Какие свойства характерны для рнк

Какие свойства характерны для рнк thumbnail

РНК – тип нуклеиновых кислот; содержатся во всех живых клетках и участвуют в двух этапах реализации генетической информации: транскрипции (синтезе РНК на ДНК) и трансляции (синтезе белков на рибосомах). Молекулы РНК, как правило, представляют собой одноцепочечные незамкнутые полинуклеотиды, построенные из мономеров – нуклеотидов (в данном случае – рибонуклеотидов). В отдельных местах цепи нуклеотиды спариваются по принципу комплементарности и образуются участки двойной спирали. Число рибонуклеотидов в молекуле может быть от нескольких десятков до десяти тысяч. В отличие от дезоксирибонуклеотидов ДНК, содержащих углевод дезоксирибозу, рибонуклеотиды содержат углевод рибозу, а вместо азотистого основания тимина – урацил. Остальные азотистые основания (аденин, гуанин и цитозин) те же, что в ДНК. Различные классы РНК выполняют в клетках разные функции, но все они синтезируются на матрице ДНК.

Рибосомальные РНК (р-РНК), составляющие основную массу всех клеточных РНК (80-90%), соединяясь с белками, формируют рибосомы, органоиды, осуществляющие синтез белков. В клетках эукариот р-РНК синтезируются в ядрышках.

Транспортные РНК (т-РНК) с помощью специального фермента связываются с аминокислотами и доставляют их на рибосомы. При этом определённые аминокислоты, как правило, переносятся определёнными («своими») т-РНК. Однако в ряде случаев одну аминокислоту могут кодировать несколько разных кодонов (вырожденностьгенетического кода). Соответственно, каждую из таких аминокислот могут переносить две или более т-РНК.

Информационные, или матричные, РНК (и-РНК, м-РНК) составляют в клетке ок. 2% от общего количества РНК. В клетках эукариот и-РНК синтезируются в ядрах на матрицах ДНК, затем переходят в цитоплазму и связываются с рибосомами. Здесь они, в свою очередь, служат матрицами для синтеза белка на рибосомах: к и-РНК присоединяются т-РНК, несущие аминокислоты. Таким образом, и-РНК преобразуют информацию, заключённую в последовательности нуклеотидов ДНК, в последовательность аминокислот синтезируемого белка, т.е. генетическая информация реализуется в уникальной структуре белка, которая определяет его специфичность и функции. У некоторых вирусов РНК (одноцепочечная или двухцепочечная) выполняет роль хромосомы. Такие вирусы называются РНК-содержащими.

Некоторые РНК, подобно ферментам, обладают каталитической активностью. В последние годы был открыт новый класс РНК – т.н. малые РНК. Эти РНК, по-видимому, выполняют в клетках роль универсальных регуляторов, включая и выключая гены при эмбриональном развитии и контролируя внутриклеточные процессы. Полагают, что в процессе биохимической (добиологической) эволюции на Земле первоначально появились молекулы РНК, возможно даже их способные к самовоспроизведению комплексы, и лишь потом возникли более стабильные молекулы ДНК.

Таблица сравнительной характеристики ДНК и РНК

Признаки

ДНК

РНК

Общие

1. Биополимеры

2. Участвуют в синтезе белка

3. Сходное строение мономеров: – азотистое основание

– молекула пентозы

– остаток фосфорной кислоты

Местонахождение

Содержится, в основном, в ядре, образуя хромосомы, в митохондриях, в пластидах

В ядрышке, рибосомах, цитоплазме, митохондриях, хлоропластах

Строение

Двухцепочечная молекула, образующая спираль. Мономеры – дезоксирибонук-леотиды, в состав которых входят дезоксирибоза, азотистые основания – аденин, тимин, гуанин и цитозин

Одноцепочечная молекула, мономеры рибонуклеотиды, в состав которых входят – рибоза, азотистые основания – аденин, урацил, гуанин и цитозин

Свойства

Способна к самоудвоению – редупликации, по принципу комплементарное™

Не способна к самоудвоению

Функции

Химическая основа наследственности. Образует хромосомы, хранение и передача наследственной информации. Кодирует информацию о структуре белка. Наименьшей единицей наследственной информации являются три расположенных рядом нуклеотида – триплет. Является матрицей для синтеза молекул РНК, которая формируется на одной цепочке, по принципу комплементарное™

Энергетическая – обеспечивает энергией процессы жизнедеятельности клетки: биосинтез, движение, сокращение мышц, активный перенос веществ через мембрану, и т.п. При отщеплении одной фосфатной группы выделяется 40 кДж

Источник

Строение молекулы РНК, виды и функции

Нуклеиновые кислоты

По строению РНК и ДНК (дезоксирибонуклеиновая кислота) сходны. Эти вещества представляют собой биополимеры, молекулы которых — это длинные цепи, состоящие из отдельных фрагментов (остатков нуклеотидов). Присутствуя в каждой живой клетке, они выполняют следующие функции:

Живая клетка

  • Хранение информации как о самой клетке, так и обо всём организме, частью которого она является.
  • Передача информации следующему поколению клеток при делении.
  • Хранение, передача и расшифровка информации о реализации признаков организма, закодированных генами.

Основным фактором, отличающим друг от друга рибонуклеиновую и дезоксирибонуклеиновую кислоты, являются входящие в их состав углеводы, а именно дезоксирибоза в ДНК и рибоза в РНК.

Происхождение и структура

Каждый из мономеров, составляющих длинную молекулу, состоит из азотистого основания и присоединённых к нему фосфатных групп и углевода рибозы. Посредством соединения рибозы и фосфатного остатка осуществляется связь мономеров в цепь.

Кодирование информации обусловлено последовательностью расположения нуклеотидов в цепи.

Процесс биосинтеза рибонуклеиновой кислоты в живой клетке, называемый транскрипцией, осуществляется при обязательном присутствии фермента РНК-полимеразы. Соединение между собой мономеров (нуклеотидов), входящих в состав макромолекулы, осуществляется за счёт взаимодействия фосфатного остатка одного мономера с углеводным фрагментом другого.

Строение молекулы РНК

Матрицей, на основе которой синтезируются молекулы этого вещества, может служить и молекула ДНК, и другая молекула РНК. В частности, на основе нуклеиновой кислоты с рибозой происходит репликация РНК-содержащих вирусов.

Примечательно, что этот фермент (полимераза) существует в различных модификациях, что обусловливает синтез разных видов этого вещества. Все разновидности рибонуклеиновой кислоты имеют сходное строение. Их пространственная структура напоминает по конфигурации листок клевера.

История исследования вопроса

Начало изучению нуклеиновых кислот было положено ещё в середине XIX века швейцарским учёным, обнаружившим эти вещества в клеточном ядре. Он назвал их нуклеином. Наличие этих веществ в прокариотических бактериальных клетках, не содержащих ядра, было доказано несколько позднее.

Читайте также:  Назовите каким свойством по отношению к индивиду обладают по мысли

Предположение о роли РНК, которую она играет в биосинтезе белковых молекул, было сделано в 1939 году. В ходе эксперимента было продемонстрировано, что РНК, кодирующая структуру гемоглобина кролика, при введении в другую клетку заставляет её синтезировать тот же самый белок. Описанный опыт наглядно продемонстрировал роль этого вещества в живом организме. Параллельно с этим ещё одно исследование показало, что клетки, активно синтезирующие белковые вещества, содержат большее количество РНК, по сравнению с другими клеточными структурами.

Карл Везе

Механизм синтеза самой рибонуклеиновой кислоты был открыт в середине XX века, за что в 1959 году была выдана Нобелевская премия по медицине. Ещё одна аналогичная награда в этой области была выдана в связи с расшифровкой последовательности цепи из 77 нуклеотидов транспортной РНК одного из видов дрожжевых грибков.

По мнению некоторых учёных, функция РНК процессе эволюции претерпела некоторые изменения. В частности, учёный Карл Везе в 1967 году выдвинул теорию так называемого «РНК мира». Согласно его предположениям, в прокариотических организмах эта нуклеиновая кислота выполняла следующие функции:

  • Шифрование, хранение и передача информации, в частности, генетической информации клетки. Сейчас, после определённых изменений, которые произошли в ходе эволюции, эту функцию стала выполнять дезоксирибонуклеиновая кислота (ДНК).
  • Участие в ряде метаболических процессов, которое проявляется в их ускорении (каталитическая активность). В сегодняшнем мире эта функция принадлежит ферментам — специализированным веществам, имеющим белковую природу.

Открытие нуклеиновых кислот и успехи в исследовании их свойств и других характеристик дали мощный толчок в развитии молекулярной биологии. С этого момента и берёт начало исследование механизмов передачи информации как внутри клеток, так и между ними. Полученные экспериментально данные объясняют в том числе и механизм наследования некоторых признаков (один из основных принципов теории эволюции — наследственность).

Типы РНК

В зависимости от функций, выполняемых в организме, принято выделять несколько типов рибонуклеиновой кислоты. Каждый из них имеет своё специальное обозначение.

Различные типы этого вещества и соответствующие функции РНК для наглядности можно представить в виде таблицы:

Название Условное обозначение Особенности
Информационная (матричная) иРНК (мРНК) Из всей рибонуклеиновой кислоты, содержащейся в клетке, она составляет около 5%. Содержит и передаёт информацию о первичной структуре белка. Созревая, становится матрицей для синтеза полипептидной белковой молекулы. Молекулы информационной РНК присутствуют в клетке до тех пор, пока синтезируется необходимая белковая молекула. После того как матрица становится не нужна, клетка ее разрушает.
Рибосомальная рРНК Синтез рибосомальной РНК осуществляется в ядрышке. Её молекулы имеют довольно крупные габариты, состоят из из большого количества нуклеотидов — от 3000 до 5000. Составляя 80−85% всей РНК клетки, имеет несколько разновидностей, которые входят в состав рибосом, отличаясь друг от друга длиной цепи, выполняемыми функциями, а также вторичной и третичной структурой. Молекулы рибосомальной РНК считывают информацию, закодированную информационной молекулой и способствуют образованию связей между аминокислотами в белковой цепи.
Транспортная тРНК Эта разновидность рибонуклеиновой кислоты синтезируется в ядре клетки на основе матрицы ДНК, после чего выходит в цитоплазму. Характерной чертой транспортной РНК является небольшой по меркам полимерных веществ размер молекулы (по сравнению с молекулами того же вещества, которым присущи другие функции). Она может содержать около 80 мономеров. Функция этого вещества: транспорт аминокислот, являющихся строительными материалами для протеинов к месту сборки белковой молекулы. Если представить пространственную структуру молекулы нуклеиновой кислоты в виде фигуры, напоминающей листок клевера, то транспортируемая аминокислота присоединяется к его черешку. Молекула транспортной рибонуклеиновой кислоты неуниверсальна: для доставки к рибосоме каждого вида аминокислот необходима своя разновидность транспортной РНК. Всего таких видов известно около 60.

Указанные в таблице типы РНК являются основными. Кроме них существуют и другие разновидности этого вещества. Все они в совокупности составляют единую систему, значение которой крайне велико: она направлена на считывание и воспроизведение наследственной информации через синтез белковых структур.

Типы РНК

Существует ещё одна классификации РНК; согласно ей, выделяют следующие разновидности:

Ядро эукариотических клеток

  • Ядерная. Рапространение — ядро эукариотических клеток. Молекула собирается полимеразой 2 или 3 типов. После сборки выходит в цитоплазму клетки, где происходит созревание; потом возвращается в ядро. Участвует в процессе созревания матричной РНК. В цепи такой нуклеиновой кислоты находится много уридиновых нуклеотидов. Имеется и малый (ядрышковый) подтип.
  • Цитоплазматическая. Находится под влиянием ядерной разновидности нуклеиновой кислоты. Функция — участие в антителообразовании в зрелых плазматических клетках.
  • Митохондриальная. В отличие от ядерной, располагается в митохондриях.
  • Пластидная. Кодирует гены, обеспечивающие процессы транскрипции и трансляции.

В основе такого подразделения лежит место её нахождения внутри клетки.

Источник

Мы все знакомы с ДНК (DNA), все современные клетки используют ДНК в качест материала, но как насчет ее менее известного брата, РНК (RNA)?

Близкие по концепции, но очень разные по назначению, эти два типа нуклеиновых кислот необходимы для нашей биологии. Итак, что же представляет собой РНК, явившаяся источником белковой жизни на Земле?

В то время когда ДНК кодирует ваши гены, РНК используется для экспрессии  этих генов. В процессе транскрипции, РНК создается путем чтения ДНК с помощью РНК-полимеразы.

Наиболее важным подтипом РНК является мРНК (mRNA), которая обозначает РНК-мессенджер. Этот тип мРНК (mRNA) несет информацию от ДНК и переходит к рибосомам для создания белков. А белки – это молекулы, которые производят изменения в организме.

Читайте также:  Какой камень нефрит фото свойства и значение

Таким образом, это похоже на такой ДНК-буклет, который содержит описание того, что сделать в организме. РНК являются копиями только той информации, которая необходима организму сейчас, а белки – это работники, которые выходят и делают это. Этот генетический код считается «центральной догмой в молекулярной биологии».

Центральная догма молекулярной биологии.

РНК против ДНК

РНК и ДНК имеют удивительное количество сходств. И это имеет смысл: РНК буквально копирует себя из этого основного шаблона.

Например, РНК и ДНК состоят из четырех нуклеотидных строительных блоков. ДНК состоит из G, T, A и C. РНК аналогична, но заменяет T (тимин) на U (урацил). Урацил на самом деле выглядит так же, как тимин, но у него нет одной метильной (CH3) группы, которая есть у тимина.

Визуальное представление основных различий между РНК и ДНК.

ДНК является двухцепочечной, но РНК – это только одна цепь (она может образовывать двойные цепи,но это не нормальное состояние РНК). Так легче сохраняться, потому что это гораздо более короткая цепь молекул.

Зачем? В его одноцепочечной форме генетически проще сделать (половину материала), сохраняя при этом всю информацию (в конце концов, если один всегда соединяется с другим, тогда вы точно знаете, какой должна быть эта другая цепочка). Кроме того, это легче читать. Представьте сложность распаковки спирали ДНК в нужных местах, чтобы получить доступ к коду внутри, в то время как РНК уже в открытой и легко читаемой форме!

Наконец, у них разные основы. ДНК удерживается вместе дезоксирибозой, сахарно-фосфатным скелетом, удерживающим все эти нуклеотиды в порядке. Основа РНК состоит из рибозы. Рибоза во многом похожа на дезоксирибозу, но имеет дополнительную гидроксильную (ОН) группу. Таким образом,дезоксирибоза – это просто деоксигенированная рибоза, потому что в ней нет кислорода.

Специальные типы РНК

Когда большинство людей думают о РНК, они думают о мРНК (mRNA). Но есть несколько дополнительных подтипов РНК, каждый из которых имеет специальные функции.

Процесс создания мРНК(mRNA) был бы невозможен без других форм РНК. Передача РНК (tRNA) необходима для доставки аминокислот в рибосому. В рибосоме рибосомная РНК (rRNA) связывает вместе аминокислоты, чтобы они могли создавать белки. Взятые вместе, (tRNA, rRNA и mRNA называются кодирующими РНК, потому что все они работают вместе, кодируя белки.

Визуальное изображение механизма перевода.

Большинство некодирующих РНК выполняет регуляторные функции. Наиболее известными из них являются microRNA (называемая miRNA или miR). Эти miRNA могут спариваться с одноцепочечной mRNA. Когда это происходит, эти mRNA помечаются как деградированные. Следовательно, miRNA может пометить mRNA и блокировать перевод белка

Таким образом, miRNA обычно используется для контроля количества белка, продуцируемого из mRNA.

Существует также очень похожий подтип, называемый малой интерферирующей РНК (siRNA), которая маркирует РНК для деградации сразу после биосинтеза. Он может быть использован для предотвращения создания любого белка.

Кроме того, siRNA часто искусственно используется в лабораториях, чтобы предотвратить создание определенных белков, а затем посмотреть, как это влияет на другие биологические процессы.

Механизм действия SiRNA.

Энхансерная РНК (eRNA) была впервые открыта в 2010 году. Они «транскрибируются» из областей «улучшителя» ДНК – регуляторных мест, о которых известно, что они усиливают экспрессию  генов. Эти eRNA также используются для увеличения количества mRNA, продуцируемой из этого сегмента ДНК.

Малая ядрышковая РНК, называемая snoRNA, помогает химически модифицировать другие группы РНК. Они могут помочь добавить либо метильную группу (СН3) – процесс, называемый метилированием, или они могут превратить один из нуклеотидов в уридин – процесс, называемый псевдоуридилированием.

Наконец, существуют длинные некодирующие РНК (lncRNAs). Считается, что они заставляют замолчать длинные участки ДНК. Считается, что они также участвуют в регуляции деления стволовых клеток на ранней стадии жизни.

Что такое РНК? Теперь ты знаешь!

Теперь вы узнали все о тайнах РНК. Хотя он не так широко известен как ДНК и не так роскошен, как функция белка, он все еще остается одним из трех основных компонентов молекулярной биологии. Жизнь не может существовать без этого. Фактически, РНК часто считается потенциально ответственной за выражение наследственной информации, которая сегодня требует чрезвычайно сложного механизма и переходит от ДНК к белку через промежуточное звено – РНК.

Смотреть видео на сайте…

Источник

Синтез РНК, так же, как и синтез ДНК, осуществляется в соответствии с принципом комплементарности. В отличие от синтеза ДНК, которая реплицируется вся целиком, РНК синтезируется в виде отдельных относительно небольших (от десятков до десятков тысяч нуклеотидов) молекул.

Участок ДНК, с которого синтезируется определенная молекула РНК, называется ген (рис. 1). Синтез РНК называется транскрипцией и осуществляется ферментом ДНК-зависимой РНК-полимеразой (то есть синтезирующей РНК на матрице ДНК), или просто РНК-полимеразой (РНК-зависимые РНК-полимеразы встречаются, например, у некоторых РНК-содержащих вирусов). Этот фермент (сам или с помощью специальных белков) узнает начало гена, точнее, определенную последовательность нуклеотидов в ДНК, называемую промотором (рис. 1). 

Какие свойства характерны для рнк

Рис. 1

Присоединившись к промотору, РНК-полимераза расплетает участок ДНК, образуя «транскрипционный пузырь», полностью находящийся внутри молекулы фермента (рис. 2). После этого начинается синтез РНК с определенной точки молекулы ДНК (старт). В процессе синтеза используются нуклеотиды, содержащие рибозу и три фосфатных остатка, а в качестве оснований гуанин, аденин, цитозин и урацил. При этом строится цепь РНК, комплементарная только одной из цепей ДНК, называемой матричной. В строящейся цепи аденин ставится напротив тимина в матричной ДНК, гуанин — против цитозина, цитозин — против гуанина, а урацил — против аденина, т. е. образуются пары Т–А и А–У. Это происходит потому, что участки азотистого основания, участвующие в образовании комплементарных пар, у урацила и тимина одинаковы.

Читайте также:  Какие из перечисленных веществ проявляют только окислительные свойства

Та цепь ДНК, которая не используется в качестве матрицы, называется смысловой, так как последовательность нуклеотидов в ней совпадает с последовательностью синтезируемой РНК с той только разницей, что тимин в ДНК в РНК заменен на урацил.

Так же, как и при репликации, синтез РНК идет в направлении от 5’-конца к 3’-концу. По мере синтеза РНК-полимераза двигается по молекуле ДНК (в направлении от 3’-конца к 5’-концу по матричной нити), расплетая новый участок ДНК. В отличие от репликации, РНК-полимераза отделяет образуемый ею продукт (РНК) от матрицы, а матрицу снова заплетает в двойную спираль.

Во время всего процесса синтеза внутри молекулы фермента находится примерно постоянный по размеру «транскрипционный пузырь», в котором РНК-продукт связан комплементарными нуклеотидами с ДНК-матрицей, а из фермента выходит постоянно удлиняющаяся молекула РНК.

Какие свойства характерны для рнк

Рис. 2

Так продолжается до тех пор, пока фермент не дойдет до конца гена (рис. 1). Там находится специальная последовательность нуклеотидов, называемая терминатор. На этом месте РНК-полимераза завершает синтез. Продукт – готовая молекула РНК – отделяется от матрицы и фермента. После этого РНК-полимераза также отделяется от ДНК-матрицы и ищет новый промотор.

В результате транскрипции в клетке образуются все виды РНК. Основными из них являются:

  1. Матричные, или информационные РНК (сокращенно мРНК, или иРНК), в которых закодирована последовательность аминокислот в белке.

  2.  Транспортные РНК (сокращенно тРНК), переносящие активированные аминокислоты к месту синтеза белка.

  3. Рибосомные РНК (сокращенно рРНК), образующие рибосомы, частицы, в которых происходит биосинтез белка.

Кроме этого, существует более 10 других видов РНК, участвующих в клеточных процессах, которые не рассматриваются в школьном курсе.

созревание (процессинг) рнк

У прокариот РНК сразу после синтеза готова к трансляции (биосинтезу белка). Говорят, что в прокариотических клетках происходит сопряжение транскрипции и трансляции, т. е. рибосомы могут присоединиться к свободному 5′-концу РНК (он освобождается первым, т. к. при синтезе нуклеиновых кислот удлиняется всегда 3′-конец) и начать ее трансляцию еще до завершения транскрипции (см. рис.). РНК – весьма нестабильная молекула и легко подвергается гидролизу; время жизни РНК прокариот обычно не превышает нескольких минут. 

У эукариот все происходит иначе. У них имеется ядро, внутри которого нет активных рибосом,  синтез белка идет исключительно в цитоплазме. Поэтому для того чтобы принять участие в трансляции, иРНК должна сначала выйти из ядра через одну из ядерных пор. Это занимает некоторое время; возможно, в связи с этим РНК эукариот имеют специальные приспособления для повышения стабильности и живут гораздо дольше (как минимум несколько часов). Эти приспособления – модификации концов, предотвращающие их деградацию (разрушение). На 5′-конце эукариотических иРНК имеется кэп («шапочка»), на 3′-конце – полиА-хвост, то есть длинная цепочка нуклеотидов с аденином (А). Она не транслируется и не кодирует аминокислот, но защищает 3′-конец и сама с течением жизни РНК постепенно разрушается. Когда хвост становится слишком коротким, то специальные ферменты откусывают кэп, и РНК деградирует. Таким образом, длина полиА-хвоста регулирует время жизни РНК. Время жизни иРНК – очень важный параметр. Чем дольше живет иРНК, тем большее количество белка успеет с нее синтезироваться. Поэтому регуляция времени жизни РНК (в частности, при участии белков, которые связываются с полиА-хвостом и стабилизируют его) является одним из уровней регуляции экспрессии гена, то есть интенсивности продукции соответствующего белка. Присоединение кэпа называется кэпированием РНК, а присоединение полиА-хвоста – полиаденилированием. 

Помимо защитных модификаций концов иРНК, у эукариот с предшественником иРНК происходит еще один важный процесс. Это вырезание из РНК незначащих участков – интронов. Дело в том, что большинство генов эукариот, в отличие от генов прокариот, содержат некодирующие участки. Они транскрибируются, т. к. находятся внутри гена, но если такая РНК начнет транслироваться, то нормального белка не получится – последовательность интрона бессмысленна, с точки зрения структуры белка это «абракадабра», и, скорее всего, синтез быстро оборвется из-за случайного стоп-кодона внутри интрона. Кодирующие участки РНК, которые перемежаются интронами, носят название экзонов. В процессе сплайсинга интроны из РНК вырезаются, а экзоны сшиваются между собой. В результате получается зрелая иРНК, не содержащая «лишних» участков. 

Все эти три процесса – кэпирование, полиаденилирование и сплайсинг – происходят с иРНК эукариот в ядре и называются вместе созреванием, или процессингом, РНК. После этого осуществляется экспорт иРНК из ядра через одну из ядерных пор. Только правильно процессированная иРНК называется зрелой и может принять участие в трансляции.

Какие свойства характерны для рнк

После завершения созревания иРНК выходит через ядерные поры в цитоплазму, где связывается с рибосомами и подвергается трансляции. Трансляция – это процесс биосинтеза белка. Информация о последовательности аминокислот в белке записана в генах, то есть в виде нуклеотидной последовательности ДНК, и переносится из ядра к рибосомам в виде иРНК. 

Какие свойства характерны для рнк

Источник