Какие свойства есть у алюминия

Какие свойства есть у алюминия thumbnail

АлюминийАлюминий – это пластичный и лёгкий металл белого цвета, покрытый серебристой матовой оксидной плёнкой. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Al (Aluminium) и находится в главной подгруппе III группы, третьего периода, под атомным номером 13. Купить алюминий вы можете на нашем сайте.

История открытия

В 16 веке знаменитый Парацельс сделал первый шаг к добыче алюминия. Из квасцов он выделил «квасцовую землю», которая содержала оксид неизвестного тогда металла. В 18 веке к этому эксперименту вернулся немецкий химик Андреас Маргграф. Оксид алюминия он назвал «alumina», что на латинском языке означает «вяжущий». На тот момент металл не пользовался популярностью, так как не был найден в чистом виде.
Долгие годы выделить чистый алюминий пытались английские, датские и немецкие учёные. В 1855 году в Париже на Всемирной выставке металл алюминий произвёл фурор. Из него делали только предметы роскоши и ювелирные украшения, так как металл был достаточно дорогим. В конце 19 века появился более современный и дешёвый метод получения алюминия. В 1911 году в Дюрене выпустили первую партию дюралюминия, названного в честь города. В 1919 из этого материала был создан первый самолёт.

Физические свойства

Металл алюминий характеризуется высокой электропроводностью, теплопроводностью, стойкостью к коррозии и морозу, пластичностью. Он хорошо поддаётся штамповке, ковке, волочению, прокатке. Алюминий хорошо сваривается различными видами сварки. Важным свойством является малая плотность около 2,7 г/см³. Температура плавления составляет около 660°С.
Механические, физико-химические и технологические свойства алюминия зависят от наличия и количества примесей, которые ухудшают свойства чистого металла. Основные естественные примеси – это кремний, железо, цинк, титан и медь.

По степени очистки различают алюминий высокой и технической чистоты.  Практическое различие заключается в отличии коррозионной устойчивости к некоторым средам. Чем чище металл, тем он дороже. Технический алюминий используется для изготовления сплавов, проката и кабельно-проводниковой продукции. Металл высокой чистоты применяют в специальных целях.
По показателю электропроводности алюминий уступает только золоту, серебру и меди. А сочетание малой плотности и высокой электропроводности позволяет конкурировать в сфере кабельно-проводниковой продукции с медью. Длительный отжиг улучшает электропроводность, а нагартовка ухудшает.

Теплопроводность алюминия повышается с увеличением чистоты металла. Примеси марганца, магния и меди снижают это свойство. По показателю теплопроводности алюминий проигрывает только меди и серебру. Благодаря этому свойству металл применяется в теплообменниках и радиаторах охлаждения.
Алюминий обладает высокой удельной теплоёмкостью и теплотой плавления. Эти показатели значительно больше, чем у большинства металлов. Чем выше степень чистоты алюминия, тем больше он способен отражать свет от поверхности. Металл хорошо полируется и анодируется.

Алюминий имеет большое сродство к кислороду и покрывается на воздухе тонкой прочной плёнкой оксида алюминия. Эта плёнка защищает металл от последующего окисления и обеспечивает его хорошие антикоррозионные свойства. Алюминий обладает стойкостью к атмосферной коррозии, морской и пресной воде, практически не вступает во взаимодействия с органическими кислотами, концентрированной или разбавленной азотной кислотой.

Химические свойства

Алюминий – это достаточно активный амфотерный металл. При обычных условиях прочная оксидная плёнка определяет его стойкость. Если разрушить оксидную плёнку, алюминий выступает как активный металл-восстановитель. В мелкораздробленном состоянии и при высокой температуре металл взаимодействует с кислородом. При нагревании происходят реакции с серой, фосфором, азотом, углеродом, йодом. При обычных условиях металл взаимодействует с хлором и бромом. С водородом реакции не происходит. С металлами алюминий образует сплавы, содержащие интерметаллические соединения – алюминиды.

При условии очищения от оксидной пленки, происходит энергичное взаимодействие с водой. Легко протекают реакции с разбавленными кислотами. Реакции с концентрированной азотной и серной кислотой происходят при нагревании. Алюминий легко реагирует со щелочами. Практическое применение в металлургии нашло свойство восстанавливать металлы из оксидов и солей – реакции алюминотермии.

Получение

Алюминий находится на первом месте среди металлов и на третьем среди всех элементов по распространённости в земной коре. Приблизительно 8% массы земной коры составляет именно этот металл. Алюминий содержится в тканях животных и растений в качестве микроэлемента. В природе он встречается в связанном виде в форме горных пород, минералов.  Каменная оболочка земли, находящаяся в основе континентов, формируется именно алюмосиликатами и силикатами.

Алюмосиликаты – это минералы, образовавшиеся в результате вулканических процессов в соответствующих условиях высоких температур. При разрушении алюмосиликатов первичного происхождения (полевые шпаты) сформировались разнообразные вторичные породы с более высоким содержанием алюминия (алуниты, каолины, бокситы, нефелины). В состав вторичных пород алюминий входит в виде гидроокисей или гидросиликатов. Однако не каждая алюминийсодержащая порода может быть сырьём для глинозёма – продукта, из которого при помощи метода электролиза получают алюминий.

Наиболее часто алюминий получают из бокситов. Залежи этого минерала распространены в странах тропического и субтропического пояса. В России также применяются нефелиновые руды, месторождения которых располагаются в Кемеровской области и на Кольском полуострове. При добыче алюминия из нефелинов попутно также получают поташ, кальцинированную соду, цемент и удобрения.

Читайте также:  В каких реакциях соляная кислота проявляет окислительные свойства примеры

В бокситах содержится 40-60% глинозёма. Также в составе имеются оксид железа, диоксид титана, кремнезём. Для выделения чистого глинозёма используют процесс Байера. В автоклаве руду нагревают с едким натром, охлаждают, отделяют от жидкости «красный шлам» (твёрдый осадок). После осаждают гидроокись алюминия из полученного раствора и прокаливают её для получения чистого глинозёма. Глинозём должен соответствовать высоким стандартам по чистоте и размеру частиц.

Из добытой и обогащённой руды извлекают глинозём (оксид алюминия). Затем методом электролиза глинозём превращают в алюминий. Заключительным этапом является восстановление процессом Холла-Эру. Процесс заключается в следующем: при электролизе раствора глинозёма в расплавленном криолите происходит выделение алюминия. Катодом служит дно электролизной ванны, а анодом – угольные бруски, находящиеся в криолите. Расплавленный алюминий осаждается под раствором криолита с 3-5% глинозёма. Температура процесса поднимается до 950°С, что намного превышает температуру плавления самого алюминия (660°С). Глубокую очистку алюминия проводят зонной плавкой или дистилляцией его через субфторид.

Применение

Алюминий применяется в металлургии в качестве основы для сплавов (дуралюмин, силумин) и легирующего элемента (сплавы на основе меди, железа, магния, никеля). Сплавы алюминия используются в быту, в архитектуре и строительстве, в судостроении и автомобилестроении, а также в космической и авиационной технике. Алюминий применяется при производстве взрывчатых веществ. Анодированный алюминий (покрытый окрашенными плёнками из оксида алюминия) применяют для изготовления бижутерии. Также металл используется в электротехнике.

Рассмотрим, как используют различные изделия из алюминия.

Алюминиевая лента представляет собой тонкую алюминиевую полосу толщиной 0,3-2 мм, шириной 50-1250 мм, которая поставляется в рулонах. Используется лента в пищевой, лёгкой, холодильной промышленности для изготовления охлаждающих элементов и радиаторов.

Круглая алюминиевая проволока применяется для изготовления кабелей и проводов для электротехнических целей, а прямоугольная для обмоточных проводов.

Алюминиевые трубы отличаются долговечностью и стойкостью в условиях сельских и городских промышленных районов. Применяются они в отделочных работах, дорожном строительстве, конструкции автомобилей, самолётов и судов, производстве радиаторов, трубопроводов и бензобаков, монтаже систем отопления, магистральных трубопроводов, газопроводов, водопроводов.

Алюминиевые втулки характеризуются простотой в обработке, монтаже и эксплуатации. Используются они для концевого соединения металлических тросов.

Алюминиевый круг – это сплошной профиль круглого сечения. Используется это изделие для изготовления различных конструкций.

Алюминиевый пруток применяется для изготовления гаек, болтов, валов, крепежных элементов и шпинделей.
Около 3 мг алюминия каждый день поступает в организм человека с продуктами питания. Больше всего металла в овсянке, горохе, пшенице, рисе. Учёными установлено, что он способствует процессам регенерации, стимулирует развитие и рост тканей, оказывает влияние на активность пищеварительных желёз и ферментов.

Алюминиевый лист

Алюминиевая плита

Алюминиевые чушки

Алюминиевые уголки

Алюминиевая проволока

При использовании алюминиевой посуды в быту необходимо помнить, что хранить и нагревать в ней можно исключительно нейтральные жидкости. Если же в такой посуде готовить, к примеру, кислые щи, то алюминий поступит в еду, и она будет иметь неприятный «металлический» привкус.

Алюминий входит в состав лекарственных препаратов, используемых при заболеваниях почек и желудочно-кишечного тракта.

Источник

Алюминий –  элемент III группы, главной «А» подгруппы, 3 периода периодической системы, порядковый номер №13, относительная атомная масса Ar(Al) = 27.  Его соседом слева в таблице является магний – типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий должен проявлять свойства некоторого промежуточного характера и его соединения являются амфотерными. 

В возбужденном состоянии на внешнем уровне алюминия находится три неспаренных электрона. Поэтому в соединениях с ковалентной связью алюминий проявляет валентность III. Во всех соединениях алюминий проявляет постоянную степень окисления: +3.

Какие свойства есть у алюминия

Физические свойства

Какие свойства есть у алюминия

Алюминий в свободном виде — се­ребристо-белый металл, обладающий высокой тепло- и электро­проводностью. Температура плавления  650 $^circ C$. Алюминий имеет невысокую плотность (2,7 г/см$^3$) — при­мерно втрое меньше, чем у железа или меди, и одновременно — это прочный металл

Нахождение в природе 

По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию.  В природе алюминий встречается только в соединениях (минералах):

  • Бокситы — $Al_2O_3 cdot H_2O$ (с примесями $SiO_2, Fe_2O_3, CaCO_3$)

  • Нефелины —$ KNa_3[AlSiO_4]_4$

  • Алуниты — $KAl(SO_4)_2 cdot 2Al(OH)_3$

  • Глинозёмы (смеси каолинов с песком $SiO_2$, известняком $CaCO_3$, магнезитом $MgCO_3$)

  • Корунд — $Al_2O_3$

  • Полевой шпат (ортоклаз) — $K_2Ocdot Al_2O_3 cdot6SiO_2$

  • Каолинит — $Al_2O_3 cdot2SiO_2 cdot 2H_2O$

  • Алунит —$ (Na,K)_2SO_4cdot Al_2(SO_4)_3 cdot4Al(OH)_3$

  • Берилл — $3BeO cdot Al_2O_3 cdot6SiO_2$

Какие свойства есть у алюминияКакие свойства есть у алюминияКакие свойства есть у алюминия

               Берилл                                                Корунд                                                Нефелин

Химические свойства

Алюминий – химически  активный металл, но прочная оксидная пленка состава $Al_2O_3$ определяет его стойкость при обычных условиях. Практически во всех химических реакциях алюминий проявляет восстановительные свойства.

Читайте также:  Какие свойства клеточной мембраны

1. Взаимодействие с неметаллами

С кислородом взаимодействует только в мелкораздробленном состоянии при высокой температуре:

$4Al + 3O_2 = 2Al_2O_3$

реакция сопровождается большим выделением тепла (1676 кДж).

С галогенами (кроме фтора) алюминий реагирует при комнатной температуре, с образованием галогенидов:

$2Al + 3Cl_2 = 2AlCl_3$

С водородом непосредственно не взаимодействует.

С другими неметаллами алюминий реагирует при нагревании, образуя бинарные соединения:

$2Al +3F_2= 2AlF_3$  фторид алюминия ($t=600^circ C$)

$2Al + 3S = Al2S3$  сульфида алюминия ($t=200^circ C$)

$Al + P = AlP$ фосфид алюминия ($t=500^circ C$)

$2Al + N2 = 2AlN$ нитрид алюминия ($t=800^circ C$)

$4Al + 3C = Al4C3$  карбид алюминия ($t=2000^circ C$)

Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и летучих водородных соединений (сероводорода, фосфина, аммиака, метана и т.д.):

$Al2S3 + 6H_2O = 2Al(OH)_3downarrow + 3H_2S­uparrow$

$Al_4C_3 + 12H2O = 4Al(OH)_3downarrow+ 3CH_4­uparrow$

2. С металлами образует сплавы, которые содержат интерметаллические соединения – алюминиды, например, CuAl2, CrAl7, FeAl3 и др.

3.Очищенный от оксидной пленки алюминий энергично взаимодействует с водой:

$2Al + 6H_2O = 2Al(OH)_3downarrow + 3H_2uparrow$

В результате реакции образуется малорастворимый гидроксид алюминия и выделяется водород.

4. С оксидами менее активных металлов:

$Cr_2O_3 + 2Al = Al_2O_3 + 2Cr$

Такая реакция – алюмотермия – используется для получения чистых редких металлов, например таких, как вольфрам, ваннадий и др.                                                                           

5. Алюминий легко взаимодействует с разбавленными кислотами, образуя соли:

$2Al + 6HCl = 2AlCl_3 + 3H_2uparrow$

$2Al + 3H_2SO_{4textrm{разб.}} = Al_2(SO_4)_3 + 3H_2uparrow$

$Al + 4HNO_3 = Al(NO_3)_3 + NOuparrow + 2H_2O$

в качестве продукта восстановления азотной кислоты также может быть азот и нитрат аммония.

Запомнить! С концентрированной азотной и серной кислотами при комнатной температуре алюминий не взаимодействует (пассивация); при нагревании реагирует с образованием соли и продукта восстановления кислоты:

$2Al + 6H_2SO_{4textrm{(конц.)} }xrightarrow[]{t, ^circ C}  Al_2(SO_4)_3 + underline{3SO_2uparrow} + 6H_2O$

$Al + 6HNO_{3textrm{(конц.)} }xrightarrow[]{t, ^circ C} Al(NO_3)_3 + underline{3NO_2uparrow} + 3H_2O$

6. Алюминий – амфотерный металл, он легко реагирует со щелочами:

  • в растворе с образованием тетрагидроксоаалюмината натрия:

    $2Al + 2NaOH + 6H_2O = 2Na[Al(OH)_4] + 3H_2$

  • при сплавлении с образованием алюминатов:

    $2Al + 6KOH = 2KAlO_2 + 2K2O + 3H_2uparrow$

7. С солями менее активных металлов (стоящих в ряду напряжения правее алюминия):

$2Al + 3NiSO_4 = 3Ni + Al_2(SO_4)_3$

Соединения алюминия

Какие свойства есть у алюминия

Оксид алюминия $Al_2O_3$

твердое вещество белого цвета, тугоплавкое. Не реагирует с водой и не растворяется в ней. Типичный амфотерный оксид, поэтому реагирует и с кислотами и со щелочами.

При взаимодействии с кислотами образуется соль и вода:

$Al_2O_3 + 6 HCl = 2 AlCl_3 + 3 H_2O $

 Со щелочами алюминий реагирует в расплаве и в растворе:

Запомнить! 

  • при сплавлении образуется метаалюминат натрия:

    $Al_2O_{3textrm{(тв)}}+ 2 NaOH_{textrm{ (тв) }} xrightarrow[]{t, ^circ C} 2 NaAlO_2 + H_2O$

  • в растворе щёлочи образуется тетрагидроксоалюминат натрия:

    $Al_2O_3 + 2 NaOH + 3 H_2O = 2Na[Al(OH)_4]$

Гидроксид алюминия $Al(OH)_3$

Какие свойства есть у алюминия

белое вещество, нерастворимое в воде,  амфотерный гидроксид. 

Проявляя типичные амфотерные свойства, гидроксид алюминия взаимодействует с кислотами:

$Al(OH)_3 + 3 HCl = AlCl_3 + 3 H_2O$

и щелочами.

  • в растворе: $Al(OH)_3 + NaOHtextrm{(избыток)}= Na[Al(OH)_4]$ или $Al(OH)_3 + 3 NaOH = Na_3[Al(OH)_6]$

  • в расплаве: $Al(OH)_3 + NaOH = NaAlO_2 + 2H_2O$

Получают $Al(OH)_3$ косвенно реакцией обмена между солью алюминия и щелочью:

$AlCl_3 + NaOHtextrm{ (по каплям)}= Al(OH)_3 downarrow+ 3 NaCl $

При дальнейшем добавлении раствора щелочи к соли алюминия осадок будет растворяться вследствие взаимодействия образующегося гидроксида алюминия с избытком щелочи; при это образуется комплексная соль:

$AlCl_3 +4 NaOH_{textrm{ (изб.)}}= Na[Al(OH)_4]+ 3 NaCl $

СОЛИ АЛЮМИНИЯ

Какие свойства есть у алюминия

Соли алюминия и некоторых слабых кислот, например, сернистой и угольной не могут быть выделены из водных растворов по причине полного необратимого гидролиза

$2AlCl_3 + 3Na_2CO_3 + 3H_2O = 2Al(OH)_3downarrow +3CO_2uparrow + 6NaCl$

О протекании реакции судят по выделению газа и образованию желеообразного белого осадка (гидроксида алюминия).

Соли алюминия и сильных кислот – растворимы; растворы таких солей имеют кислый характер среду вследствие гидролиза по катиону. Первая ступень гидролиза подобных солей отражается уравнением:

$Al^{3+} + H_2O leftrightarrow AlOH^{2+} + H^+$

Алюминаты неустойчивы и даже при слабом подкислении разрушаются:

$NaAlO_2 + 4HNO_3 = NaNO_3 + Al(NO_3)_3 + 2H_2O$

Тетрагидроксокопмлексы алюминия также разрушаются под действием кислоты с образованием осадка гидроксида алюминия и соли:

$Na[Al(OH)4] + HCl = Al(OH)_3downarrow + NaCl +H_2O$

При добавлении к комплексной избытка кислоты образуется смесь солей (образующийся гидроксид алюминия взаимодействует с избыточном количеством кислоты, что приводит к образованию соотвествующей соли алюминия):

Читайте также:  Какое свойство характеризует магнитное поле

$Na[Al(OH)4] + 4HCl_{textrm{изб.}} = AlCl_3 + NaCl +4H_2O$

При действии слабых кислот (растворенного в воде углекислого газа или сероводорода) образуются кислые соли:

$Na[Al(OH)_4] + CO_2 = Al(OH)_3downarrow + NaHCO_3$

Источник

Физические свойства алюминия

Алюминий — мягкий, легкий, серебристо-белый металл с высокой тепло- и электропроводностью. Температура плавления 660°C.

По распространенности в земной коре алюминий занимает 3-е место после кислорода и кремния среди всех атомов и 1-е место — среди металлов.

К достоинствам алюминия и его сплавов следует отнести его малую плотность (2,7 г/см3), сравнительно высокие прочностные характеристики, хорошую тепло- и электропроводность, технологичность, высокую коррозионную стойкость. Совокупность этих свойств позволяет отнести алюминий к числу важнейших технических материалов.

Алюминий и его сплавы делятся по способу получения на деформируемые, подвергаемые обработке давлением и литейные, используемые в виде фасонного литья; по применению термической обработки — на термически не упрочняемые и термически упрочняемые, а также по системам легирования.

Получение

Впервые алюминий был получен Гансом Эрстедом в 1825 году. Современный метод получения разработали независимо друг от друга американец Чарльз Холл и француз Поль Эру. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке.

Применение

Алюминий широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — легкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной пленкой Al2O3, которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки.

Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому его обычно сплавляют с небольшим количеством меди и магния (сплав называется дюралюминий).

Электропроводность алюминия сравнима с медью, при этом алюминий дешевле. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Правда, у алюминия как электротехнического материала есть неприятное свойство — из-за прочной оксидной пленки его тяжело паять.

Благодаря комплексу свойств широко распространен в тепловом оборудовании.

Внедрение алюминиевых сплавов в строительстве уменьшает металлоемкость, повышает долговечность и надежность конструкций при эксплуатации их в экстремальных условиях (низкая температура, землетрясение и т.п.).

Алюминий находит широкое применение в различных видах транспорта. На современном этапе развития авиации алюминиевые сплавы являются основными конструкционными материалами в самолетостроении. Алюминий и сплавы на его основе находят все более широкое применение в судостроении. Из алюминиевых сплавов изготовляют корпусы судов, палубные надстройки, коммуникацию и различного рода судовое оборудование.

Идут исследования по разработке пенистого алюминия как особо прочного и легкого материала.

Драгоценный алюминий

В настоящее время алюминий является одним из самых популярных и нашедших широкое применение металлов. С самого момента открытия в середине XIX века его считали одним из ценнейших благодаря удивительным качествам: белый как серебро, легкий по весу и не подверженный воздействию окружающей среды. Стоимость его была выше цен на золото. Не удивительно, что в первую очередь алюминий нашел свое применение в создании ювелирных изделий и дорогих декоративных элементов.

В 1855 г. на Универсальной выставке в Париже алюминий был самой главной достопримечательностью. Изделия из алюминия располагались в витрине, соседствующей с бриллиантами французской короны. Постепенно зародилась определенная мода на алюминий. Его считали благородным малоизученным металлом, используемым исключительно для создания произведений искусства.

Наиболее часто алюминий использовали ювелиры. При помощи особой обработки поверхности ювелиры добивались наиболее светлого цвета металла, из-за чего его часто приравнивали к серебру. Но в сравнении с серебром, алюминий обладал более мягким блеском, чем обуславливалась еще большая любовь к нему ювелиров.

Так как химические и физические свойства алюминия сначала были слабо изучены, ювелиры сами изобретали новые техники его обработки. Алюминий технически легко обрабатывать, этот мягкий металл позволяет создавать отпечатки любых узоров, наносить рисунки и создавать желаемой формы изделия. Алюминий покрывался золотом, полировался и доводился до матовых оттенков.

Но со временем алюминий стал падать цене. Если в 1854-1856 годах стоимость одного килограмма алюминия составляла 3 тысячи старых франков, то в середине 1860-х годов за килограмм этого металла давали уже около ста старых франков. Впоследствии из-за низкой стоимости алюминий вышел из моды.

В настоящее время самые первые алюминиевые изделия представляют большую редкость. Большинство из них не пережило обесценивания металла и было заменено серебром, золотом и другими драгоценными металлами и сплавами. В последнее время вновь наблюдается повышенный интерес к алюминию у специалистов. Этот металл стал темой отдельной выставки , организованной в 2000 году Музеем Карнеги в Питсбурге. Во Франции расположен Институт истории алюминия, который в частности занимается исследованием первых ювелирных изделий из этого металла.

В Советском союзе из алюминия делали общепитовские приборы, чайники и т.д. И не только. Первый советский спутник был выполнен из алюминиевого сплава. Другой потребитель алюминия — электротехническая промышленность: из него делаются провода высоковольтных линий передач, обмотки моторов и трансформаторов, кабели, цоколи ламп, конденсаторы и многие другие изделия. Кроме того, порошок алюминия применяют во взрывчатых веществах и твердом топливе для ракет, используя его свойство быстро воспламеняться: если бы алюминий не покрывался тончайшей оксидной пленкой, то мог бы вспыхивать на воздухе.

Последнее изобретение — пеноалюминий, т.н. «металлический поролон», которому предсказывают большое будущее.

Источник