Какие свойства цифрового звука определяют его качество
Параметры цифрового звука
Настала пора поговорить о параметрах цифрового звука. Если цифровое видео характеризуется тремя параметрами, то в случае цифрового звука их насчитывается четыре.
Внимание!
Дальнейший разговор затрагивает только звук, кодированный способом прямой оцифровки. Способы командного и командно-сэмплерного кодирования мы рассматривать не будем — в случае Flash они не актуальны. (Хотя для сэмплов они все же имеют значение, так как сэмплы — суть звуки, оцифрованные напрямую.)
Главный параметр цифрового звука нам уже знаком — это ширина потока данных. Она показывает, сколько места будет отведено для хранения массива звуковых данных, и значит, определяет качество аудиоклипа и размер файла, где он хранится.
Поскольку звуковые данные занимают значительно меньше места, чем данные видео, то значения ширины потока данных для звука меньше, чем для фильмов. Так, для распространения аудиоклипов через Интернет используются значения 96—128 Кбит/с. Если нужно получить клипы небольших размеров, пожертвовав его качеством, используются значения 24–64 Кбит/с. Если же важно именно качество, а размер не имеет особого значения, звук сжимают с шириной потока данных 256–320 Кбит/с, а то и большей, если такие значения поддерживаются кодеком.
Второй по значимости параметр — частота оцифровки звука, измеряемая в герцах. Она определяет, сколько раз в секунду звуковая карта измеряет уровень сигнала, и, соответственно, также задает качество цифрового звука.
Для оцифровки высококачественного звука используются значения 44,1 или 48 кГц — это так называемое “CD-качество” (качество компакт-диска). Если нужно получить файл меньшего размера, звук оцифровывают с частотой 22,05 или 24 кГц, а иногда — даже с меньшей. В студиях звукозаписи при необходимости получить максимальное качество применяют оцифровку с частотой 96 КГц (“профессиональное качество”).
Третий параметр — разрядность — определяет, какое количество битов отводится под хранение каждого значения уровня сигнала. В настоящее время практически всегда под это отводится 16 бит (два байта); иногда, но очень редко также используется значение 8 бит (один байт). В студиях звукозаписи звук оцифровывают с разрядностью 24 бита (три байта).
Четвертый и последний параметр — количество каналов. Оно определяет количество отдельных массивов звуковых данных — каналов звука, хранящихся в одном файле. Так, стереофонический звуковой файл, скопированный нами с CD, содержит два таких канала. Разумеется, чем больше каналов звука хранится в файле, тем он больше, и наоборот.
Чаще всего для распространения через Интернет в программировании и Web-дизайне используется одноканальный (монофонический) или двухканальный (стереофонический) цифровой звук. На DVD записывается шестиканальный звук (так называемый “стандарт 5.1”), а самые современные звуковые карты поддерживают воспроизведение даже восьмиканального звука (“стандарт 7.1”). Но это не наш случай, так как Flash поддерживает только одно- и двухканальный звук.
Данный текст является ознакомительным фрагментом.
Читайте также
Способы получения цифрового сертификата
Способы получения цифрового сертификата
Различаются цифровые сертификаты трех типов: созданные разработчиком, выданные разработчику организацией и полученные от центра сертификации.Цифровой сертификат, созданный разработчиком, обычно используют те пользователи,
Скрытые прелести цифрового ориентализма
Скрытые прелести цифрового ориентализма
Какие бы выводы ни сделал Запад из наблюдений за интернетом в демократической среде, они едва ли применимы к авторитарным государствам. Всякий раз, когда китайские власти ужесточают меры в отношении интернет-кафе, работающих без
27.5. Параметры транзитных узлов и параметры получателя IPv6
27.5. Параметры транзитных узлов и параметры получателя IPv6
Параметры для транзитных узлов и параметры получателя IPv6 имеют одинаковый формат, показанный на рис. 27.3. Восьмиразрядное поле следующий заголовок (next header) идентифицирует следующий заголовок, который следует за
7.3.2. Параметры-ссылки и параметры-указатели
7.3.2. Параметры-ссылки и параметры-указатели
Когда же лучше использовать параметры-ссылки, а когда – параметры-указатели? В конце концов, и те и другие позволяют функции модифицировать объекты, эффективно передавать в функцию большие объекты типа класса. Что выбрать:
Основы цифрового звука
Основы цифрового звука
Напомним основные принципы и понятия, связанные со звукозаписью и обработкой звука. Звук – это колебания плотной среды, в частности воздуха, которые распространяются в виде волн – области сжатия чередуются с областями разрежения. Частота
Обработка цифрового звука (редакторы)
Обработка цифрового звука (редакторы)
Audacity
Сайт: https://audacity.sourceforge.netРазмер: 1,5 МбСтатус: FreewareAudacity – это бесплатный многоплатформенный аудиоредактор, распространяемый с открытыми исходными кодами. С его помощью вы можете редактировать звуки, применять к ним различные
Принципы цифрового описания
Принципы цифрового описания
Этот раздел посвящен описанию процессов, происходящих при преобразовании непрерывного сигнала в цифровую форму. Автор постаралась избежать сложных формул и подробностей, касающихся аппаратной реализации преобразований. Заинтересованный
Простейшие устройства приема цифрового видеосигнала
Простейшие устройства приема цифрового видеосигнала
Одной из важнейших функций большинства систем видеоввода является оцифровка аналогового сигнала. Однако в последнее время все чаще встречается ситуация, когда мы имеем на входе цифровой сигнал, и задача системы –
ГОСТИНАЯ: Уже известна лучшая платформа для будущего «цифрового мира»
ГОСТИНАЯ: Уже известна лучшая платформа для будущего «цифрового мира»
Автор: Левон АмдилянВ последнее время, беседуя со своими знакомыми (а зачастую они еще и коллеги по компьютерному рынку), я обнаружил, что многие из нас стали, не побоюсь этого слова, счастливыми
10.5. Как установить параметры звука
10.5. Как установить параметры звука
Вы хотите настроить аудиособытия? То есть сопоставить системным событиям, например открытию окна или переключению между окнами, звуковой файл? Тогда откройте апплет Звуки и аудиоустройства. В открывшемся окне можно настроить параметры
Параметры цифрового видео
Параметры цифрового видео
А теперь настала пора поговорить о параметрах цифрового видео. Таких параметров существует три.Первый параметр, который мы рассмотрим, — это ширина потока данных. (Распространен также термин “битрейт” — калька с английского bitrate.) Это самый,
Параметры звука
Параметры звука
Flash содержит средства для задания характера изменения громкости и панорамирования звука в процессе его воспроизведения. Мы, собственно, уже познакомились с простейшими из них — это раскрывающийся список Effect панели Properties (см. рис. 17.2). Настала пора
Источник
Очень часто мы слышим такие определения, как «цифровой» или «дискретный» сигнал, в чем его отличие от «аналогового»?
Суть различия в том, что аналоговый сигнал непрерывный во времени (голубая линия), в то время как цифровой сигнал состоит из ограниченного набора координат (красные точки). Если все сводить к координатам, то любой отрезок аналогового сигнала состоит из бесконечного количества координат.
У цифрового сигнала координаты по горизонтальной оси расположены через равные промежутки времени, в соответствии с частотой дискретизации. В распространенном формате Audio-CD это 44100 точек в секунду. По вертикали точность высоты координаты соответствует разрядности цифрового сигнала, для 8 бит это 256 уровней, для 16 бит = 65536 и для 24 бит = 16777216 уровней. Чем выше разрядность (количество уровней), тем ближе координаты по вертикали к исходной волне.
Аналоговыми источниками являются: винил и аудиокассеты. Цифровыми источниками являются: CD-Audio, DVD-Audio, SA-CD (DSD) и файлы в WAVE и DSD форматах (включая производные APE, Flac, Mp3, Ogg и т.п.).
Преимущества и недостатки аналогового сигнала
Преимуществом аналогового сигнала является то, что именно в аналоговом виде мы воспринимаем звук своими ушами. И хотя наша слуховая система переводит воспринимаемый звуковой поток в цифровой вид и передает в таком виде в мозг, наука и техника пока не дошла до возможности именно в таком виде подключать плееры и другие источники звука напрямик. Подобные исследования сейчас активно ведутся для людей с ограниченными возможностями, а мы наслаждаемся исключительно аналоговым звуком.
Недостатком аналогового сигнала являются возможности по хранению, передаче и тиражированию сигнала. При записи на магнитную ленту или винил, качество сигнала будет зависеть от свойств ленты или винила. Со временем лента размагничивается и качество записанного сигнала ухудшается. Каждое считывание постепенно разрушает носитель, а перезапись вносит дополнительные искажения, где дополнительные отклонения добавляет следующий носитель (лента или винил), устройства считывания, записи и передачи сигнала.
Делать копию аналогового сигнала, это все равно, что для копирования фотографии ее еще раз сфотографировать.
Преимущества и недостатки цифрового сигнала
К преимуществам цифрового сигнала относится точность при копировании и передачи звукового потока, где оригинал ничем не отличается от копии.
Основным недостатком можно считать то, что сигнал в цифровом виде является промежуточной стадией и точность конечного аналогового сигнала будет зависеть от того, насколько подробно и точно будет описана координатами звуковая волна. Вполне логично, что чем больше будет точек и чем точнее будут координаты, тем более точной будет волна. Но до сих пор нет единого мнения, какое количество координат и точность данных является достаточным для того, что бы сказать, что цифровое представление сигнала достаточно для точного восстановления аналогового сигнала, неотличимого от оригинала нашими ушами.
Если оперировать объемами данных, то вместимость обычной аналоговой аудиокассеты составляет всего около 700-1,1 Мб, в то время как обычный компакт диск вмещает 700 Мб. Это дает представление о необходимости носителей большой емкости. И это рождает отдельную войну компромиссов с разными требованиями по количеству описывающих точек и по точности координат.
На сегодняшний день считается вполне достаточным представление звуковой волны с частотой дискретизации 44,1 кГц и разрядности 16 бит. При частоте дискретизации 44,1 кГц можно восстановить сигнал с частотой до 22 кГц. Как показывают психоакустические исследования, дальнейшее повышение частоты дискретизации мало заметно, а вот повышение разрядности дает субъективное улучшение.
Как ЦАП строят волну
ЦАП – это цифро-аналоговый преобразователь, элемент, переводящий цифровой звук в аналоговый. Мы рассмотрим поверхностно основные принципы. Если по комментариям будет виден интерес более подробно рассмотреть ряд моментов, то будет выпущен отдельный материал.
Мультибитные ЦАП
Очень часто волну представляют в виде ступенек, что обусловлено архитектурой первого поколения мультибитных ЦАП R-2R, работающих аналогично переключателю из реле.
На вход ЦАП поступает значение очередной координаты по вертикали и в каждый свой такт он переключает уровень тока (напряжения) на соответствующий уровень до следующего изменения.
Хотя считается, что ухо человека слышит не выше 20 кГц, и по теории Найквиста можно восстановить сигнал до 22 кГц, остается вопрос качества этого сигнала после восстановления. В области высоких частот форма полученной «ступенчатой» волны обычно далека от оригинальной. Самый простой выход из ситуации – это увеличивать частоту дискретизации при записи, но это приводит к существенному и нежелательному росту объема файла.
Альтернативный вариант – искусственно увеличить частоту дискретизации при воспроизведении в ЦАП, добавляя промежуточные значения. Т.е. мы представляем путь непрерывной волны (серая пунктирная линия), плавно соединяющий исходные координаты (красные точки) и добавляем промежуточные точки на этой линии (темно фиолетовые).
При увеличении частоты дискретизации обычно необходимо повышать и разрядность, чтобы координаты были ближе к аппроксимированной волне.
Благодаря промежуточным координатам удается уменьшить «ступеньки» и построить волну ближе к оригиналу.
Когда вы видите функцию повышения частоты с 44.1 до 192 кГц в плеере или внешнем ЦАП, то это функция добавления промежуточных координат, а не восстановления или создание звука в области выше 20 кГц.
Изначально это были отдельные SRC микросхемы до ЦАП, которые потом перекочевали непосредственно в сами микросхемы ЦАП. Сегодня можно встретить решения, где к современным ЦАП добавляется такая микросхема, это сделано для того, чтобы обеспечить альтернативу встроенным алгоритмам в ЦАП и порой получить еще более лучший звук (как например это сделано в Hidizs AP100).
Основной отказ в индустрии от мультибитных ЦАП произошел из-за невозможности дальнейшего технологического развития качественных показателей при текущих технологиях производства и более высокой стоимости против «импульсных» ЦАП-ов с сопоставимыми характеристиками. Тем не менее, в Hi-End продуктах предпочтение отдают зачастую старым мультибитным ЦАП-ам, нежели новым решениям с технически более хорошими характеристиками.
Импульсные ЦАП
В конце 70-тых широкое распространение получил альтернативный вариант ЦАП-ов, основанный на «импульсной» архитектуре – «дельта-сигма». Технология импульсных ЦАП-ов стала возможной появлению сверх-быстрых ключей и позволила использовать высокую несущую частоту.
Амплитуда сигнала является средним значением амплитуд импульсов (зеленым показаны импульсы равной амплитуды, а белым итоговая звуковая волна).
Например последовательность в восемь тактов пяти импульсов даст усредненную амплитуду (1+1+1+0+0+1+1+0)/8=0,625. Чем выше несущая частота, тем больше импульсов попадает под сглаживание и получается более точное значение амплитуды. Это позволило представить звуковой поток в однобитном виде с широким динамическим диапазоном.
Усреднение возможно делать обычным аналоговым фильтром и если такой набор импульсов подать напрямую на динамик, то на выходе мы получим звук, а ультра высокие частоты не будут воспроизведены из-за большой инертности излучателя. По этому принципу работают ШИМ усилители в классе D, где плотность энергии импульсов создается не их количеством, а длительностью каждого импульса (что проще в реализации, но невозможно описать простым двоичным кодом).
Мультибитный ЦАП можно представить как принтер, способный наносить цвет пантоновыми красками. Дельта-Сигма – это струйный принтер с ограниченным набором цветов, но благодаря возможности нанесению очень мелких точек (в сравнении с пантовым принтером), за счет разной плотности точек на единицу поверхности дает больше оттенков.
На изображении мы обычно не видим отдельных точек из-за низкой разрешающей способности глаза, а только средний тон. Аналогично и ухо не слышит импульсов по отдельности.
В конечном итоге при текущих технологиях в импульсных ЦАП можно получить волну, близкую к той, что теоретически должна получится при аппроксимации промежуточных координат.
Надо отметить, что после появления дельта-сигма ЦАП исчезла актуальность рисовать «цифровую волну» ступеньками, т.к. так ступеньками волну современные ЦАП не строят. Правильно дискретный сигнал строить точками соединенной плавной линией.
Являются ли идеальными импульсные ЦАП?
Но на практике не все безоблачно, и существует ряд проблем и ограничений.
Т.к. подавляющее количество записей сохранено в многоразрядном сигнале, то перевод в импульсный сигнал по принципу «бит в бит» требует излишне высокую несущую частоту, которую современные ЦАП не поддерживают.
Основной функцией современных импульсных ЦАП является перевод многоразрядного сигнала в однобитный с относительно невысокой несущей частотой с прореживанием данных. В основном именно эти алгоритмы и определяют конечное качество звучания импульсных ЦАП-ов.
Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков. Такие ЦАП называются мультибитными дельта-сигма.
Сегодня импульсные ЦАП-ы получили второе дыхание в быстродействующих микросхемах общего назначения в продуктах компаний NAD и Chord за счет возможности гибко программировать алгоритмы преобразования.
Формат DSD
После широкого распространения дельта-сигма ЦАП-ов вполне логичным было и появления формата записи двоичного кода напрямую дельта-сигма кодировке. Этот формат получил название DSD (Direct Stream Digital).
Широкого распространения формат не получил по нескольким причинам. Редактирование файлов в этом формате оказалось излишне ограниченным: нельзя микшировать потоки, регулировать громкость и применять эквализацию. А это значит, что без потери качества можно лишь архивировать аналоговые записи и производить двухмикрофонную запись живых выступлений без последующей обработки. Одним словом – денег толком не заработать.
В борьбе с пиратством диски формата SA-CD не поддерживались (и не поддерживаются до сих пор) компьютерами, что не позволяет делать их копии. Нет копий – нет широкой аудитории. Воспроизвести DSD аудиоконтент можно было только с отдельного SA-CD проигрывателя с фирменного диска. Если для PCM формата есть стандарт SPDIF для цифровой передачи данных от источника к отдельному ЦАП, то для DSD формата стандарта нет и первые пиратские копии SA-CD дисков были оцифровками с аналоговых выходов SA-CD проигрывателей (хоть ситуация и кажется глупой, но на деле некоторые записи выходили только на SA-CD, либо та же запись на Audio-CD специально была сделана некачественно для продвижения SA-CD).
Переломный момент произошел с выходом игровых приставок SONY, где SA-CD диск до воспроизведения автоматически копировался на жесткий диск приставки. Этим воспользовались поклонники формата DSD. Появление пиратских записей простимулировало рынок на выпуск отдельных ЦАП для воспроизведения DSD потока. Большинство внешних ЦАП с поддержкой DSD на сегодняшний день поддерживает передачу данных по USB используя формат DoP в виде отдельного кодирования цифрового сигнала через SPDIF.
Несущие частоты для DSD сравнительно небольшие, 2.8 и 5.6 МГц, но этот звуковой поток не требует никаких преобразований с прореживанием данных и вполне конкурентно-способен с форматами высокого разрешения, такими как DVD-Audio.
На вопрос что лучше, DSP или PCM однозначного ответа нет. Все упирается в качество реализации конкретного ЦАП и таланта звукорежиссера при записи конечного файла.
Общий вывод
Аналоговый звук – это то, что мы слышим и воспринимаем, как окружающий мир глазами. Цифровой звук, это набор координат, описывающих звуковую волну, и который мы напрямую услышать не можем без преобразования в аналоговый сигнал.
Аналоговый сигнал, записанный напрямую на аудиокассету или винил нельзя без потери качества перезаписать, в то время как волну в цифровом представлении можно копировать бит в бит.
Цифровые форматы записи являются постоянным компромиссом между количеством точностью координат против объема файла и любой цифровой сигнал является лишь приближением к исходному аналоговому сигналу. Однако при этом разный уровень технологий записи и воспроизведения цифрового сигнала и хранения на носителях для аналогового сигнала дают больше преимуществ цифровому представлению сигнала, аналогично цифровой фотокамере против пленочного фотоаппарата.
Автор Кузнецов Роман romanrex
Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.
Источник