Какие свойства аморфных пластмасс

Какие свойства аморфных пластмасс thumbnail

Физические состояния полимеров

Известны три основных агрегатных состояния веществ — твердое, жидкое и газообразное. В основу такой классификации положена способность тел сохранять свой объем и форму, а также способность сопротивляться воздействию внешних сил. Цепное строение и гибкость макромолекул ответственны за то, что полимеры могут находиться только в жидком или твердом агрегатном состоянии.  Газообразное состояние для них невозможно.

С термодинамической точки зрения различают фазовые состояния вещества. Обычно различают кристаллические, жидкие и газообразные фазы. Кристаллические фазы характеризуются дальним порядком в расположении атомов или молекул, образующих фазу, жидкие фазы — ближним порядком, а газообразные — отсутствием порядка в расположении атомов и молекул.

Для аморфного полимера различают три физических состояния — стеклообразное, высокоэластическое и вязкотекучее. Каждое физическое состояние характеризуется определенным комплексом деформационных свойств, знание которых очень важно как при переработке полимеров, так и при эксплуатации изделий из них, Из одного физического состояния в другое полимер переходит при изменении температуры. Изменение температуры влияет на запас тепловой энергии макромолекул (микроскопические свойства) и вызывает изменения в механических свойствах полимеров (макроскопические свойства).

Все три физических состояния высокомолекулярных линейных аморфных полимеров можно наблюдать, снимая термомеханическую кривую, показывающую деформации от температуры. Каждое физическое состояние имеет свою природу и особенности.

Аморфное состояние полимеров

Стеклообразное состояние аморфного полимера сравнивают обычно с состоянием переохлажденной жидкости, высокая вязкость которой исключает ее свободное течение и обеспечивает устойчивость формы, что свойственно как твердому телу. Стеклообразное состояние у низкомолекулярных веществ означает потерю подвижности всех молекул. Стеклообразное состояние у полимеров наблюдается тогда, когда их макромолекулы лишены подвижности. Этого можно достичь понижением температуры. Поскольку макромолекулы совершают движение не как единое целое, а сегментами (т.е. частями, и это отдаленно напоминает движение гусеницы), то для фиксации всей цени достаточно зафиксировать лишь часть сегментов, при этом другая часть на них может сохранять некоторую свободу перемещения. Это обстоятельство является одной из причин больших деформаций полимерных стекол, к которым приложены значительные усилия. При стекловании между макромолекулами не возникает новых типов связей, В затвердевшем полимере наблюдается ближний порядок, а расположении отдельных частей и атомных групп макромолекул.

Стеклообразный полимер (полимерное стекло) — это твердый хрупкий материал, в макромолекулах которого атомы или группы атомов совершают колебательные    движения около положения равновесия. Отсутствие подвижности значительной части сегментов цепи из-за высокой вязкости среды обусловливает невозможность конформационных переходов макромолекул. С повышением температуры тепловой энергии может оказаться достаточно, чтобы началось перемещение части сегменте и из одного положения в другое, Внешне это проявляется в том, что наблюдается постепенный переход от свойств твердого, хрупкою материала к свойствам более мягкого пластического тел д. Среднее значение некоторой области температур, в которой наступает сегментальная подвижность макромолекул, называют температурой стеклования Тс.

У линейных полимеров температура стеклования зависит от молекулярной массы, увеличиваясь с ее ростом, Когда же молекулярная масса полимера достигает значения, при котором начинает проявляться гибкость макромолекул, Тс принимает неизменное значение, У пространственных полимеров сшивание макромолекул и образование сетчатой структуры приводит к повышению Тс тем большему, чем гуще пространственная сетка.

Процесс стеклования сопровождается изменением многих свойств полимера – теплопроводности, электрической проводимости,   диэлектрической   проницаемости,   показателя   преломления.

При понижении температуры ниже Тс в полимере наблюдается дальнейшее уменьшение теплового движения тех сегментов макромолекул, которые до этого обладали некоторой подвижностью. Чтобы вызвать теперь даже небольшую деформацию застеклованного полимера, нужно приложить к нему большую механическую нагрузку. При этом действующее на полимер напряжение (нагрузка) может оказаться выше его разрушающего напряжения, и полимер разрушается как хрупкое тело при очень малой деформации. Температуру, при которой происходит хрупкое разрушение полимера, называют температурой хрупкости Тхр.

Высокоэластическое состояние полимера характеризуется относительно высокой подвижностью сегментов макромолекул. Это приводит к тому, что макромолекулы стремятся принять конформации, соответствующие различным положениям звеньев в пространстве. Наряду с двумя крайними конформациями — полностью выпрямленной и полностью свернутой — существует множество конформаций, обусловленных разной степенью свернутости макромолекул.

Высокоэластическое состояние проявляется только тогда, когда макромолекулы имеют значительную длину (большую молекулярную массу). Оно особенно свойственно гибкоцепным полимерам, и может проявляться для них уже при комнатной температуре. В случае значительного межмолекулярного взаимодействия высокоэластическое состояние наблюдается при повышенных температурах, то есть когда действие межмолекулярных сил ослабевает. Сравнительная легкость принятия макромолекулой самых различны конформаций под влиянием внешнего механического напряжения объясняет большие деформации в высокоэластическом состоянии (сотни процентов). После снятия нагрузки благодаря тепловому перемещению сегментов макромолекулы возвращаются к исходным кип формациям и деформации исчезает.

В высокоэластическом состоянии деформация носит обратимый характер потому, что время действия внешней механической нагрузки мало в сравнении с тем временем, которое требуется, чтобы макромолекула могла принять конформацию, равновесную для данных условий. Если процесс деформации линейного полимера осуществлять медленно, так, чтобы макромолекулы успели перейти из одной равновесной конформации в другую, вместо высокоэластического состояния полимер окажется в вязкотекучем состоянии.

Высокоэластическое состояние наблюдается в области температур Тс — Тт, где Тт — температура текучести полимера.

В вязкотекучем состоянии полимер представляет собой жидкость и способен необратимо течь под воздействием сравнительно небольших внешних напряжений, т.е. проявлять пластическую деформацию. При течении происходит перемещение целых макромолекул относительно друг друга. Деформация в вязкотекучем состоянии может развиваться бесконечно и носит необратимый характер.

Читайте также:  Какие свойства личности костылева проявляются в его общении с ночлежниками

Кристаллическое состояние полимеров

Многие полимеры могут существовать в кристаллическом фазовом состоянии. Так, полиэтилен, полипропилен, натуральный каучук, отдельные эфиры целлюлозы, полиамиды могут образовывать микроскопические кристаллы.

В кристаллическое состояние полимеры переходит из жидкого (расплав, раствор) при понижении температуры. Кристаллизация протекает п результате фиксации положения отдельных сегментов и возникновения элементов дальнего трехмерного порядка в их расположении.
 

Литература

1. Энциклопедия полимеров.. М., Советская энциклопедия. Т. 1, 1972, Т. 2, 1974, т. 3, 1977.
2. Бранцхин E. А., Шульгина Э. С., Технология пластических масс. М., Химия, 1974

Источник

Рекомендуем приобрести:

Установки для автоматической сварки продольных швов обечаек – в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки – в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Состав и свойства

Получение пластмасс

Пластмассы — это материалы, полученные на основе синтетических или естественных полимеров (смол). Синтезируются полимеры путем полимеризации или поликонденсации мономеров в присутствии катализаторов при строго определенных температурных режимах и давлениях.

В полимер с различной целью могут вводиться наполнители, стабилизаторы, пигменты, могут составляться композиции с добавкой органических и неорганических волокон, сеток и тканей.

Таким образом, пластмассы в большинстве случаев являются многокомпонентными смесями и композиционными материалами, у которых технологические свойства, в том числе и свариваемость, в основном определяются свойствами полимера.

В зависимости от поведения полимера при нагревании различают два вида пластмасс — термопласты, материалы, которые могут многократно нагреваться и переходить при этом из твердого в вязко-текучее состояние, и реактопласты, которые могут претерпевать этот процесс лишь однократно.

Особенности строения

Пластмассы (полимеры) состоят из макромолекул, в которых более или менее регулярно чередуется большое число одинаковых или неодинаковых атомных группировок, соединенных химическими связями в длинные цепи, по форме которых различают линейные полимеры, разветвленные и сетчато-пространственные.

По составу макромолекул полимеры делятся на три класса:

1) карбоцепные, основные цепи которых построены только из углеродных атомов;

2) гетероцепные, в основных цепях которых, кроме атомов углерода, содержатся атомы кислорода, азота, серы;

3) элементоорганические полимеры, содержащие в основных цепях атомы кремния, бора, алюминия, титана и других элементов.

Макромолекулы обладают гибкостью и способны изменять форму под влиянием теплового движения их звеньев или электрического поля. Это свойство связано с внутренним вращением отдельных частей молекулы относительно друг друга. Не перемещаясь в пространстве, каждая макромолекула находится в непрерывном движении, которое выражается в смене ее конформаций.

Гибкость макромолекул характеризует величина сегмента, т. е. число звеньев в ней, которые в условиях данного конкретного воздействия на полимер проявляют себя как кинетически самостоятельные единицы, например в поле ТВЧ как диполи. По реакции к внешним электрическим полям различают полярные (ПЭ, ПП) и неполярные (ПВХ, полиаксилонитрил) полимеры. Между макромолекулами действуют силы притяжения, вызванные ван-дер-ваальсовым взаимодействием, а также водородными связями, ионным взаимодействием. Силы притяжения проявляются при сближении макромолекул на 0,3—0,4 им.

Полярные и неполярные полимеры (пластмассы) между собой несовместимы — между их макромолекулами не возникает взаимодействия (притяжения), т. е. они между собой не свариваются.

Надмолекулярная структура, ориентация

По структуре различают два вида пластмасс — кристаллические и аморфные. В кристаллических в отличие от аморфных наблюдается не только ближний, но и дальний порядок. При переходе из вязко-текучего состояния в твердое макромолекулы кристаллических полимеров образуют упорядоченные ассоциации-кристаллиты преимущественно в виде сферолитов (рис. 37.1). Чем меньше скорость охлаждения расплава термопласта, тем крупнее вырастают сферолиты. Однако и в кристаллических полимерах всегда остаются аморфные участки. Изменяя скорость охлаждения, можно регулировать структуру, а следовательно, и свойства сварного соединения.

Какие свойства аморфных пластмасс

Резкое различие продольных и поперечных размеров макромолекул приводит к возможности существования специфического для полимеров ориентированного состояния. Оно характеризуется расположением осей цепных макромолекул преимущественно вдоль одного направления, что приводит к проявлению анизотропии свойств изделия из пластмассы. Получение ориентированных пластмасс осуществляется путем их одноосной (5—10-кратной) вытяжки при комнатной или повышенной температуре. Однако при нагреве (в том числе и при сварке) эффект ориентации снижается или исчезает, так как макромолекулы вновь принимают термодинамически наиболее вероятные конфигурации (конформации) благодаря энтропийной упругости, обусловленной движением сегментов.

Реакция пластмасс на термомеханический цикл

Все конструкционные термопласты при нормальных температурах находятся в твердом состоянии (кристаллическом или застеклованном). Выше температуры стеклования (Тст) аморфные пластмассы переходят в эластическое (резиноподобное) состояние. При дальнейшем нагреве выше температуры плавления (Tпл) кристаллические полимеры переходят в аморфное состояние. Выше температуры текучести ТT и кристаллические, и аморфные пластмассы переходят в вязкотекучее состояние Все эти изменения состояния обычно описываются термомеханическими кривыми (рис. 37.2), являющимися важнейшими технологическими характеристиками пластмасс. Образование сварного соединения происходит в интервале вязкотекучего состояния термопластов. Реактопласты при нагреве выше ТT претерпевают радикальные процессы и в отличие от термопластов образуют пространственные полимерные сетки, не способные к взаимодействию без их разрушения, на что требуется применение специальных химических присадок.

Читайте также:  Каким свойством обладают все точки серединного перпендикуляра

Какие свойства аморфных пластмасс

Основные пластмассы для сварных конструкций

Какие свойства аморфных пластмасс

Наиболее распространенными конструкционными пластмассами являются группы термопластов на основе полиолефинов: полиэтилена высокого и низкого давления, полипропилена, полиизобутилена.

Полиэтилен [..—СН2—СН2—…]n высокого и низкого давления — кристаллические термопласты, отличающиеся между собой прочностью, жесткостью, температурой текучести. Полипропилен [—СН2—СН(СН3)—]n более температуростоек, чем полиэтилен, и обладает большей прочностью и жесткостью.

В значительных объемах используются хлорсодержащие пластики на основе полимеров и сополимеров винилхлорида и винилиденхлорида.

Поливинилхлорид (ПВХ) [—(СН2—СНСl—)]n — аморфный полимер линейного строения, в исходном состоянии является жестким материалом При добавке к нему пластификатора можно получить очень пластичный и хорошо сваривающийся материал — пластикат. Из жесткого ПВХ — винипласта — изготавливают листы, трубы, прутки, а из пластиката — пленку, шланги и другие изделия. Из ПВХ изготавливаются также вспененные материалы (пенопласты).

Значительную группу полимеров и пластмасс на их основе составляют полиамиды, содержащие в цепи макромолекул амидные группы [—СО—Н—]. Это в большинстве кристаллические термопласты с четко выраженной температурой плавления. Отечественная промышленность выпускает главным образом алифатические полиамиды, используемые для изготовления волокон, отливки деталей машин, получения пленок. К полиамидам относятся, в частности, широко известные поликапролактам и полнамид-66 (капрон).

Наибольшую известность из группы фторлонов получил политетрафтор-этилен-фторлон-4 (фторопласт 4). В отличие от других термопластов при нагреве он не переходит в вязкотекучее состояние даже при температуре деструкции (около 415°С), поэтому его сварка требует особых приемов. В настоящее время химической промышленностью освоен выпуск хорошо сваривающихся плавких фторлонов; Ф-4М, Ф-40, Ф-42 и др. Сварные конструкции из фторсодержащих пластиков обладают исключительно высокой стойкостью к агрессивным средам и могут воспринимать рабочие нагрузки в широком диапазоне температур.

На основе акриловой и метакриловой кислоты производятся акриловые пластики. Наиболее известная в практике производная на их основе — пластмасса полнметилметакрилат (торговая марка «плексиглас»). Эти пластики, обладающие высокой прозрачностью, используются как светопроводящие изделия (в виде листа, прутков и т. д.) Нашли применение также сополимеры метилметакрилата и акрилонитрила, которые обладают большей прочностью и твердостью. Все пластики этой группы хорошо свариваются.

Хорошей прозрачностью отличается группа пластиков на основе полистирола. Этот линейный термопласт хорошо сваривается тепловыми способами.

Для изготовления сварных конструкций преимущественно в электротехнической промышленности используют сополимеры стирола с метилстиролом, акрилонитрилом, метилметакрилатом и, в частности, акрилонитрилбутадиенстирольные (АБС) пластики. Последние отличаются от хрупкого полистирола более высокой ударной прочностью и теплостойкостью.

В сварных конструкциях находят применение пластмассы на основе поликарбонатов — сложных полиэфиров угольной кислоты. Они обладают более высокой вязкостью расплава, чем другие термопласты, однако свариваются удовлетворительно. Из них изготавливают пленки, листы, трубы и различные детали, в том числе декоративные. Характерными особенностями являются высокие диэлектрические и поляризационные свойства.

Формообразование деталей из пластмасс

Термопласты поставляются для переработки в гранулах размером 3—5 мм. Основными технологическими процессами изготовления полуфабрикатов и деталей из них являются: экструзия, литье, прессование, каландрирование, производимые в температурном интервале вязкотекучего состояния.

Трубопроводы из полиэтиленовых и поливинилхлоридных труб применяют для транспорта агрессивных продуктов, в том числе нефти и газа с содержанием сероводорода и углекислоты и химических (неароматических) реагентов в химическом производстве. Резервуары и цистерны для перевозки кислот и щелочей, травильные ванны и другие сосуды облицовываются пластмассовыми листами, соединяемыми с помощью сварки Герметизация пластикатом помещений, загрязняемых изотопами, покрытие полов линолеумом также осуществляются с помощью сварки. Консервация пищевых продуктов в тубы, коробки и банки, упаковка товаров и почтовых посылок резко ускоряются с применением сварки.

Машиностроительные детали. В химическом машиностроении свариваются корпуса и лопатки различного рода смесителей, корпуса и роторы насосов для перекачки агрессивных сред, фильтры, подшипники и прокладки из фторопласта, из полистирола сваривается осветительная арматура, из капрона неэлектропроводные шестерни, валики, муфточки, штоки, из фторлона — несмазывающиеся подшипники, вытеснители топлива и т д.

Оценка свариваемости пластмасс

Основные стадии процесса сварки

Процесс сварки термопластов состоит в активации свариваемых поверхностей деталей, либо находящихся уже в контакте (сварка ТВЧ, СВЧ), либо приводимых в контакт после (сварка нагретым инструментом, газом, ИК-излучением и т. д.) или одновременно с активизацией (сварка трением, УЗ-сварка).

При плотном контакте активированных слоев должны реализоваться силы межмолекулярного взаимодействия.

В процессе образования сварных соединений (при охлаждении) происходит формирование надмолекулярных структур в шве, а также развитие полей собственных напряжений и их релаксация. Эти конкурирующие процессы определяют конечные свойства сварного соединения. Технологическая задача сварки состоит в том, чтобы максимально приблизить по свойствам шов к исходному — основному материалу.

Механизм образования сварных соединений

Реологическая концепция. Согласно реологической концепции, механизм образования сварного соединения включает два этапа — на макроскопическом и микроскопическом уровнях. При сближении под давлением активированных тем или иным способом поверхностей соединяемых деталей вследствие сдвиговых деформаций происходит течение расплава полимера. В результате этого удаляются из зоны контакта ингредиенты, препятствующие сближению и взаимодействию ювенильных макромолекул (эвакуируются газовые, окисленные прослойки). Вследствие разности скоростей течения расплава не исключено и перемешивание макрообъемов расплава в зоне контакта. Только после удаления или разрушения дефектных слоев в зоне контакта, когда ювенильные макромолекулы сблизятся на расстояния действия Ван-дер-Ваальсовых сил, возникает взаимодействие (схватывание) между макромолекулами слоев соединяемых поверхностей деталей. Этот аутогезионный процесс происходит на микроуровне. Он сопровождается взаимодиффузией макромолекул, обусловленной энергетическим потенциалом и неравномерностью градиента температур в зоне свариваемых поверхностей.

Читайте также:  Какие свойства металлов вы знаете

Итак, чтобы образовалось сварное соединение двух поверхностей, необходимо прежде всего обеспечить течение расплава в этой зоне.

Течение расплава в зоне сварки зависит от его вязкости: чем меньше вязкость, тем активнее происходят сдвиговые деформации в расплаве — разрушение и удаление дефектных слоев на контактирующих поверхностях, тем меньшее давление необходимо прилагать для соединения деталей.

Вязкость расплава в свою очередь зависит от природы пластмассы (молекулярной массы, разветвленности макромолекул полимера) и температуры нагрева в интервале вязкотекучести. Следовательно, вязкость может служить одним из признаков, определяющих свариваемость пластмассы: чем она меньше в интервале вязкотекучести, тем лучше свариваемость и, наоборот, чем больше вязкость, тем сложнее разрушить и удалить из зоны контакта ингредиенты, препятствующие взаимодействию макромолекул. Однако нагрев для каждого полимера ограничен определенной температурой деструкции Тд, выше которой происходит его разложение — деструкция. Термопласты различаются по граничным значениям температурного интервала вязкотекучести, т. е. между температурой их текучести ТT и деструкции Тд (табл. 37.2).

Какие свойства аморфных пластмасс

Классификация термопластов по их свариваемости. Чем шире интервал вязкотекучести термопласта (рис. 37.3), тем практически проще получить качественное сварное соединение, ибо отклонения по температуре в зоне шва отражаются менее на величине вязкости. Наряду с интервалом вязкотекучести и минимальным уровнем в нем значений вязкости заметную роль играет в реологических процессах при образовании шва градиент изменения вязкости в этом интервале. За количественные показатели свариваемости приняты: температурный интервал вязкотекучести ΔT, минимальное значение вязкости ηmin и градиент изменения вязкости в этом интервале.

Какие свойства аморфных пластмасс

По свариваемости все термопластичные пластмассы можно разбить по этим показателям на четыре группы (табл. 37.3).

Какие свойства аморфных пластмасс

Сварка термопластичных пластмасс возможна, если материал переходит в состояние вязкого расплава, если его температурный интервал вязкотекучести достаточно широк, а градиент изменения вязкости в этом интервале минимальный, так как взаимодействие макромолекул в зоне контакта происходит по границе, обладающей одинаковой вязкостью.

В общем случае температура сварки назначается, исходя из анализа термомеханической кривой для свариваемой пластмассы, принимаем ее на 10—15° ниже Тд. Давление принимается такое, чтобы эвакуировать расплав поверхностного слоя в грат либо разрушить его, исходя из конкретной глубины проплавления и теплофизических показателей свариваемого материала. Время выдержки tCB определяется исходя из достижения квазистационарного состояния оплавления и проплавления либо по формуле

где t0 — константа, имеющая размерность времени и зависящая от толщины соединяемого материала и способа нагрева; Q — энергия активации; R — газовая постоянная; Т — температура сварки.

При экспериментальной оценке свариваемости пластмасс фундаментальным показателем является длительная прочность сварного соединения, работающего в конкретных условиях по сравнению с основным материалом.

Испытываются образцы, вырубленные из сварного соединения, на одноосное растяжение. При этом временной фактор моделируется температурой, т. е. используется принцип температурно-временной суперпозиции, основанный на допущении, что при данном напряжении связь между длительной прочностью к температурой однозначна (метод Ларсона-Миллера).

Методы повышения свариваемости

Схемы механизма образования сварных соединений термопластов. Повышение их свариваемости может производиться за счет расширения температурного интервала вязкотекучести, интенсификации удаления ингредиентов или разрушения дефектных слоев в зоне контакта, препятствующих сближению и взаимодействию ювенильных макромолекул.

Возможно несколько путей:

введение в зону контакта присадки в случае недостаточного количества расплава (при сварке армированных пленок), при сварке разнородных термопластов присадка по составу должна обладать сродством к обоим свариваемым материалам;

введение в зону сварки растворителя или более пластифицированной присадки;

принудительное перемешивание расплава в шве путем смещения соединяемых деталей не только вдоль линии осадки, но и возвратно-поступательно поперек шва на 1,5—2 мм или наложением ультразвуковых колебаний. Активизация в зоне контакта перемешивания расплава может производиться после оплавления стыкуемых кромок нагревательным инструментом, имеющим ребристую поверхность. Свойства сварного соединения могут быть улучшены последующей термической обработкой соединения. При этом снимаются не только остаточные напряжения, но возможно исправление структуры в шве и околошовной зоне, особенно у кристаллических полимеров. Многие из изложенных мероприятий приближают свойства сварных соединений к свойствам основного материала.

При сварке ориентированных пластмасс во избежание потери их прочности вследствие переориентации при нагреве до вязко-текучего состояния полимера применяют химическую сварку, т. е. процесс, при котором в зоне контакта реализуются радикальные (химические) связи между макромолекулами. Химическую сварку применяют и при соединении реактопластов, детали из которых не могут переходить при повторном нагреве в вязкотекучее состояние. Для инициирования химических реакций в зону соединения при такой сварке вводят различные реагенты в зависимости от соединяемого вида пластмасс. Процесс химической сварки, как правило, производится при нагреве места сварки.

Волченко В.Н. Сварка и свариваемые материалы т.1. -M. 1991

См. также:

  • Сварка пластмасс нагретым газом
  • Сварка пластмасс экструдируемой присадкой (расплавом)
  • Контактная тепловая сварка пластмасс
  • Сварка пластмасс ультразвуком
  • Сварка пластмасс трением и вибротрением
  • Сварка пластмасс токами высокой частоты
  • Сварка пластмасс ИК-излучением
  • Сварка пластмасс лучом лазера
  • Сварка пластмасс световым лучом
  • Комбинированные способы сварки полимеров
  • Сварка пластмасс
  • Химическая сварка полимерных материалов
  • Контроль качества сварных швов при сварке пластмасс

Источник