Какие свойства бензола я

Какие свойства бензола я thumbnail

Наверно каждый человек помнит о таком веществе, как бензол, еще с курса органической химии. Данное углеводородное соединение было открыто химиком Фарадеем в 1825 г., однако название «бензол» оно приобрело еще в далеком XVII веке.

Бензол является ароматическим углеводородным соединением, представляющим собой прозрачную жидкость, которая имеет слегка сладковатый запах. Структурная формула бензола – C6H6.

Это вещество является составной частью нефтепродуктов, применяется в промышленной и медицинской областях, входит в состав пластмассы, резины и различных красок.

Характеристики и физические свойства бензола

Некоторые углеводородные соединения сильно похожи на бензол. Однако они отличаются видом реакции, в которую вступают. Так, этилен, являющийся ненасыщенным углеводородом, вступает в реакцию присоединения, в то время как бензол вступает в реакцию замещения. Это происходит из-за того, что атомы бензола располагаются в одной плоскости.

Бензольное кольцо

Еще одним отличием является наличие в формуле бензола бензольного кольца. Таким образом, если в химической формуле вещества имеется бензольное кольцо — однозначно это бензол. 

Строение этого углеводорода представлено в виде шестиугольника.

Бензол

Данный углеводород имеет следующие физические свойства:

  • вещество представляет собой жидкость, имеющую не совсем приятный запах;

  • температура плавления бензола составляет 5,50C;

  • температура кипения — 800C;

  • общая плотность вещества — 0,879 г/см3;

  • молярная масса 78,1 г/моль;

  • без проблем реагирует с органическими растворителями;

  • при попадании воздуха образует взрывоопасное соединение;

  • в процессе горения на свету видны следы копчения;

  • растворим в воде, нагретой до 250C.

Получение бензола

Российским ученым-химиком Зелинским Н. Д. было доказано, что бензол возможно получить не только в процессе коксования угля, при котором данное сырье нагревается, выделяя бензол и иные летучие вещества. Данное вещество может быть образовано из циклогексана, в случае взаимодействия его с платиной или палладием. 

Получение бензола

Также, бензол можно получить путем нагревания гексана.

Зелинский также считал, что бензол возможно получить путем тримеризации ацетилена:

3HС ≡ CH (Cакт., 550C) → C6H6

В настоящее время, большой популярностью пользуются такие способы получения бензола, как получение его из циклопарафинов и предельных углеводородов. Связано это прежде всего, с тем, что необходимость этого вещества сильно возросла.

Химические свойства бензола

Бензол активно вступает в реакции с кислотами, а также веществами из класса алкенов, галогенов, аренов и хлоралканов. В основном данный углеводород вступает в реакцию замещения. Высокая температура и сильное давление оказывают влияние на разрыв бензольного кольца. 

Химические свойства бензола

Уравнения реакции бензола:

  • в случае наличия катализатора, бром вступает в реакцию с хлором, образуя при этом хлорбензол:

С6H6 + 3Cl2 → C6H5Cl + Hcl2;

  • алкилирование бензола. Алкилбензол образуется в результате соединения бензола с алканами:

C6H6 + C2H5Br → C6H5C2H5 + HBr3;

  • нитрование и сульфирование бензола:

C6H6 + H2SO4 → C6H5SO3H + H2O,

C6H6 + HNO3 → C6H5NO2 + H2O;

  • галогенирование бензола:

С6H5 – CH3 + Br = C6H5 – CH2Br + HBr;

  • к гомологам бензола относятся алкилбензолы, которые вступают в реакцию окисления, образуя при этом бензойную кислоту:

C6H5CH3 + [O] → C6H5COOH. 

Применение бензола

В настоящее время бензол применяется во многих областях нашей жизни.

Применение бензола

Наиболее часто данный углеводород применяется для синтезирования иных органических веществ. Используя реакцию нитрирования получают нитробензол; хлорирования — хлорбензол (растворитель), и другие вещества.

Хлорбензол часто используется в сфере сельского хозяйства, поскольку он является прекрасным средством для защиты растений. Данным веществом, при замене в его структуре молекул водорода молекулами хлора, протравливают семена растений, чтобы защитить их от грызунов и насекомых.

В области химической промышленности бензол играет немаловажную роль. Помимо его участия при создании других веществ, он также выступает в качестве растворителя. С помощью бензола возможно растворить любое органическое соединение.

Использование бензола

Сегодня этот углеводород чаще всего используется при синтезировании этилбензола и кумола. Однако он редко применяется в чистом виде. В основном используются его производные компоненты. Этилбензол успешно применяется в качестве одного из компонентов автомобильного топлива, а также для синтезирования ионообменной смолы.

Помимо сельскохозяйственной и химической промышленности, бензол успешно применяется в области медицины.

Впервые бензол начали применять для лечения такого заболевания, как белокровие. В начале 20 века медики всего земного шара использовали бензол для лечения лейкемии, однако вскоре выяснилось, что вылечить эту болезнь таким методом нельзя. 

Читайте также:  Благодаря какому из свойств липиды составляют основу плазматической мембраны

Сначала бензол принимали перорально, затем стали вводить в качестве инъекции. Такое его применение было связано с тем, что первоначальные исследования показали возможность данного вещества снижать уровень лейкоцитов в крови, но вскоре выяснилось, что его применение в этих целях очень опасно.

Источник

Что такое бензол?

Бензол – это органическое вещество, при обычных условиях представляет собой бесцветную жидкость со специфическим сладковатым запахом. Является простейшим ароматическим углеводородом. Входит в состав сырой нефти. Не растворим в воде, сильно токсичен. Химическая формула C6H6. Первый раз был получен Майклом Фарадеем, который выделил его из конденсата светильного газа (смесь водорода 50 %, метана 34 %, угарного газа 8 %).

Физические и химические свойства

Молярная масса равна 78,11 г/моль. При температуре 80,1 °C начинает кипеть, при -5 °С — плавиться. Плотность равна 0.879 г/см³. Вступает в реакции замещения:

· галогенирования, при котором атом водорода заменяется хлором или бромом, такие реакции проходят при нагревании с обязательным участием катализатора;

· нитрования (введение нитрогруппы в бензольное кольцо), итогом которой становится тяжёлая желтоватая жидкость с запахом горького миндаля – нитробензол, такая реакция может использоваться как качественная на определение;

· алкилирование галогеналканами (реакция Фриделя-Крафтса), эта реакция позволяет ввести углеводородный радикал в бензольное кольцо, и считается одним из методов получения гомологов бензола;

· алкилирование алкенами.

Бензол может вступать в реакцию горения, в результате которой образуются вода и углекислый газ.

Получение

Сейчас существует несколько методов получения бензола:

· добыча методом коксования каменного угля – активно применялась почти до середины ХХ века, бензол, полученный таким способом, не подходит для некоторых технологических процессов в современном производстве;

· методика аромаизинга бензиновых фракций нефти используется в США (в РФ и странах Европы этим методом получают половину всего бензола);

· термическое разложение тяжелых и лёгких фракций нефти – во время процесса попутно образуются толуол и ксилолы, обычно их сразу отправляют на процесс деалкилирования, и тоже получают бензол;

· тримеризация ацетилена – газ пропускают при высокой температуре над средой из активированного угля, при этом образуется бензол, плюс еще несколько ароматических углеводородов.

Важно: мировой спрос на бензол сейчас составляет более 42 млн. т, по прогнозам экспертов, к концу 2020 года эта цифра составит более 57 млн. т. Ежегодно даже рынку США не хватает ~600 тысяч тонн этого вещества.

Применение

Почему бензола требуется так много? Он необходим в производстве синтетического каучука (резина для автомобильных шин), пластмассы, синтетического волокна, красителей, ПАВ и пр. Бензол может использоваться как растворитель и экстрагент в промышленном производстве красок, его добавляют в бензин для повышения октанового числа (не более 1% по современным нормам).

Опасен ли бензол?

Влияние на человека

Это вещество является самым распространённым ксенобиотиком антропогенного происхождения (чужеродное для живых организмов вещество, не участвующее в естественном биотическом круговороте). Внимание! Бензол сильно ядовит – минимальная смертельная доза при приеме внутрь составляет всего 15 миллилитров. Он относится к веществам третьего класса опасности для человека по мировому стандарту NFPA 704 (как хлор и серная кислота). Его кратковременное воздействие может привести к серьёзным временным или умеренным остаточным последствиям. Сильный канцероген.

Горючесть

Быстро испаряется при нормальном атмосферном давлении и температуре, легко рассеивается в воздухе и легко возгорается. Температура вспышки ниже 23 °C. Поэтому по стандарту NFPA 704 это вещество имеет четвёртый класс, то есть является максимально огнеопасным.

Меры предосторожности

Работа с бензолом строго регламентируется. Во время лабораторных экспериментов его рекомендуется использовать в малом количестве (не более 50 мл). Все действия должны проводиться в защитных перчатках из фторкаучука, так же обязательна защита глаз и органов дыхания. Запрещается работать в закрытом, невентилируемом помещении, с температурой воздуха больше 30°С.

Читайте также:  Какими свойствами обладало вещество из электронов

Купить бензол вы можете в магазине Химик24. Реализация оптом и в розницу.

Источник

Арены – ароматические углеводороды, содержащие одно или несколько бензольных колец.
Бензольное кольцо составляют 6 атомов углерода, между которыми чередуются двойные и одинарные связи.

Важно заметить, что двойные связи в молекуле бензола не фиксированы, а постоянно перемещаются по кругу.

Арены также называют ароматическими углеводородами. Первый член гомологического ряда – бензол – C6H6.
Общая формула их гомологического ряда – CnH2n-6.

Формула бензола

Долгое время структурная формула бензола оставалась тайной. Предложенная Кекуле формула с двумя тройными связями не могла
объяснить то, что бензол не вступает в реакции присоединения. Как уже было сказано выше, по современным представлениям,
двойные связи в молекуле постоянно перемещают, поэтому правильнее рисовать их в виде кольца.

За счет чередования двойных связей в молекуле бензола формируется сопряжение. Все атомы углерода находятся в состоянии sp2
гибридизации. Валентный угол – 120°.

Номенклатура и изомерия аренов

Названия аренов формируются путем добавления названий заместителей к главной цепи – бензольному кольцу: бензол, метилбензол (толуол),
этилбензол, пропилбензол и т.д. Заместители, как обычно, перечисляются в алфавитном порядке. Если в бензольном кольце несколько заместителей,
то выбирают кратчайший путь между ними.

Номенклатура аренов

Для аренов характерна структурная изомерия, связанная с положением заместителей. Например, два заместителя в бензольном
кольце могут располагаться в разных положениях.

Название положения заместителей в бензольном кольце формируется на основе их расположения относительно друг друга. Оно обозначается
приставками орто-, мета- и пара. Ниже вы найдете мнемонические подсказки для их успешного запоминания 😉

Орто-, пара- и мета- положения в бензольном кольце

Получение аренов

Арены получают несколькими способами:

  • Реакция Зелинского (тримеризация ацетилена)
  • Данная реакция протекает при пропускании ацетилена над активированным углем при t = 400°C. В результате образуется ароматический
    углеводород – бензол.

    Реакция Зелинского

    В случае, если к ацетилену добавить пропин, то становится возможным получение толуола. Увеличивая долю пропина, в конечном итоге
    можно добиться образования 1,3,5-триметилбензола.

    Тримеризация пропина

  • Дегидроциклизация алканов
  • В ходе таких реакций, протекающих при повышенной температуре и в присутствии катализатора – Cr2O3, линейная
    структура алкана замыкается в цикл, отщепляется водород.

    Дегидроциклизация гексана

    При дегидроциклизации гептана получается толуол.

    Дегидроциклизация гептана

  • Дегидрирование циклоалканов
  • В результате дегидрирования уже “готовых” циклов – циклоалканов, отщепляются 3 моль водорода, и образуется соответствующий арен,
    с теми же заместителями, которые были у циклоалкана.

    Дегидрирование циклоалканов

  • Синтез Дюма
  • Синтез Дюма заключается в сплавлении солей карбоновых кислот с щелочами. В результате такой реакции возможно образование различных органических веществ, в том числе аренов.

    Синтез Дюма, получение аренов

Химические свойства аренов

Арены – ароматические углеводороды, которые содержат бензольное кольцо с сопряженными двойными связями. Эта особенность
делает реакции присоединения тяжело протекающими (и тем не менее возможными!)

Запомните, что, в отличие от других непредельных соединений, бензол и его гомологи не обесцвечивают бромную воду и
раствор перманганата калия.

  • Гидрирование
  • При повышенной температуре и наличии катализатора, водород способен разорвать двойные связи в бензольном кольце
    и превратить арен в циклоалкан.

    Гидрирование бензола

  • Галогенирование
  • Реакция бензола с хлором на свету приводит к образованию гексахлорциклогексана, если же использовать только катализатор,
    то образуется хлорбензол.

    Хлорирование бензола

    Реакции с толуолом протекают иначе: при УФ-свете хлор направляется в радикал метил и замещает атом водорода в нем, при действии катализатора хлор замещает один атом водорода в бензольном кольце (в орто- или пара-положении).

    Хлорирование толуола

    Почему хлор направляется именно в орто- и пара-положения относительно метильной группы? Здесь самое время
    коснуться темы ориентантов I (орто-, пара-ориентантов) и II порядков (мета-ориентанты).

    К ориентантам первого порядка относятся группы: NH2, OH, OR, CR3, CHR2,
    CH 2R, галогены. К ориентантам второго: NO2, CN, SO3H, CCl3,
    CHO, COOH, COOR.

    Ориентанты I и II порядка

    Например, ориентант I порядка, гидроксогруппа OH, обеспечивает протекание хлорирования в орто- и пара-положениях.
    А карбоксильная группа COOH, ориентант II порядка, обуславливает хлорирование в мета-положениях.

    Ориентанты I и II порядка

  • Нитрование
  • Арены вступают в реакции нитрования, протекающие при повышенной температуре и в присутствии серной кислоты,
    обладающей водоотнимающими свойствами.

    Нитрование бензола, толуола и нитробензола

  • Алкилирование
  • Алкилирование аренов осуществляется путем введения алкильного радикала в молекулу бензола. Алкильным радикалом чаще
    всего выступает алкен или галогеналкан.

    В случае если для алкилирования используется алкен, то с молекулой бензола соединяется наименее гидрированный атом
    углерода алкена, прилежащий к двойной связи. Один атом водорода переходит из бензольного кольца к радикалу.

    Алкилирование аренов

  • Окисление
  • Арены, как и все органические вещества, сгорают с образованием углекислого газа и воды.

    2C6H6 + 15O2 → 12CO2 + 6H2O

    При неполном окислении гомологи бензола способны окисляться до бензойной кислоты (при подкислении раствора серной
    кислотой). Сам бензол не вступает в реакцию окисления с KMnO4, не обесцвечивает его раствор.

    Окисление аренов

  • Полимеризация
  • В реакцию полимеризации способен вступать стирол (винилбензол), в радикале которого содержится двойная связь.

    Полимеризация стирола

Читайте также:  Агат свойства и какой бывает

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

(Слайд 2).

Цель и задачи урока:

– систематизировать знания учащихся о
строении молекулы бензола, о способах его
получения;

– сформировать представление о физических и
химических свойствах бензола, научить
составлять уравнения химических реакций,
характерных для бензола;

– продолжить формирование умений учащихся
работать с видеоматериалами и мультимедийными
презентациями.

Формы работы: фронтальная, индивидуальная.

Оборудование: компьютер, мультимедийный
проектор, таблицы “Бензол”

Ход урока

I. Организационный момент.

Учитель: Тема, цели, и задачи урока.

II. Активизация знаний учащихся.

  1. Фронтальный опрос

. (Слайд 3).

  • Ароматические углеводороды – АРЕНЫ
  • Дайте определение ароматическим углеводородам.
  • Почему их называют ароматическими?
  • Типичным представителем ароматических
    углеводородов является …?
  • С чьими именами связано происхождение бензола?
  • Какова молекулярная формула бензола?
  • Сколько структурных формул бензола?
  • Тип гибридизации?
  • Какие связи в молекуле бензола и скольких?
  • Важнейшие источники получения ароматических
    углеводородов?
  • Другие методы получения?
  • Назовите гамологов бензола.

  1. Строение молекулы бензола
  2. (сообщение
    ученика). (Слайд 4).

  3. Самостоятельная работа учащихся
  4. (на 5-7
    минут). (Слайд 5).

  • заполните пропуски в определении ароматических
    углеводородов;
  • напишите формулы заданных веществ;
  • закончите урванения реакций получения
    ароматических углеводородов.

III. Изучение нового материала.

1. Физические свойства бензола. (Слайд 6).

Бензол – бесцветная, летучая,
огнеопасная жидкость с неприятным запахом. Он
легче воды ( =0,88 г/см3) и с ней не смешивается, но
растворим в органических растворителях, и сам
хорошо растворяет многие вещества. Бензол кипит
при 80,1 С, при охлаждении легко застывает в белую
кристаллическую массу. Бензол и его пары
ядовиты. Систематическое вдыхание его паров
вызывает анемию и лейкемию.

– Видеоматериал (физические свойства бензола).

2. Химические свойства бензола.

1) Химические свойства бензола определяется
строением его молекулы.

2) Ароматическая -система обладает повышенной
устойчивостью.

3) Поэтому хотя бензол является непредельным
углеводородом, он проявляет свойства,
характерные для предельных (склонность к
реакциям замещения, устойчивость к действию
окислителей).

Реакции замещения.

Реакции присоединения (Слайд 9).

При определенных условиях бензол
может вступать и в реакции присоединения. В этих
реакциях разрушается ароматическая система,
поэтому для их протекания требуется жесткие
условия.

Реакции окисления. (Слайд 10).

а) отношение бензола к бромной воде и к
перманганату калия (видеоматериал)

б) горение бензола

2C6H6 + 15O2 –> 2CO2 + 6H2O

IV. Закрепление.

(Слайд 11).

  1. Бензол реагирует с каждым веществом набора:

а) Br2, O2, KMnO4

б) H2O, HNO3, CI2

в) CI2, O2, HNO3

г) HCI, Br2, H2

Напишите уравнения реакций бензола с
веществами этого набора, укажите условия их
протекания.

V. Домашнее задание.

Определите вещества Х, Y, Z в схеме
превращений:

Литература:

  1. Рудзитис Г.Е., Фельдман Ф.Г. Органическая химия:
    Учебник для 10 классов общеобразовательных
    учреждений. – 8-е изд. – М.: Просвещение, 2002.
  2. Новошинский И.И., Новошинская Н.С. Органическая
    химия. 11 кл.: Учебник для общеобразовательных
    учреждений. – М.: Издательство “Образование”,
    2005.

Презентация

Источник