Какие свойства атома оказывают влияние на электроотрицательность

Какие свойства атома оказывают влияние на электроотрицательность thumbnail

Все известные химические элементы можно разделить на металлы и неметаллы. 

Металлы — элементы, атомы которых способны отдавать электроны.

Неметаллы  — элементы, атомы которых могут принимать электроны.

При взаимодействии металла с неметаллом атом первого теряет электроны, а атом второго их присоединяет.

А что происходит, если взаимодействуют атомы двух неметаллов?

Сравним атомы серы и кислорода:

O8  +8  2e, 6e;    

S16  +16  2e, 8e, 6e.

Радиус атома серы больше, валентные электроны слабее связаны с ядром. При образовании связи произойдёт сдвиг электронов от серы к кислороду.

Сравним атомы углерода и кислорода:

O8  +8  2e, 6e;        

C6  +6  2е, 4е.

Заряд ядра атома кислорода больше, и притягивать к себе электроны он будет сильнее.

Значит, атомы разных неметаллов притягивают к себе электроны неодинаково.

Способность атомов элементов оттягивать к себе общие электронные пары в химических соединениях называется электроотрицательностью (ЭО).

Так как общие электронные пары образуются валентными электронами, то можно сказать, что электроотрицательность — это способность атома притягивать к себе валентные электроны от других атомов.

Обрати внимание!

Чем больше электроотрицательность, тем сильнее у элемента выражены неметаллические свойства.

Шкала относительной электроотрицательности Полинга

Абсолютные значения ЭО — неудобные для работы числа. Поэтому обычно используют относительную электроотрицательность по шкале Полинга. За единицу в ней принята ЭО лития.

По шкале Полинга наиболее электроотрицательным среди элементов, способных образовывать соединения, является фтор, а наименее электроотрицательным — франций. ЭО франция равна (0,7), а ЭО  фтора — (4). ЭО остальных элементов изменяются в пределах от (0,7) до (4).

Как правило, неметаллы имеют ЭО больше двух. У металлов значение ЭО меньше двух. Некоторые элементы (B,Si,Ge,As,Te) со  значениями электроотрицательности, близкими к (2), способны проявлять промежуточные свойства.

Элементы с высокой и низкой электроотрицательностью считаются активными. С высокой — активные неметаллы, с низкой — активные металлы. У первых ЭО близка к (3)–(4), у вторых — к (1).

Изменение электроотрицательности в Периодической системе

С увеличением порядкового номера элементов ЭО изменяется периодически.

В периоде она растёт слева направо при накоплении электронов на внешнем слое.

В группе она убывает сверху вниз при увеличении числа электронных слоёв и увеличении атомных радиусов.

Наибольшей ЭО в каждом периоде обладают самые маленькие атомы с семью внешними электронами — атомы галогенов (инертные газы соединений не образуют).

Наименьшая ЭО в периоде у самого большого атома с одним внешним электроном — атома щелочного металла.

Обрати внимание!

Значения электроотрицательности элементов позволяют определить:

     — заряды атомов в соединении;

     — сдвиг электронов при образовании химической связи.

Установим, как происходит сдвиг электронов при взаимодействии атомов хлора и серы, cеры и кислорода.

Пример:

хлор и сера расположены в третьем периоде. Электроотрицательность по периоду возрастает слева направо. ЭО хлора больше ЭО серы, значит, электроны будут сдвинуты от серы к хлору. Заряд атома серы будет положительным, а хлора — отрицательным:

 Sδ+→Clδ−.

Проверим вывод по шкале Полинга. Электроотрицательность хлора равна (3), а электроотрицательность серы — (2,5). Хлор более электроотрицательный.

Пример:

кислород и сера расположены в шестой А группе. Электроотрицательность по группе сверху вниз уменьшается. ЭО кислорода больше ЭО серы, значит, электроны будут сдвинуты от серы к кислороду. Атом серы имеет положительный заряд, а кислорода  — отрицательный:

 Sδ+→Oδ−.

По шкале Полинга электроотрицательность кислорода равна (3,5), а электроотрицательность серы — (2,5). Более электроотрицательный — кислород.

При сравнении ЭО элементов часто используют ряд электроотрицательности, расположив элементы в порядке убывания её значения:

F,O,N,Cl,Br,S,C,P,H,Si,Mg,Li,Na.

Источники:

Габриелян О. С. Химия.  8 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. — 71с                                      

Жилин Д. М. Химия. 8 класс. Учебник для общеобразовательных учреждений. М.: Бином. Лаборатория знаний, 2011. — 245с.

Источник

Одно из основополагающих понятий в химии – электроотрицательность.

Электроотрицательность – это свойство атома притягивать к себе общие электронные пары, образующиеся химическую связь.

Можно говорить также, что электроотрицательность – способность атома притягивать к себе электроны других атомов при образовании химической связи. Существуют количественные характеристики электроотрицательности, но в курсе неорганической химии 8 класса они не изучаются. Нам будет достаточно качественного определения этого понятия.

Фото: fineartamerica.com

В первую очередь надо запомнить следующее:

электроотрицательность растёт при движении по периоду таблицы Менделеева слева направо и падает при движении по группе сверху вниз.

Инертные газы (элементы VIII группы) имеют завершённый внешний электронный слой, поэтому понятие электроотрицательности к ним неприменимо, их мы в расчёт брать не будем. А теперь давайте сразу рассмотрим примеры, чтобы наглядно это увидеть. Взгляните на второй период таблицы Менделеева, он выглядит так:

Так вот при движении от лития к фтору электроотрицательность растёт, то есть минимальная электроотрицательноть будет во втором периоде у лития, максимальная – у фтора. Аналогичная ситуация наблюдается во всех периода: в начале стоят элементы с низкой электроотрицательностью, в конце – с высокой.

Теперь взглянем на первую группу:

При движении сверху вниз электроотрицательность падает, то есть теперь у лития будет максимальная электроотрицательность, а у франция – минимальная. Точно так же происходит и в других группах: чем выше элемент, тем выше электроотрицательность.

Таким образом,

элементы с максимальной электроотрицательностью сосредоточены в правом верхнем углу таблицы, с минимальной – в левом нижнем.

Также можно говорить, что неметаллы имеют высокую электроотрицательность, а металлы – низкую.

Зачем нужна электроотрицательность

Этот вопрос логичен, ведь мы уже столько поговорили об этом понятии, но так и не применили его на практике. Согласно определению,

электроотрицательность – это способность атома притягивать электронную пару.

Атомы с высокой электроотрицательностью будут сильно притягивать электронные пары, атомы с низкой электроотрицательностью будут пары отдавать. Чтобы это понять, рассмотрим ещё несколько примеров.

Читайте также:  Какими лечебными свойствами обладают камни

В хлориде натрия NaCl атом хлора будет притягивать электронную пару, а атом натрия отдавать (посмотрите в таблицу Менделеева и убедитесь, что хлор стоит сильно правее натрия). Кроме того, выше говорилось, что атомы металлов отдают электроны, а атомы неметаллов – притягивают их, именно это мы здесь и наблюдаем: натрий – металл, он имеет низкую электроотрицательность и отдаёт электроны, а атом хлор – неметалл, он имеет высокую электроотрицательность и притягивает электроны.

Ещё один пример – оксид азота (II) NO. Здесь два неметалла, но у кислорода электроотрицательность значительно выше (обратитесь к таблице и посмотрите на положение этих элементов). То есть в этом соединении отдавать электроны будет азот, а притягивать их будет кислород.

Понятие электроотрицательности нельзя игнорировать, с ним непременно нужно разобраться, поскольку оно необходимо для понимания образования химической связи.

Пишите, пожалуйста, в комментариях, что осталось непонятным, и я обязательно дам дополнительные пояснения. Жалуйтесь на сложности в изучении школьного курса и говорите, что вас испугало в учебнике химии. И тогда следующая статья будет рассказывать именно об этой проблеме.

Источник

Электроотрицательность химических элементов

Электроотрицательность (ЭО) – свойство атомов элементов оттягивать на себя электроны от другого атома в соединении.

На ЭО влияет несколько факторов: радиус атома и расстояние между ядром и валентными электронами. Численные значения ЭО приблизительные. Часто используют шкалу определения ЭО по Полингу. 

Относительная электроотрицательность атомов элементов по Полингу

Анализируя данную шкалу можно выявить ряд закономерностей, перекликающихся с периодическим законом (ПЗ).

  1. В периодической системе химических элементов (ПСХЭ) ЭО в периоде увеличивается слева направо и уменьшается в главной подгруппе.
  2. ЭО связана с окислительно-восстановительными свойствами элементов, поэтому типичные неметаллы характеризуются высокой ЭО, а металлы – низкой. Самая высокая ЭО у фтора, потому что он самый сильный окислитель.

В зависимости от значения электроотрицательности образуются вещества с различным видом химической связей: если между атомами нет разности в электроотрицательности, образуются простые вещества (состоящие из одного вида атомов), чем больше разность, тем полярность молеклы возрастает: образуются молекулы веществ с полярной связью и ионной связью.

Степень окисления химических элементов и ее вычисление

Степень окисления(СО) – условный заряд атомов химических элементов в соединении на основании того, что все связи ионные.

Степень окисления может иметь отрицательное, положительное или нулевое значение, которое обычно помещается над символом элемента в верхней части.

При определении СО следует руководствоваться следующими правилами:

  1. Сумма СО в химическом соединении всегда равна нулю, так как молекулы электронейтральны; в сложном ионе  соответствует заряду иона.
  2. СО всех простых веществ соответствует нулю;
  3. Высшая положительная СО определяется по номеру группы; низшая отрицательная равна восемь минус номер группы;
  4. Элементы с наибольшей ЭО имеют отрицательную СО, с наименьшей – положительную;
  5. Постоянную СО имеют фтор (-1), щелочные металлы (+1), щелочноземельные, а также бериллий, магний, цинк (+2), алюминий (+3). У кислорода СО равна -2, исключение пероксиды (+2). У водорода +1, исключение соединения с металлами (гидриды) -1.

 Применяя эти правила можно рассчитать степени окисления элементов в сложном веществе. 

К примеру, определим степени окисления элементов в фосфорной кислоте H3PO4.

  • Найдем и проставим известные степени окисления у водорода и кислорода, а СО  фосфора  примем за «х».  — H+13 PX O-24
  • Используя эти значения составим и решим уравнение с одной неизвестной. (+1) * 3 + (x) * 1 + (-2) * 4 = 0 Следовательно, x=5 или +5. Таким образом, СО у фосфора +5.

Рассчитаем степени окисления у элементов в нитрате алюминия Al(NO3)3.

  • Проставим известные СО элементов – алюминий и кислород, у азота примем СО за «x». Al+3 (NxO-23)3
  • Составим и решим уравнение — (+3) * 1 + 3x + 9 * (-2) = 0. В итоге получаем x=+5, то есть СО у азота в соединении +5.

Валентность. Валентные возможности атомов

Валентность – это способность атома присоединять ряд других атомов для образования химической связи.

Валентность может быть определена числом химических связей, образующих атом, или числом неспаренных электронов.

Валентность обозначается римскими цифрами и указывается над химическим элементом справа вверху и не имеет знака (+ или -). Может быть постоянной или переменной.

Для определения валентности применяются определенные правила:

  1. У металлов главных подгрупп валентность всегда постоянная и определяется по номеру группы.
  2. У металлов побочных подгрупп и неметаллов валентность переменная. Высшая валентность = номеру группы, а низшая = 8 – номер группы.

Валентность может совпадать со степенью окисления, но не имеет знака «+» или «-», не может быть равна нулю.

Валентные возможности атомов могут определяться:

  1. Количеством неспаренных электронов;
  2. Наличием свободных орбиталей;
  3. Наличием неподеленных пар электронов.

Валентные возможности водорода

Валентные возможности водорода определяются одним неспаренным электроном на единственной орбитали. Водород обладает слабой способностью отдавать или принимать электроны, поэтому для него характерны в основном ковалентные химические связи. Ионные связи он может создавать с металлами, образуя гидриды. Ковалентные химические связи образуются за счет общих электронных пар. Поскольку у водорода всего один электрон, он способен образовывать только одну связь. По этой причине для него характерна валентность равная I.

Читайте также:  Какие свойства есть у нефти 3 класс

Валентные возможности углерода

На внешнем энергетическом уровне у углерода 4 электрона: 2 спаренных и 2 неспаренных. Это состояние атома называется основным. По числу неспаренных электронов можно сказать, что углерод проявляет валентность равную II. Однако такая валентность проявляется только в некоторых соединениях.

В органических соединениях и некоторых органических веществах углерод проявляет валентность равную IV. Эта валентность характерна для возбужденного состояния С. Из основного в возбужденное состояние он может переходить при получении дополнительной энергии.   Один электрон с s-подуровня переходит на p-подуровень, где есть свободная орбиталь.

Атом С способен присоединять и отдавать электроны с образованием ковалентных связей. Валентные возможности углерода очень широкие, он может принимать значение степени окисления от +4 до -4.

Валентные возможности азота

У азота на валентном энергетическом уровне находится 5электронов: 3 неспаренных и 2 спаренных. Исходя из этого, валентность азота может быть равна III. В возбужденное состоянии атом азота не может переходить. Однако азот может выступать в качестве донора при образовании ковалентных химических связей, обеспечивая своей электронной паре атом, имеющий свободную орбиталь. В этом случае валентность у азота будет равна IV, причем для азота, как элемента пятой группы, это максимальная валентность. Валентность V он проявлять не способен.

Валентные возможности фосфора

В отличие от азота,  фосфор имеет свободные 3d-орбитали, на которые могут переходить электроны. На внешнем энергетическом уровне находятся 3 неспаренных электрона. Атом фосфора способен переходить из основного состояния в возбужденное. Электроны с p-подуровня переходят на d-подуровень. В этом случае атом Р приобретает валентность, равную V. Таким образом, строение электронной оболочки атома увеличивает валентные возможности Р, по сравнению с азотом, от I до V.

Валентные возможности кислорода

На последнем энергетическом уровне у кислорода 2 неспаренных электрона. В соединениях чаще всего проявляет валентность II. У кислорода нет d-подуровня, поэтому переход электронов  невозможен. Валентные возможности очень ограничены – проявляет      II и III валентности.

Валентные возможности серы

Сера, так же, как и кислород, р в VI группе главной подгруппе ПСХЭ. Поэтому на валентном энергетическом уровне у серы 2 неспаренных электрона. Напрашивается вывод, что валентность серы равна II. Однако у серы есть и d-подуровень, который расширяет ее валентные возможности. Сера способна переходить из основного состояния в возбужденное, при этом может быть либо 4 неспаренных электрона, либо 6.

Таким образом, сера способна проявлять валентности II, IV, VI.

Опираясь на этот материал, можно определить все возможные валентности для любого химического элемента.

Смотри также:

  • Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь
  • Вещества молекулярного и немолекулярного строения. Тип кристаллической решетки. Зависимость свойств веществ от их состава и строения

Источник

Такие свойства атомов, как их размер, энергия ионизации, сродство к электрону, электроотрицательность, степень окисления, связаны с электронной конфигурацией атома. В их изменении с увеличением порядкового номера элемента наблюдается периодичность.

Атомы не имеют строго определенных границ, что обусловлено волновой природой электронов. В расчетах пользуются так называемыми эффективными или кажущимися радиусами, т. е. радиусами шарообразных атомов, сближенных между собой при образовании кристалла. Обычно их рассчитывают из рентгенометрических данных.

Радиус атома — важная его характеристика. Чем больше атомный радиус, тем слабее удерживаются внешние электроны. И, наоборот, с уменьшением атомного радиуса электроны притягиваются к ядру сильнее.

В периоде атомный радиус в общем уменьшается слева направо. Это объясняется ростом силы притяжения электронов с ростом заряда ядра. В подгруппах сверху вниз атомный радиус возрастает, так как в результате прибавления дополнительного электронного слоя увеличивается объем атома, а значит, и его радиус.

Энергия ионизации — это энергия, необходимая для отрыва наиболее слабо связанного электрона от атома. Она обычно выражается в электрон-вольтах. При отрыве электрона от атома образуется соответствующий катион.

Энергия ионизации для элементов одного периода возрастает слева направо с возрастанием заряда ядра. В подгруппе она уменьшается сверху вниз вследствие увеличения расстояния электрона от ядра. Энергия ионизации связана с химическими свойствами элементов. Так, щелочные металлы, имеющие небольшие энергии ионизации, обладают ярко выраженными металлическими свойствами. Химическая инертность благородных; газов связана с их высокими значениями энергии ионизации.

Атомы могут не только отдавать, но и присоединять электроны. При этом образуется соответствующий анион. Энергия, которая выделяется при присоединении к атому одного электрона, называется сродством к электрону. Обычно сродство к электрону, как и энергия ионизации, выражается в электрон-вольтах. Значения сродства к электрону известны не для всех элементов; измерять их весьма трудно. Наиболее велики они у галогенов, имеющих на внешнем уровне по 7 электронов. Это говорит об усилении неметаллических свойств элементов по мере приближения к концу периода.

Определение электроотрицательности дал американский ученый Л. Полинг в 1932 г. Он же предложил и первую шкалу электроотрицательности. Согласно Полингу, электроотрицательность – это способность атома в соединении притягивать к себе электроны. Имеются в виду валентные электроны, т. е. электроны, которые участвуют в образовании химической связи. Очевидно, у благородных газов электроотрицательность отсутствует, так как внешний уровень в их атомах завершен и устойчив.

Читайте также:  Какими свойствами обладают специи гвоздики

Сопоставляя значения электроотрицательностей элементов от франция (0,86) до фтора (4,10), легко заметить, что относительная электроотрицательность подчиняется периодическому закону: в периоде она растет с увеличением номера элемента, в группе — уменьшается. Ее значения служат мерой неметалличности элементов. Очевидно, чем больше относительная электроотрицательность, тем сильнее элемент проявляет неметаллические свойства. Неметаллы характеризуются большой относительной электроотрицательностью, а металлы — небольшой. При химическом взаимодействии элементов электроны смещаются от атома с меньшей к атому с большей относительной электроотрицательностью.

3. Развитие представления о строении атома: планетарная модель Резерфорда, теория Бора, квантовая теория строения атома.

Суть планетарной модели строения атома (Э.Резерфорд, 1911 г.) можно свести к следующим утверждениям:

1. В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.

2. Весь положительный заряд и почти вся масса атома сосредоточены в его ядре (масса электрона равна 1/1823 а.е.м.).

3. Вокруг ядра вращаются электроны. Их число равно положительному заряду ядра.

Эта модель оказалась очень наглядной и полезной для объяснения многих экспериментальных данных, но она сразу обнаружила и свои недостатки. В частности, электрон, двигаясь вокруг ядра с ускорением (на него действует центростремительная сила), должен был бы, согласно электромагнитной теории, непрерывно излучать энергию. Это привело бы к тому, что электрон должен был бы двигаться вокруг ядра по спирали и в конце концов упасть на него. Никаких доказательств того, что атомы непрерывно исчезают, не было, отсюда следовало, что модель Резерфорда в чем-то ошибочна.

Теория Бора. В 1913 г. датский физик Н.Бор предложил свою теорию строения атома. Как и Резерфорд, он считал, что электроны двигаются вокруг ядра подобно планетам, движущимся вокруг Солнца. Однако к этому времени уже доказали дискретность энергии электрона в атоме и это позволило Бору положить в основу новой теории два необычных предположения (постулата):

1. Электрон может вращаться вокруг ядра не по произвольным, а только по строго определенным (стационарным) круговым орбитам.

2. При движении по стационарным орбитам электрон не излучает и не поглощает энергии.

Таким образом, Бор предположил, что электрон в атоме не подчиняется законам классической физики. Согласно Бору, излучение или поглощение энергии определяется переходом из одного состояния в другое, что соответствует переходу электрона с одной стационарной орбиты на другую. При таком переходе излучается или поглощается энергия.

Бор рассчитал частоты линий спектра атома водорода, которые очень хорошо согласовывались с экспериментальными значениями, но было обнаружено также и то, что для других атомов эта теория не давала удовлетворительных результатов.

Квантовая модель строения атома. В последующие годы некоторые положения теории Бора были переосмыслены и дополнены. Наиболее существенным нововведением явилось понятие об электронном облаке, которое пришло на смену понятию об электроне только как частице. Теорию Бора сменила квантовая теория, которая учитывает волновые свойства электрона и других элементарных частиц, образующих атом.

Свойства элементарных частиц, образующих атом

Частица Заряд Масса
Кл условн. ед. г а.е.м.
Электрон -1,6∙10-19 -1 9,10∙10-28 0,00055
Протон 1,6∙10-19 +1 1,67∙10-24 1,00728
Нейтрон 1,67∙10-24 1,00866

В основе современной теории строения атома лежат следующие основные положения:

1. Электрон имеет двойственную (корпускулярно-волновую) природу. Он может вести себя и как частица, и как волна, подобно частице, электрон обладает определенной массой и зарядом; в то же время, движущийся электрон проявляет волновые свойства, например, характеризуется способностью к дифракции. Длина волны электрона λ и его скорость v связаны соотношением де Бройля:

λ = h / mv, где m — масса электрона.

2. Для электрона невозможно одновременно точно, измерить координату и скорость. Чем точнее мы измеряем скорость, тем больше неопределенность в координате, и наоборот.(принцип неопределённости Гейзенберга). Математическим выражением принципа неопределенности служит соотношение

∆x∙m∙∆v > ћ/2, где ∆х — неопределенность положения координаты, ∆v — погрешность измерения скорости.

3. Электрон в атоме не движется по определенным траекториям, а может находиться в любой части около ядерного пространства, однако вероятность его нахождения в разных частях этого пространства неодинакова. Пространство вокруг ядра, в котором вероятность нахождения электрона достаточно велика, называют орбиталью.

4. Ядра атомов состоят из протонов и нейтронов (общее название — нуклоны). Число протонов в ядре равно порядковому номеру элемента, а сумма чисел протонов и нейтронов соответствует его массовому числу.

Различные виды атомов имеют общее название — нуклиды. Нуклиды достаточно характеризовать любыми двумя числами из трех фундаментальных параметров: А — массовое число, Z — заряд ядра, равный числу протонов, равный порядковому номеру в таблице, равный числу электронов и N — число нейтронов в ядре. Эти параметры связаны между собой соотношениями: Z = А – N, N = А – Z, А= Z + N.

Нуклиды с одинаковым Z, но различными А и N, называют изотопами.

Сформулированные выше положения составляют суть новой теории, описывающей движение микрочастиц, — квантовой механики



Источник