Какие свойства есть у магнитов

Какие свойства есть у магнитов thumbnail

Наверняка вам знакомо свойство магнитов примагничивать какие-либо предметы. Преимущественно, магниты могут притягивать металлические предметы, а на неметаллы влияние не оказывают (или оказывают, но при определенных специальных условиях).

Но почему же магнит способен притягивать предметы или другие магниты? Из-за чего, скажем, деревянный брусок ничего не притягивает, а вот постоянный магнит вполне способен притягивать гвозди, скрепки и другие предметы?

Ответ на вопрос кроется, как обычно это и бывает в материаловедении, в структуре рассматриваемого образца. Структура должна быть особенная. Правда сложно представить, какая именно специфика структуры материала может наделять образец такими “космическими свойствами”. Начнем с самого простого.

Как мы помним из элементарной школьной физики, всегда, где есть электричество, есть и магнетизм. Утрируя для упрощения изучения вопроса скажем, что электрический ток порождает магнитное поле. Электрический ток же – это упорядоченное направленное движение частиц.

При детальном рассмотрении, любой движущийся электрон можно рассматривать как частицу, создающую вокруг себя магнитное поле.

Вспомним, что все материалы состоят из частиц. Частицы – это молекулы и атомы. Атомы в свою очередь состоят из электронов и протонов (и много чего ещё, но не о том сейчас :)…) Электроны перемещаются относительно ядер атомов. Вспоминаем планетарную модель атома. Соответственно, когда электроны перемещаются по орбите, они создают магнитный момент.

По этой логике, как минимум все металлы, должны притягивать всё. Но дело тут в том, что магнитный момент отдельной частицы слишком мал. Частицы в обычном же материале перемещаются хаотично, поэтому малые моменты самоубиваются. Суммирование моментов не происходит.

Вот теперь наверное и понятно, что происходит в постоянном магните.

У ферромагнетиков (это вещества, из которых делают магниты) не все электроны имеют пару. В результате, некоторые электроны перемещаются в одном направлении.

Соответственно, и магнитный момент направлен в одну сторону и суммируется. Получается естественный электромагнит. Зоны, где происходит такое упорядочивание, называются магнитными доменами.

Это свойств характерно только определенному классу материалов с определенной структурой. Они и могут быть постоянными магнитами.

Микроструктура у таких материалов тоже будет иметь некоторые характерные отличия. Наверное можно догадаться, что она должна быть далеко неравновесной. Именно это создаст благодатную почву для формирования описываемых ранее условий. Нужны дислокации, границы зерен, и т.п., являющиеся источником искажений структуры. Ведь когда всё равновесно, то и цепляться не за что. Если структура равномерная то отклонения, которые как раз и являются основой формирования свойств, отсутствуют.

Постоянные магниты могут быть искусственными и естественными. Искусственные магниты получают выдерживанием подходящих образцов в магнитном поле. Это позволяет ориентировать все магнитные моменты в одну сторону. Естественные магниты имеют магнитные свойства прямо из природы. Среди ископаемых можно встречать куски руды и прочие образцы, обладающие магнитными свойствами от природы.

Вообщем-то, это всё, что нужно знать о причинах возникновения магнетизма в постоянном магните.

Ещё наверняка вам будет интересно узнать, что постоянный магнит можно “убить” в печке 🙂 Достаточно лишь выдержать его при определенной температуре. Тогда моменты опять переориентируется и магнит разрядится.

Источник

Какие свойства есть у магнитовЧтобы понять суть магнетизма и веществ, называемых магнитами, необходимо несколько углубиться в теорию электромагнитного взаимодействия и внутренней структуры твердых веществ. Физиками установлен основополагающий закон: «Вокруг любого движущегося электрического заряда возникает магнитное поле, а магнитное поле действует на любой движущийся заряд». Закон подтвержден экспериментально опытами Эрстеда и Ампера и ему подчиняются все электрические заряды — электроны, протоны, ионизированные атомы и молекулы.

Из курса школьной физики известно, что вся материя состоит из атомов и молекул, представляющих сложную структуру из нуклонов и вращающихся вокруг них электронов. То есть, в каждом физическом теле, независимо от его фазового состояния, находится огромное количество движущихся зарядов. Значит, должно возникать и магнитное поле. Почему же у одних веществ оно есть, у других его нет?

Почему вещества намагничиваются?

Дело в том, что движение электронов по орбитах носит хаотический характер, а магнитное поле имеет направленное действие. Если взять любой магнит, то у него легко заметить два полюса — северный и южный. Магниты взаимодействуют наподобие электрических зарядов «плюс» и «минус». Одноименные притягиваются, разноименные отталкиваются. Так же и магнитные полюса — северный притягивается к южному, но отталкивается от северного, и наоборот.

Внутри обычного вещества вокруг каждого атома возникают магнитные поля с определенной ориентацией силовых линий. Направление их такое же хаотичное, как и вращение электронов. Поля взаимно погашаются и вокруг массивного тела их нет.

Но есть ряд веществ, у которых значительная часть атомов выстраивается в определенном порядке. Атомы образуют пространственные структуры, домены, с ориентированным магнитным полем. Полюса доменов направлены в одну сторону, и вещество превращается в магнит на макроскопическом уровне. Что мы называем магнитом? Предмет, который может притягивать некоторые металлы, действовать на проводник с током, или другой магнит на расстоянии. Магнитное поле, как и электрическое, дистанционно. Для начала взаимодействия тела не должны касаться друг друга, а только находится вблизи. Величина расстояния различна — от нескольких миллиметров, до сотен и тысяч километров.

Виды магнитов

Какие свойства есть у магнитовНеобходимо отметить, что магнитное поле возникает вокруг любого твердого тела. Но большинство таких полей столь мало по интенсивности, что мы их не обнаруживаем даже при помощи специальных приборов. В то же время в природе есть вещества, у которых расположение атомов в кристаллической решетке отличается определенной направленностью и магнитное поле их окружает постоянно. Одно из таких веществ — магнитных железняк, или магнетит.

В процессе развития техники необходимость в магнитах возрастала. Ученые разработали рецептуры сплавов на основе железа, которые обладали более высокими магнитными свойствами — это стали с содержанием вольфрама, кобальта, хрома, никеля, алюминия, меди. Такие вещества, помещенные в электромагнитное поле, легко намагничиваются, а после отключения поля, сохраняют намагниченность. Изделия из такого материала получило название постоянного магнита. Широкое распространение получили ферритовые магниты на основе оксида железа и окислов бария и стронция.

Неодимовые магниты обладают более сильным полем. Они производятся из сплава железа, неодима и бора. Отличаются небольшими размерами, но очень большой силой сцепления на близком расстоянии.

Электромагниты — класс веществ, у которых магнетизм проявляется только при прохождении тока по катушке, намотанной вокруг сердечника из этого материала. Это так называемые ферромагниты. Они отлично намагничиваются, но не сохраняют остаточного поля после отключения тока. Пример — стали Э1, Э2, Э3, Э4.

Читайте также

Источник

Количество просмотров:34989

Дома, на работе, в собственном авто или в общественном транспорте нас окружают разнообразные типы магнитов. Они обеспечивают работу моторов, датчиков, микрофонов и многих других привычных вещей. При этом в каждой сфере используются различные по своим характеристикам и особенностям устройства. В целом выделяют такие типы магнитов:

Какие бывают магниты

Электромагниты. Конструкция таких изделий состоит из железного сердечника, на который намотаны витки провода. Подавая электрический ток с различными параметрами величины и направленности, удается получать магнитные поля нужной силы и полярности.

Постоянные магнитыГлавная особенность этой обширной группы материалов состоит в способности очень долго сохранять остаточную намагниченность. Это качество находит свое полезное применение в промышленности и в быту. Магнитная сила и другие важные характеристики постоянных магнитов зависят от их состава и технологии изготовления.

Временные магниты. Некоторые материалы после воздействия внешнего магнитного поля непродолжительное время сохраняют намагниченность. Например, временный магнит можно получить в домашних условиях, просто проведя несколько раз постоянным магнитом в одном направлении по поверхности металлического бруска, гвоздя или другого объекта.

Виды постоянных магнитов

Неодимовые магниты 

Самый востребованный и перспективный магнитный сплав на сегодняшний день – это соединение неодима, железа и бора. Этот редкоземельный супермагнит успешно используются во многих сферах, начиная от производства детских игрушек и мебельных магнитов и заканчивая использованием в составе мощнейших грузозахватов. Высокая коэрцитивная сила неодимового магнита обеспечивает сохранение магнитных свойств даже в зоне действия интенсивного внешнего поля. Такой особенностью не могут похвастаться другие виды магнитов. Кроме того, важное преимущество неодимового сплава – длительность сохранения свойств. При соблюдении условий эксплуатации материал будет терять не более 1-2% своей магнитной силы в течение 10 лет. По сути, этот сильный магнит может сохранять свои качества на протяжении столетий. Главное – необходимо обезопасить материал от ударных нагрузок и обеспечить условия, при которых температура не превышала бы допустимых значений.

магнит диск 70х50.jpg

Ферритовые магниты

Благодаря сочетанию низкой цены и хороших магнитных свойств эта группа материалов остается наиболее массовой и распространенной. Ферритовый магнит изготавливается из сплава оксида железа с ферритом стронция или бария. Такой состав материал обеспечивает сохранение магнитных свойств в широком диапазоне температур от –40 до +280 ⁰С. Обычные магниты в виде блоков, квадратов, колец или подков широко используются в промышленности и в быту.

Ферритовый магнит прямоугольник 60х25х15 мм.jpg

Кобальтовые магниты

Название этой группы магнитов представляет собой аббревиатуру названий своих составляющих: алюминий, никель и кобальт. Главное преимущество сплава альнико состоит в непревзойденной температурной устойчивости материала. Другие виды магнитов не могут похвастаться наличием возможности применения при температурах до +550 ⁰С. В то же время этот легкий материал характеризуется слабой коэрцитивной силой. Это означает, что он может полностью размагничиваться при воздействии сильного внешнего магнитного поля. В то же время благодаря своей доступной цене альнико является незаменимым решением во многих научных и промышленных отраслях.

Магнитный брусок 60х15х6 мм.jpg

Магнитопласты или гибкие магниты

Легкий, мягкий и гибкий материал изготавливается на основе магнитного порошка. В качестве связующего компонента могут использоваться каучук, винил, акрил, пластик и другие материалы. Из такого сырья можно получить изделия любых форм и размеров. Сила удержания мягких магнитов уступает альтернативным вариантам, но для решения поставленных задач ее вполне достаточно. Гибкие магниты находят свое применение в производстве рекламной продукции, съемных наклеек на авто, а также в изготовлении различных канцелярских и сувенирных товаров.

Магнитный винил с клеевым слоем 0,62 х 1 м, толщина 0,4 мм.jpg

Современная магнитная продукция

Итак, со сплавами разобрались. Теперь перейдем к тому, какие бывают магниты и какое применение им найти в быту. На самом деле существует огромное разнообразие вариантов подобной продукции:

1) Игрушки. Дартс без острых дротиков, настольные игры, развивающие конструкции – силы магнетизма делают привычные развлечения намного более интересными и увлекательными.

магнитный дартс большой.jpg

2) Крепления и держатели.Крючки и панели помогут удобно организовать пространство без пыльного монтажа и сверления стен. Постоянная магнитная сила креплений оказывается незаменимой в домашней мастерской, в бутиках и магазинах. Кроме того, им найдется достойное применение в любой комнате.

Магнитное крепление с крючком Е48 (М8).jpg

3) Офисные магниты.Для презентаций и планерок используются магнитные доски, которые позволяют наглядно и детально представить любую информацию. Также они оказываются крайне полезны в школьных кабинетах и аудиториях университетов.

магниты для доски форсберг.jpg

4) Захваты.Специальные виды магнитов позволяют находить металлические объекты в любых условиях. Небольшой поисковый магнит может вытянуть из водоема или колодца объект весом 200-300 кг и более. Компактные телескопические устройства позволяются за считанные секунды находить металлические детали в труднодоступных местах.

Мечта кладоискателя Forceberg.jpg

5) Магнитные опыты.Знакомство с силами магнетизма – это самая веселая и увлекательная часть физики. Специальные наборы для опытов помогут узнать, как электрический ток меняет направление магнитного поля, а специальная пленка-индикатор позволит увидеть, как на практике направление магнитных сил.

пленка для визуализации магнитного поля.jpg

Чтобы узнать подробно, какие бывают магниты и выбрать подходящие изделия для домашнего использования или для применения в своей профессиональной деятельности, изучите каталог интернет-магазина «Мир магнитов». В представленном ассортименте вы найдете очень полезные и нужные вещи, которые помогут сделать жизнь проще и интересней.

Источник

Какие свойства есть у магнитов

Магниты – это материалы, которые генерируют поле, которое притягивает или отталкивает некоторые другие материалы (например, железо и никель) с определенного расстояния. Это невидимое поле, известное как магнитное поле, отвечает за ключевые свойства магнита.

Древние люди использовали магниты по крайней мере с 500 г. до н.э., и самые ранние известные описания таких материалов и их характеристики происходят из Китая, Индии и Греции около 25 веков назад. Однако искусственные магниты были созданы еще в 1980-х годах.

Очевидно, что не все магниты состоят из одних и тех же веществ, и поэтому их можно разделить на разные классы в зависимости от их состава и источника магнетизма. Ниже приведен подробный список трех основных типов магнитов с указанием их свойств, прочности, а также промышленного и непромышленного применения.

1. Постоянные магниты

После намагничивания постоянные магниты могут сохранять магнетизм в течение продолжительного времени. Они сделаны из материалов, которые могут намагничиваться и создают собственное постоянное магнитное поле.
Обычно постоянные магниты изготавливаются из четырех различных типов материалов:

I) Ферритовые магниты

Какие свойства есть у магнитовСтек ферритовых магнитов | Изображение предоставлено: Викимедиа

Ферритовые магниты (также называемые керамическими магнитами) являются электроизоляционными. Они темно-серого цвета и выглядят как карандашный грифель.

Ферриты обычно представляют собой ферромагнитные керамические соединения, получаемые путем смешивания больших количеств оксида железа с металлическими элементами, такими как марганец, барий, цинк и никель. Некоторые ферриты имеют кристаллическую структуру, например ферриты стронция и бария.

Они довольно популярны благодаря своей природе: они не подвержены коррозии и, следовательно, используются для продления жизненного цикла многих продуктов. Ферритовые магниты могут использоваться в чрезвычайно жарких условиях (до 300 градусов Цельсия), и стоимость изготовления таких магнитов также низкая, особенно если они производятся в больших объемах.

Они могут быть далее подразделены на «твердые», «полужесткие» или «мягкие» ферриты, в зависимости от их магнитных свойств.

Поскольку твердые ферриты трудно размагничивать, они обладают высокой коэрцитивной силой. Они используются для изготовления магнитов, например небольших электродвигателей и громкоговорителей. Мягкие ферриты, с другой стороны, имеют низкую коэрцитивную силу и используются для изготовления электронных индукторов, трансформаторов и различных микроволновых компонентов.

II) магниты Алнико

Какие свойства есть у магнитовМагнит-подкова из алнико 5 | Эта U-образная форма образует мощное магнитное поле между полюсами, позволяя магниту захватывать тяжелые ферромагнитные материалы.

Магниты алнико состоят из алюминия (Al), никеля (Ni) и кобальта (Co), отсюда и название al-ni-co. Они часто включают титан и медь. В отличие от керамических магнитов, они являются электропроводящими и имеют высокие температуры плавления.

Чтобы классифицировать их (основываясь на их магнитных свойствах и химическом составе), Ассоциация производителей магнитных материалов присвоила им номера, такие как Alnico 3 или Alnico 7.

Алникос был самым сильным типом постоянных магнитов до развития редкоземельных магнитов в 1970-х годах. Известно, что они создают высокую напряженность магнитного поля на своих полюсах – до 0,15 Тесла, что в 3000 раз сильнее, чем магнитное поле Земли.

Сплавы Alnico могут сохранять свои магнитные свойства при высоких рабочих температурах, вплоть до 800 градусов Цельсия. Фактически, они являются единственными магнитами, которые имеют магнетизм при нагревании раскаленным докрасна.

Эти магниты широко используются в бытовых и промышленных применениях: несколько примеров – это магнетронные трубки, датчики, микрофоны, электродвигатели, громкоговорители, электронные трубки, радары.

III) Редкоземельные магниты

Какие свойства есть у магнитов

Как следует из названия, редкоземельные магниты изготавливаются из сплавов редкоземельных элементов. Это самый сильный тип постоянных магнитов, разработанный в 1970-х годах. Их магнитное поле может легко превышать 1 Тесла.

Два типа редкоземельных магнитов – самарий-кобальтовые и неодимовые магниты. Оба уязвимы для коррозии и очень хрупкие. Таким образом, они покрыты определенным слоем (слоями), чтобы защитить их от сколов или поломок.

Самарий-кобальтовые магниты состоят из празеодима, церия, гадолиния, железа, меди и циркония. Они могут сохранять свои магнитные свойства при высоких температурах и обладают высокой устойчивостью к окислению.

Из-за их меньшей напряженности магнитного поля и высокой стоимости производства они используются реже, чем другие редкоземельные магниты. В настоящее время они используются в настольном ядерно-магнитно-резонансном спектрометре, высококачественных электродвигателях, турбомашиностроении и во многих областях, где производительность должна соответствовать изменению температуры.

Неодимовые магниты, с другой стороны, являются наиболее доступным и сильным типом редкоземельных магнитов. Они представляют собой тетрагональную кристаллическую структуру, изготовленную из сплавов неодима, бора и железа.

Благодаря своим меньшим размерам и небольшому весу они заменили ферритовые и алникомагниты в многочисленных применениях в современных технологиях. Например, неодимовые магниты в настоящее время используются в головном приводе для компьютерных жестких дисков, электродвигателей для аккумуляторных инструментов, механических переключателей электронных сигарет и динамиков мобильных телефонов.

IV) одномолекулярные магниты

Какие свойства есть у магнитовУниверсальный внутриклеточный белок, называемый ферритином, считается магнитом с одной молекулой. Он хранит железо и выпускает его контролируемым образом.

К концу 20-го века ученые узнали, что некоторые молекулы [которые состоят из ионов парамагнитного металла] могут проявлять магнитные свойства при очень низких температурах. Теоретически они способны хранить информацию на уровне магнитных доменов и обеспечивать гораздо более плотный носитель, чем традиционные магниты.

Одномолекулярные магниты состоят из кластеров марганца, никеля, железа, ванадия и кобальта. Было обнаружено, что некоторые цепные системы, такие как одноцепные магниты, сохраняют магнетизм в течение длительного периода времени при более высоких температурах.

Исследователи в настоящее время изучают монослои таких магнитов. Одним из ранних соединений, которое было исследовано в качестве одно-молекулярного магнита, является додекануклеарная марганцевая клетка.

Потенциальные возможности применения этих магнитов огромны. К ним относятся квантовые вычисления, хранение данных, обработка информации и биомедицинские приложения, такие как контрастные агенты МРТ.

2. Временные магниты

Какие свойства есть у магнитов

Некоторые объекты могут быть легко намагничены даже слабым магнитным полем. Однако, когда магнитное поле удалено, они теряют свой магнетизм.

Временные магниты различаются по составу: они могут быть любым объектом, который действует как постоянный магнит в присутствии магнитного поля. Например, магнитомягкий материал, такой как никель и железо, не будет притягивать скрепки после удаления внешнего магнитного поля.

Когда постоянный магнит подносится к группе стальных гвоздей, гвозди прикрепляются друг к другу, а затем к постоянному магниту. В этом случае каждый гвоздь становится временным магнитом, а когда постоянный магнит удаляется, они больше не прикрепляются друг к другу.

Временные магниты в основном используются для изготовления временных электромагнитов, сила которых может варьироваться в соответствии с требованиями. Они также используются для разделения материалов, сделанных из металла, на складах металлолома и дают новый импульс современной технологии – от высокоскоростных поездов до высокотехнологичного пространства.

3. Электромагнит

Какие свойства есть у магнитовЭлектромагнит притягивающий железные опилки

Электромагнит был изобретен британским ученым Уильямом Стердженом в 1824 году. Затем он был систематически усовершенствован и популяризирован американским ученым Джозефом Генри в начале 1830-х годов.

Электромагниты представляют собой плотно намотанные витки провода, которые функционируют как магниты при прохождении электрического тока. Его также можно классифицировать как временный магнит, поскольку магнитное поле исчезает, как только ток отключается.

Полярность и напряженность магнитного поля, создаваемого электромагнитом, можно регулировать, изменяя направление и величину тока, протекающего через провод. Это главное преимущество электромагнитов перед постоянными магнитами.

Для усиления магнитного поля катушка обычно наматывается на сердечник из «мягкого» ферромагнитного материала, такого как мягкая сталь. Провод, свернутый в одну или несколько петель, называется соленоидом.

Эти типы магнитов широко используются в электрических и электромеханических устройствах, включая жесткие диски, громкоговорители, жесткие диски, трансформаторы, электрические звонки, МРТ-машины, ускорители частиц и различные научные приборы.

Электромагниты также используются в промышленности для захвата и перемещения тяжелых предметов, таких как металлолом и сталь.

Источник