низкие точки плавления – многие из них будут плавиться при температуре менее 100°C. Большинство молекулярных твердых веществ неполярны. Эти неполярные молекулярные твердые вещества не будут растворяться в воде, но будут растворяться в неполярном растворителе, таком как бензол и октан. Полярные молекулярные твердые вещества, такие как сахар, легко растворяются в воде. Молекулярные твердые тела являются непроводящими.

Примеры молекулярных твердых веществ – лед, сахар, галогены, такие как твердый хлор Cl2, соединения, состоящие из галогена и водорода, такие как хлористый водород HCl. Фуллерены также являются молекулярными твердыми веществами.

Ковалентные твердые вещества

В сплошной структуре твердого тела нет отдельных молекул. Атомы ковалентно связаны в непрерывной сети, что в свою очередь приводит к кристаллической структуре. Каждый атом ковалентно связан со всеми окружающими атомами. Ковалентные твердые тела обладают свойствами, аналогичными свойствам ионных твердых тел. Они очень твердые с чрезвычайно высокими температурами плавления, обычно выше 1000 градусов по Цельсию. В отличии от ионных соединений, они не растворяются в воде и не проводят электричество.

Примеры ковалентные твердых веществ – алмазы, аметисты и рубины.

Металлические твердые вещества

Металлы представляют собой непрозрачные, блестящие твердые вещества, которые являются пластичными. Они мягкие и могут быть сформированы или спрессованы в тонкие листы, или даже втянуты в провода. Валентные электроны не передаются и не распределяются, поскольку находятся в ионной и ковалентной связи. Электронные облака соседних атомов перекрываются, так что электроны становятся делокализованными. Электроны перемещаются с относительной свободой от одного атома к другому по всему кристаллу.

Металл можно описать как решетку положительных катионов в “море” отрицательных электронов. Эта подвижность электронов означает, что металлы обладают высокой проводимостью тепла и электричества. Металлы, как правило, имеют высокие точки плавления, хотя заметными исключениями являются ртуть, температура плавления которой составляет минус 38,8 градуса по Цельсию, и фосфор с температурой плавления 44 градуса по Цельсию.

Сплав представляет собой твердую смесь металлического элемента с другим веществом. Хотя чистые металлы могут быть чрезмерно податливыми и тяжелыми, сплавы являютсяболее используемыми. Бронза – сплав меди и олова, а сталь – сплав железа, углерода и других добавок.

Аморфные твердые вещества

В аморфных твердых телах (“твердые тела без формы”) частицы не имеют повторяющейся структуры решетки. Примерами аморфных твердых веществ являются стекло, резина, гели и большинство пластмасс. Аморфное твердое вещество не имеет определенной температуры плавления. Оно плавится постепенно в определенном диапазоне температур, потому что связи не разрываются все сразу. Аморфное твердое вещество расплавится в мягкое, податливое состояние (свечной воск или расплавленное стекло), прежде чем полностью превратиться в жидкость. 

Аморфные твердые тела не имеют характерной симметрии, поэтому они не имеют ровных плоскостей при разрезании – края могут быть изогнуты. Они называются изотропными, поскольку такие свойства, как показатель преломления, проводимость и прочность на растяжение, равны независимо от направления, в котором применяется сила. 

???? ???? ????

Источник