Какие свойства атома оказывают влияние на электроотрицательность элемента
Все известные химические элементы можно разделить на металлы и неметаллы.
Металлы — элементы, атомы которых способны отдавать электроны.
Неметаллы — элементы, атомы которых могут принимать электроны.
При взаимодействии металла с неметаллом атом первого теряет электроны, а атом второго их присоединяет.
А что происходит, если взаимодействуют атомы двух неметаллов?
Сравним атомы серы и кислорода:
O8 +8 2e, 6e;
S16 +16 2e, 8e, 6e.
Радиус атома серы больше, валентные электроны слабее связаны с ядром. При образовании связи произойдёт сдвиг электронов от серы к кислороду.
Сравним атомы углерода и кислорода:
O8 +8 2e, 6e;
C6 +6 2е, 4е.
Заряд ядра атома кислорода больше, и притягивать к себе электроны он будет сильнее.
Значит, атомы разных неметаллов притягивают к себе электроны неодинаково.
Способность атомов элементов оттягивать к себе общие электронные пары в химических соединениях называется электроотрицательностью (ЭО).
Так как общие электронные пары образуются валентными электронами, то можно сказать, что электроотрицательность — это способность атома притягивать к себе валентные электроны от других атомов.
Обрати внимание!
Чем больше электроотрицательность, тем сильнее у элемента выражены неметаллические свойства.
Шкала относительной электроотрицательности Полинга
Абсолютные значения ЭО — неудобные для работы числа. Поэтому обычно используют относительную электроотрицательность по шкале Полинга. За единицу в ней принята ЭО лития.
По шкале Полинга наиболее электроотрицательным среди элементов, способных образовывать соединения, является фтор, а наименее электроотрицательным — франций. ЭО франция равна (0,7), а ЭО фтора — (4). ЭО остальных элементов изменяются в пределах от (0,7) до (4).
Как правило, неметаллы имеют ЭО больше двух. У металлов значение ЭО меньше двух. Некоторые элементы (B,Si,Ge,As,Te) со значениями электроотрицательности, близкими к (2), способны проявлять промежуточные свойства.
Элементы с высокой и низкой электроотрицательностью считаются активными. С высокой — активные неметаллы, с низкой — активные металлы. У первых ЭО близка к (3)–(4), у вторых — к (1).
Изменение электроотрицательности в Периодической системе
С увеличением порядкового номера элементов ЭО изменяется периодически.
В периоде она растёт слева направо при накоплении электронов на внешнем слое.
В группе она убывает сверху вниз при увеличении числа электронных слоёв и увеличении атомных радиусов.
Наибольшей ЭО в каждом периоде обладают самые маленькие атомы с семью внешними электронами — атомы галогенов (инертные газы соединений не образуют).
Наименьшая ЭО в периоде у самого большого атома с одним внешним электроном — атома щелочного металла.
Обрати внимание!
Значения электроотрицательности элементов позволяют определить:
— заряды атомов в соединении;
— сдвиг электронов при образовании химической связи.
Установим, как происходит сдвиг электронов при взаимодействии атомов хлора и серы, cеры и кислорода.
Пример:
хлор и сера расположены в третьем периоде. Электроотрицательность по периоду возрастает слева направо. ЭО хлора больше ЭО серы, значит, электроны будут сдвинуты от серы к хлору. Заряд атома серы будет положительным, а хлора — отрицательным:
Sδ+→Clδ−.
Проверим вывод по шкале Полинга. Электроотрицательность хлора равна (3), а электроотрицательность серы — (2,5). Хлор более электроотрицательный.
Пример:
кислород и сера расположены в шестой А группе. Электроотрицательность по группе сверху вниз уменьшается. ЭО кислорода больше ЭО серы, значит, электроны будут сдвинуты от серы к кислороду. Атом серы имеет положительный заряд, а кислорода — отрицательный:
Sδ+→Oδ−.
По шкале Полинга электроотрицательность кислорода равна (3,5), а электроотрицательность серы — (2,5). Более электроотрицательный — кислород.
При сравнении ЭО элементов часто используют ряд электроотрицательности, расположив элементы в порядке убывания её значения:
F,O,N,Cl,Br,S,C,P,H,Si,Mg,Li,Na.
Источники:
Габриелян О. С. Химия. 8 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. — 71с
Жилин Д. М. Химия. 8 класс. Учебник для общеобразовательных учреждений. М.: Бином. Лаборатория знаний, 2011. — 245с.
Источник
Электроотрицательность химических элементов. Химическая связь
I. Электроотрицательность
Электроотрицательность — химическое свойство атома, количественная характеристика способности атома в молекуле притягивать к себе электроны от атомов других элементов.
Современное понятие об электроотрицательности атомов было введено американским химиком Л. Полингом.
Значения относительной электроотрицательности элементов представлены в таблице:
С точки зрения теории строения атомов принадлежность элементов к металлам и неметаллам определяется способностью их атомов отдавать или присоединять электроны при химических реакциях.
Наиболее сильными металлическими свойствами обладают те элементы, атомы которых легко отдают электроны. Значения их электроотрицательностей малы (χ ≤ 1).
Неметаллические свойства особенно выражены у тех элементов, атомы которых энергично присоединяют электроны.
В каждом периоде Периодической системы электроотрицательность элементов увеличивается при возрастании порядкового номера (слева направо), в каждой группе Периодической системы электроотрицательность уменьшается при возрастании порядкового номера (сверху вниз).
Элемент фтор F обладает наивысшей, а элемент цезий Cs – наименьшей электроотрицательностью среди элементов 1-6 периодов.
II. Химическая связь
В природе не существуют одиночные атомы. Все они находятся в составе простых и сложных соединений, где их объединение в молекулы обеспечивается образованием химических связей друг с другом.
Образование химических связей между атомами – естественный, самопроизвольный процесс, так как при этом происходит понижение энергии молекулярной системы, т.е. энергия молекулярной системы меньше суммарной энергии изолированных атомов. Это движущая сила образования химической связи.
Природа химических связей – электростатическая, т.к. атомы есть совокупность заряженных частиц, между которыми действуют силы притяжения и отталкивания, которые приходят в равновесие.
В образовании связей участвуют неспаренные электроны, находящиеся на внешних атомных орбиталях (или готовые электронные пары) – валентные электроны. Говорят, что при образовании связей происходит перекрывание электронных облаков, в результате чего между ядрами атомов возникает область, где вероятность нахождения электронов обоих атомов максимальна.
s, p – элементы | d – элементы |
Валентыми являются электроны внешнего уровня Например, Н +1)1e 1s1 – внешний уровень не завершён – 1 валентный электрон O +8 )2e)6e 1s22s22p4 – внешний уровень не завершён – 6 валентных электронов | Валентыми являются электроны внешнего уровня и d – электроны предвнешнего уровня Например, Cr +24)2e)8e)8e+5e)1e – 6 валентных электронов (5е+1е) |
Химическая связь – это взаимодействие атомов, осуществляемое путем обмена электронами.
При образовании химической связи атомы стремятся приобрести устойчивую восьмиэлектронную (или двухэлектронную – Н, Не) внешнюю оболочку, соответствующую строению атома ближайшего инертного газа, т.е. завершить свой внешний уровень.
III. Классификация химических связей
1. По механизму образования химической связи
а) обменный, когда оба атома, образующие связь, предоставляют для неё неспаренные электроны.
Например, образование молекул водорода Н2 и хлора Cl2:
б) донорно – акцепторный, когда один из атомов предоставляет для образования связи готовую пару электронов (донор), а второй атом – пустую свободную орбиталь.
Например, образование иона аммония (NH4)+ (заряженная частица):
2. По способу перекрывания электронных орбиталей
а) σ – связь (сигма), когда максимум перекрывания лежит на линии, соединяющей центры атомов.
Например,
H2 σ(s-s)
Cl2 σ(p-p)
HCl σ(s-p)
б) π – связи (пи), если максимум перекрывания не лежит на линии, соединяющей центры атомов.
3. По способу достижения завершенной электронной оболочки
Каждый атом стремится завершить свою внешнюю электронную оболочку, при этом способов достижения такого состояния может быть несколько.
Признак сравнения | Ковалентная | Ионная | Металлическая | |
неполярная | полярная | |||
Как достигается завершенная электронная оболочка ? | Обобществление электронов | Обобществление электронов | Полная передача электронов, образование ионов (заряженных частиц). | Обобществление электронов всеми атомами в крист. решетке |
Какие атомы участвуют? | немет – немет ЭО = ЭО | 1) Немет-Немет1 2)Мет–немет ЭО < ЭО | мет +[немет]- ЭО << ЭО | В узлах находятся катионы и атомы металла. Связь осуществляют свободно перемещающиеся в межузловом пространстве электроны. |
∆c= ЭО1 – ЭО2 | < 1,7 | > 1,7 | ||
Примеры | простые вещества – неметаллы. | кислоты, оксиды | соли, щелочи, оксиды щелочных металлов. | простые вещества – металлы. Связь в металлах и сплавах, которую выполняют относительно свободные электроны между ионами металлов в металлической кристаллической решетке. |
IV. Задания для закрепления
Задание №1. Определите виды химических связей в молекулах следующих веществ:
H2S, KCl, O2, Na2S, Na2O, N2, NH3, CH4, BaF2, LiCl, O3, CO2, SO3, CCl4, F2.
Задание №2. Напишите механизм образования молекул H2S, KCl, O2, Na2S, Na2O, N2, NH3, CH4, BaF2, LiCl, CCl4, F2. В случае ковалентной связи определите тип перекрывания электронных облаков (π или σ), а так же механизм образования (обменный или донорно-акцепторный)
Тренажер
Тренажер “Электроотрицательность”
Источник
§3.4. Электроотрицательность. Различие между полярной ковалентной и ионной связями.
Только о небольшой части всех химических связей можно сказать, что они являются чисто ковалентными. В таких соединениях поделенная пара электронов всегда находится на одинаковом расстоянии от ядер обоих атомов. Это возможно тогда, когда между собой связаны одинаковые атомы. Например, из рассмотренных нами в этой главе молекул чисто ковалентными окажутся двухатомные молекулы водорода, кислорода, хлора, азота:
Когда между собой связываются разные атомы, поделенная пара химической связи всегда смещена к одному из атомов. К какому? Разумеется, к тому атому, который проявляет более сильные акцепторные свойства.
Допустим, при образовании двухатомной молекулы АБ электроны связи смещаются в сторону атома Б. В этом случае атом Б считается более электроотрицательным, чем атом А. С помощью формул Льюиса можно изобразить смещение пары электронов следующим образом:
Под электроотрицательностью (ЭО) понимают относительную способность атомов притягивать электроны при связывании с другими атомами. Электроотрицательность характеризует способность атома к поляризации химических связей.
Молекулы многих соединений состоят из атомов разного вида и поэтому содержат полярные ковалентные связи. Например, полярные ковалентные связи присутствуют в соединениях:
Для примера рассмотрим диоксид серы SO2. Кислород и сера имеют похожие валентные оболочки (…2s2 2p4) и (…3s2 3p4), но внешние электроны серы находятся дальше от ядра и притягиваются к ядру слабее, чем у кислорода. Из-за этого поделенные электронные пары в молекуле SO2 смещены вдоль химических связей в сторону атомов кислорода, которые приобретают частичный отрицательный заряд. Такой частичный заряд обозначают греческой буквой “дельта”. Атом серы приобретает частичный положительный заряд, а атомы кислорода – частичный отрицательный заряд.
Электроотрицательность зависит не только от расстояния между ядром и валентными электронами, но и от того, насколько валентная оболочка близка к завершенной. Атом с 7 электронами на внешней оболочке будет проявлять гораздо большую электроотрицательность, чем атом с 1 электроном.
Фтор является “чемпионом” электроотрицательности по двум причинам. Во-первых, он имеет на валентной оболочке 7 электронов (до октета недостает всего одного электрона) и, во-вторых, эта валентная оболочка (…2s2 2p5) расположена близко к ядру. Например, в соединении NaF поделенная электронная пара оттянута к атому фтора так сильно, что можно, почти не погрешив против истины, приписать фтору целый отрицательный, а натрию – целый положительный заряд:
Na+F–
Если вспомнить раздел 3.2, то такую связь уже лучше назвать ионной. Впрочем, запись формулы в ионном виде является условной. Она лишь означает, что поляризация ковалентной связи велика. Запись структуры с помощью формулы Na–F тоже правильна, потому что поляризация связи может быть близка к 100%, но никогда не достигает этой величины. Например, в NaF поляризация связи составляет около 80%. Таким образом:
Ионную связь можно рассматривать как предельный случай полярной ковалентной связи.
Внешне соединения с ионными и ковалентными связями могут довольно сильно отличаться друг от друга. Ионные соединения – обычно твердые и хрупкие вещества, плавящиеся при высоких температурах. Растворы ионных соединений проводят электрический ток, потому что при растворении они распадаются на заряженные ионы. Типичное ионное соединение – поваренная соль NaCl.
Соединения с ковалентными и полярными ковалентными связями в обычных условиях часто являются газами или жидкостями. Если это твердые вещества, то плавятся они достаточно легко, хотя есть и исключения, которые мы обсудим в §3.8. Растворы таких веществ далеко не всегда проводят электрический ток, потому что при растворении они могут и не распадаться на ионы. Типичные соединения с полярными ковалентными связями: хлороводород HCl, углекислый газ СО2, вода Н2О, песок SiO2, многочисленные органические соединения.
На примере родственных соединений HCl и NaCl можно видеть, как увеличение полярности связи может в итоге приводить к качественным изменениям в свойствах веществ при одинаковых условиях (рис. 3-4).
Рис. 3-4. Хлороводород HCl (содержит полярную ковалентную связь) при комнатной температуре – газообразное вещество. В этих же условиях поваренная соль NaCl (ионная связь между атомами) – твердое кристаллическое вещество.
Иногда встречается утверждение, что ионная связь – это химическая связь, возникающая в результате кулоновского притяжения противоположно заряженных ионов. Действительно, электростатическое притяжение противоположных зарядов в ионных соединениях вносит заметный вклад в энергию связи. Но в то же время ковалентная составляющая химической связи никогда не выключается полностью даже в наиболее ионных соединениях.
Таким образом, граница между полярными ковалентными и ионными соединениями достаточно условна. Например, чистая вода (полярное ковалентное соединение) все-таки обладает электропроводностью (правда, очень низкой), а если поваренную соль (ионное соединение) расплавить и нагреть до кипения в вакууме, то в парах будут присутствовать молекулы Na–Cl, а не отдельные ионы Na+ и Cl–.
Можно ли измерить степень полярности ковалентной связи? Где кончается полярная ковалентная связь и начинается ионная?
Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют шкалу электроотрицательностей, предложенную американским химиком Л. Полингом. Электроотрицательность (X) измеряется в относительных величинах (таблица 3-3).
Таблица 3-3. Электроотрицательности (X) некоторых элементов.
Данные из справочника: CRS Handbook of Chemistry and Physics (издание 2007 года).
Электроотрицательнось по Полингу – это свойство атомов, связанных химическими связями, т.е. находящихся в составе химических соединений. Соединения таких благородных элементов, как гелий, неон и аргон до сих пор не получены, поэтому не определена и ЭО этих элементов. Однако в полной таблице в приложении VII уже можно найти значения для ксенона (Xe), соединения которого с фтором и кислородом известны с 60-х годов ХХ века.
Для фтора во многих книгах приводится значение X = 4,0 и в этом нет ошибки. Просто в таблице 3-3 приведены уточненные данные и, кроме того, значение 3,98 вполне может быть округлено до 4,0.
Менее всего электроотрицательны атомы щелочных и щелочноземельных металлов Li, Na, Mg и т.д. И это понятно – ведь их внешние электронные оболочки далеки от завершения и для них выгоднее сдвинуть свои валентные электроны к чужому атому, чем “добирать” электроны у соседей.
Обратите внимание на необычно высокую электроотрицательность атома водорода (X = 2,20) – она значительно выше значений для щелочных металлов. В этом нет ничего удивительного: атом водорода лишь формально является электронным аналогом атомов щелочных металлов – на самом деле ему не хватает только одного электрона для полного завершения своей валентной оболочки (как и атомам галогенов с их высокими значениями X). Поэтому электроноакцепторные свойства атома водорода выражены сильнее, чем у щелочных металлов.
Допустим, между двумя какими-то элементами образовалась химическая связь. Теперь разность электроотрицательностей этих элементов (ΔX) позволит нам судить о том, насколько эта связь отличается от чисто ковалентной.
Какие бы два атома не были связаны между собой, для вычисления ΔX нужно из большей электроотрицательности вычесть меньшую.
Для чисто ковалентной связи такая разница всегда равна нулю, например:
а) связь F—F в молекуле фтора F2: ΔX = (3,98 – 3,98) = 0 (ковалентная связь);
б) связь O=O в молекуле кислорода O2: Δ
X = (3,44 – 3,44) = 0 (ковалентная связь).
Если величина Δ X меньше, чем 0,4 – такую связь тоже условно называют ковалентной.
При разности электроотрицательностей от 0,4 до 2,0 связь называют полярной ковалентной, например:
в) связь H—F в молекуле фтороводорода HF: Δ
X = (3,98 – 2,20) = 1,78 (полярная ковалентная связь);
г) связь C—Cl в молекуле CСl4: Δ
X = (3,16 – 2,55) = 0,61 (полярная ковалентная связь);
д) связь S=O в молекуле SO2: Δ
X = (3,44 – 2,58) = 0,86 (полярная ковалентная связь).
Чем больше разность электроотрицательностей, тем больше доля ионности связи. Условно принято, что связи с разностью электроотрицательностей больше 2,0 считаются ионными. Например:
е) связь Na—Cl в соединении NaCl: Δ
X = (3,16 – 0,93) = 2,23 (ионная связь);
ж) связь Na—F в соединении NaF: Δ
X = (3,98 – 0,93) = 3,05 (ионная связь);
з) связь K—O в соединении K2O: Δ
X = (3,44 – 0,82) = 2,62 (ионная связь).
Таким образом, при возникновении химической связи происходит не только обобществление электронов, но и в ряде случаев передача электронов от одного атома другому. Эта передача может быть частичной или почти полной. Электроны всегда передаются от атома с меньшей электроотрицательностью атому с большей электроотрицательностью.
Задачи.
3.14. Определите характер связи в приведенных ниже соединениях и разделите их на три группы: а) соединения с ковалентными связями, б) с полярными ковалентными связями, в) с ионными связями. Решение обоснуйте.
PH3, CaO, Br2, BeCl2, CsBr, S8 (циклическая молекула), BF3, H2, Li2O.
3.15. В таблице 3-3 в тексте параграфа не приведены электроотрицательности для благородных газов. Попробуйте предсказать значение электроотрицательности ксенона в соединении XeF6 (речь идет о качественной оценке: “больше чем у фтора”, “меньше чем у фтора”). Проверьте свое предположение по таблице электроотрицательностей элементов в приложении. Предложите свое объяснение экспериментальным фактам.
- В следующий параграф
_________________
Источник