Какие свойства алюминий придает стали
В предыдущей публикации мы рассмотрели влияние некоторых химических элементов на свойства стали, а именно влияние углерода, кремния, марганца, серы, фосфора.
В данной статье мы рассмотрим такой элемент, как алюминий, и то, как его наличие отражается на свойствах стали.
Алюминий (Al) – серебристо-белый активный металл. Температура плавления 657 °С, температура кипения 1800 °С, плотность – 2,6989 г/см3.
Устойчивость к коррозии
При соприкосновении с кислородом “чистый” алюминий становится пассивным и образует на своей поверхности тонкую пленку (оксид алюминия), благодаря которой предотвращается образование коррозии, даже в агрессивной среде. Устойчивость Al к коррозии присутствует и при взаимодействии с паром и водой (пресной). Для эксплуатации в соленой воде в алюминий добавляют магний и кремний.
Он растворяется в едких щелочах, соляной и серной кислотах.
Алюминий обладает высокой теплопроводностью и электропроводностью. Благодаря таким свойствам его применяются для изготовления электрических проводов и кабеля.
Раскисление алюминием
Раскисление – снижение содержания кислорода в металле или связывание его в прочные соединения.
Алюминий является сильным раскислителем. Он широко применяется при производстве спокойной стали, да бы избежать образования пористой структуры слитка.
Раскисление производится на этапе выплавки стали, методом введения в металл алюминиевой проволоки, слитков или гранул.
При высоких температурах он хорошо сплавляется с металлами, образуя тем самым прочные, но легкие сплавы.
Алюминий используют с целью удаления кислорода и азота из стали после продувки, что способствует уменьшению старения.
Он способствует удалению кислорода из стали, что так же увеличивает текучесть и ударную вязкость стали.
Наличие Al влияет на размер зерен (они становятся меньше), и придает повышенную жаростойкость. Благодаря этим свойствам его широко применяют при изготовлении азотированной стали, как добавку в ферритную жароустойчивую сталь. Получение стали с мелким зерном, за счет использования алюминия – обеспечивает допустимые показатели пластичности и вязкости.
Стоит отметить, что Al обладает способностью сильно повышать значение напряженности магнитного поля, которое влияет на характеристики размагничивания ферромагнитного и ферримагнитного веществ, поэтому его применяют в качестве легирующего элемента в магнитотвердых сплавах железа, никеля, кобальта, алюминия.
Негативные свойства
Негативными факторами влияния алюминия на сталь считается:
- снижение показателей текучести стали и вероятность (на машинах непрерывной разливки стали) затягивания сталевыпускного отверстия.
- образование сложных неметаллических включений, при соединении алюминия с кислородом, Al2O3 -типа корунд, который является концентратором напряжений при последующей переработке в метизном производстве.
Т.е. существует вероятность образования оксидов алюминия, которые имеют остроугольную форму и могут быть причиной надрывов (например, при волочении катанки).
Данные факторы могут частично нейтрализоваться добавлением кальциевой проволоки (FeCa).
В заключении
В отличии от углерода, серы, фосфора, алюминий не оказывает такого явного влияния на механические характеристики стали, однако содержание алюминия менее определенного уровня ведет к повышению физических и механических свойств, и в тоже время, если алюминия менее 0,002 % – свойства ухудшаются. При содержании в легированной алюминием стали 0,02-0,7% – подавляется процесс старения стали.
Подведя итоги всего сказанного, отметим, что главные свойства Al:
- хорошее раскисление стали;
- нейтрализация вредного влияния фосфора;
- повышение ударной вязкости стали.
Содержание алюминия менее определенного уровня ведет к повышению физических и механических свойств, и в тоже время, если алюминия менее 0,002 % – свойства ухудшаются.
Источник
Условные обозначения химических элементов:
хром ( Cr ) — Х никель ( Ni ) — Н молибден ( Mo ) — М титан ( Ti ) — Т медь ( Cu ) — Д ванадий ( V ) — Ф вольфрам ( W ) — В | азот ( N ) — А алюминий ( Аl ) — Ю бериллий ( Be ) — Л бор ( B ) — Р висмут ( Вi ) — Ви галлий ( Ga ) — Гл | иридий ( Ir ) — И кадмий ( Cd ) — Кд кобальт ( Co ) — К кремний ( Si ) — C магний ( Mg ) — Ш марганец ( Mn ) — Г | свинец ( Pb ) — АС ниобий ( Nb) — Б селен ( Se ) — Е углерод ( C ) — У фосфор ( P ) — П цирконий ( Zr ) — Ц |
ВЛИЯНИЕ ПРИМЕСЕЙ НА СТАЛЬ И ЕЕ СВОЙСТВА
Углерод — находится в стали обычно в виде химического соединения Fe3C, называемого цементитом. С увеличением содержания углерода до 1,2% твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость ухудшается, ухудшается и свариваемость.
Кремний — если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает.(Полезная примесь; вводят в качестве активного раскислителя и остается в стали в кол-ве 0,4%)
Марганец — как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. (Полезная примесь; вводят в сталь для раскисления и остается в ней в кол-ве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.
Сера — является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, — свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. ( От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды MnS).
Фосфор — также является вредной примесью. Снижает вязкость при пониженных температурах, то есть вызывает хладноломкость. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.
ЛЕГИРУЮЩИЕ ЭЛЕМЕНТЫ И ИХ ВЛИЯНИЕ НА СВОЙСТВА СТАЛИ
Хром (Х) — наиболее дешевый и распространенный элемент. Он повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; содержание больших количеств хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.
Никель (Н) — сообщает стали коррозионную стойкость, высокую прочность и пластичность, увеличивает прокаливаемость, оказывает влияние на изменение коэффициента теплового расширения. Никель – дорогой металл, его стараются заменить более дешевым.
Вольфрам (В) — образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске. Это дорогой и дефицитный металл.
Ванадий (Ф) — повышает твердость и прочность, измельчает зерно. Увеличивает плотность стали, так как является хорошим раскислителем, он дорог и дефицитен.
Кремний (С)- в количестве свыше 1% оказывает особое влияние на свойства стали: содержание 1-1,5% Si увеличивает прочность, при этом вязкость сохраняется. При большем содержании кремния увеличивается электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислостойкость, окалиностойкость.
Марганец (Г) — при содержании свыше 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности.
Кобальт (К) — повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.
Молибден (М) — увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах.
Титан (Т) — повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.
Ниобий (Б) — улучшает кислостойкость и способствует уменьшению коррозии в сварных конструкциях.
Алюминий (Ю) — повышает жаростойкость и окалиностойкость.
Медь (Д) — увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.
Церий — повышает прочность и особенно пластичность.
Цирконий (Ц) — оказывает особое влияние на величину и рост зерна в стали, измельчает зерно и позволяет получать сталь с заранее заданной зернистостью.
Лантан, цезий, неодим — уменьшают пористость, способствуют уменьшению содержания серы в стали, улучшают качество поверхности, измельчают зерно.
Источник
На чтение 5 мин.
Сплавы железа с алюминием обладают уникальными свойствами, позволяющими применять их для изготовления деталей, подверженных термическим воздействиям, окислению или коррозии. Их использование имеет узкую направленность — они ориентированы на промышленные сферы эксплуатации.
Сплав железа с алюминием
История открытия
Первые попытки применения сплавов алюминия и железа были предприняты Фарадеем в 1820 году. Были попытки использовать сплав алюминия в качестве легирующего элемента для получения высокопрочной стали, но они оказались неэффективными.
Тщательные исследования были возобновлены после 1918 года в СССР, Германии, Англии. Было показано, что при добавлении Al возрастают жаропрочные свойства чугуна. Образцы обладают повышенной прочностью, хрупкостью, стойко переносят контакт с кислыми средами, не склонны к образованию окалин.
Было обнаружено, что появление окалин зависит от толщины оксидной плёнки на образцах: чем она толще, однороднее, тем выше защита поверхности. Важно, чтобы окислы не формировали эвтектическую фазу и не подвергались возгонке, а их ионная проводимость была минимальной.
Условием жаростойкости образца являются потери с окалиной в пределах 2-10-3–4-10-3 г/см2/ч.
Множество проведённых исследований сплавов Fe и Al закончились определением их химических и физических свойств. Это связано с проблемами газового насыщения образцов, угаром алюминия, формированием внутренних оксидных плёнок, разрушением образцов при нормальных условиях.
Наиболее перспективными оказались сплавы с содержанием от 16 до 20% Al и 3% углерода, получившие название «чугаль». Именно их начали выплавлять в СССР.
Позже группа изобретателей во главе с З. Эмингером разработала технологию производства качественных отливок железоалюминиевых образцов. Благодаря этому были получены новые данные.
Состав и структура
Структура сплава алюминия с железом представляет собой пересыщенный раствор Al в α-Fe с упорядочением структуры FeAl (тип В2), наличием включений Fe3AlCx. Свойства определяются упорядочением альфа-фазы и пересыщением. Чтобы сформировать однородный состав, необходим отжиг при температуре выше упорядочения состава с последующим регулируемым охлаждением.
При количестве Al 8–14% формируется столбчатая матричная структура. В процессе отжига структура немного упорядочивается: включения длиной до 150 мкм находятся вдоль границы зёрен. Выделение включений происходит при охлаждении из твёрдой фазы.
Метастабильное состояние фазы определяется количеством включений. Отжиг позволяет их сократить до 2%. Чем больше в составе алюминия, тем больше создаётся негомогенных областей, в результате чего понижается микротвёрдость матрицы до 0,4 ГПа и износостойкость образца.
С увеличением скорости отжига при водяном или воздушном охлаждении количество карбидных включений снижается.
14-20% сплав алюминия с железом имеет также матричную структуру, но карбидная фаза обеднена по Al и структура FeAl не упорядочена. При отжиге на воздухе количество карбидных включений возрастает, за счёт чего повышаются свойства износостойкости и прочности. Если проводить охлаждение в воде, то такого эффекта не наблюдается и образец получается хрупким.
При повышенном содержания в сплаве Al от 20 до 30% карбидной фазы становится меньше, при охлаждении образцов данная фаза отсутствует в структуре или не более 3%. За счёт большого количества алюминия образец приобретает высокую прочность и пластичность. Воздушное охлаждение после отжига стимулирует образование твёрдых износостойких фаз.
Увеличение содержания алюминия в расплаве становится причиной формирования интерметаллида Fe4Al13, который не устраняется после отжига, а образец становится непригодным для какого-либо практического применения.
Для улучшения свойств расплава в состав вводятся следующие легирующие элементы:
- 0,1–10% Cr;
- 0,1–0,2% Nb;
- 0,1–2,0% Si;
- 0,1–5% B;
- от 50 до 200 мг/кг Zr.
Содержание углерода — от 100 до 500 мг/кг.
Температура плавления
Характеристики и свойства
Сплавы железа и алюминия имеют следующие характеристики:
- количество циклов термического нагрева до 240, в зависимости от химического состава;
- предел прочности на растяжение 100 МПа;
- отличные литейные свойства сплава;
- допустимо применение легирующих элементов: Cr, Ni, Ti, Mo, Cu, B, Si, Nb, Zr.
Свойства сплава:
- хорошая свариваемость при условии термообработки выше +7000С;
- высокая химическая стойкость;
- необходимость формирования стабильной фазы расплава при температуре до 9000С;
- коррозионная стойкость.
Изготовление
Сплав создаётся из отходов дюрали, алюминия и железа путём алитирования. В жаростойкую ёмкость (электродуговую печь) засыпают, очищенные от окалин и грязи, куски стали (степень очистки 99%), 49% смесь Al или алюминиевого сплава, содержащего 2% хлористого аммония, а затем спекают в атмосфере аргона. Температура термообработки может составлять от +9000С до +15000С.
Нагрев ёмкости осуществляют подачей тока на нагревательные элементы или через саму конструкцию, при условии её высокого омического сопротивления.
После нагрева выбирают оптимальный способ отжига, в зависимости от состава компонент, с последующим естественным охлаждением.
Где применяют?
Железоалюминиевые расплавы применяются при производстве деталей и агрегатов, которые подвержены следующим воздействиям:
- термическому;
- механическому;
- окислительному.
Также сплавы заменяют никелевые сверхпрочные сплавы и специальные стали.
Изделия из сплава
Достоинства и недостатки
Преимущество сплава железа с алюминием — механические характеристики, которые сравнимы с некоторыми титановыми и никелевыми суперсплавами. Предел прочности при растяжении составляет до 100 МПа.
Другим достоинством является стойкость к окислению и коррозии при температурах до +7000С. При более высоких температурах допустимо применение таких конструкций, но без значительных механических нагрузок.
К недостаткам относят:
- хрупкость, проявляемую при определённых условиях эксплуатации и зависящую от температуры и нагрузок;
- при концентрации алюминия менее 12% сплав подвержен окислению, коррозии снижению пластичности;
- сложность получения стабильной фазы с заданными характеристиками;
- низкая прочность на растяжение.
Сплав легко расплавляется, что позволяет снизить расходы на его производство. Допустимо использование вторсырья, которое прошло соответствующие этапы очистки от примесей.
Источник
В последнее время всё большую популярность получают облегчённые металлы. Обусловлено это всё возрастающими требованиями прочности и жёсткости материала при его малой массе. Сфер, где применение таких металлов стало необходимостью достаточно много: от конструкций обшивки фасада до аэрокосмической промышленности. Вполне естественно, что алюминий занимает одно из лидирующих мест на рынке металлов по объёмам потребления. Использование этого материала и изделий из него можно встретить во многих промышленных и производственных сферах.
Применение алюминия
Традиционным применением алюминия является использование его в строительстве и производстве разнообразной тары. Но это далеко не все сферы, в которых широко применяется алюминий и его сплавы. Достаточно вспомнить автомобильную отрасль, машиностроение, производство электротехники. Применение его в авиационной технике и ракетостроении имеет на сегодняшний день огромное значение. Не говоря уже про производство баночек под газировку и другие напитки.
Характеристики сплавов
Использование алюминия без использования примесей встретить можно достаточно редко: только в тех элементах конструкций, которые не подвергаются повышенной нагрузке. Изменить механические свойства можно применив различные технологии производства, используя добавление различных примесей. Например, повысить твёрдость и прочность материала может легирование различными металлами. И также на прочность и показатели твёрдости может влиять пластическая деформация. Благодаря подобным манипуляциям, некоторые алюминиевые сплавы не уступают по показателям высокопрочной стали. Это и стало причиной их огромной популярности.
Наиболее известным сплавом алюминия является дюралюминий. Его основным применением считается использование в качестве основы для производства нервюр, лопастей винтов и шпангоутов.
Ещё одним сплавом алюминия является сплав Al-Zn-Mg-Cu. Обладая свойствами высокой прочности, он прочно занял нишу материалов, применяемых в условиях повышенного напряжения и сильного сжатия. Примером применения может служить использование данного материала при изготовлении обшивки самолётов и лонжеронов.
Ещё один сплав, на который стоит обратить внимание – силумин. Выполнен данный сплав добавлением в алюминий кремния. Главными его преимуществами являются лёгкость, технологичность и повышенная устойчивость к деформации.
Повысить показатели прочности сплавов алюминия можно посредством специальных технологических приёмов: спекания или прессования, например. В результате данных процессов, образуются дисперсные включения в металле. Главная цель всех этих манипуляций – повышение механических свойств материала.
Ассортимент продукции из алюминиевых сплавов на современном рынке металлопроката позволяет решать различные задачи в сфере строительства. При покупке стоит обратить внимание на то, какой именно сплав использован, и какие технологии производства применялись. Всю эту информацию можно почерпнуть из паспорта изделия и сертификата качества производителя. Кроме того, критерием качества продукции является соответствие его требованиям ГОСТа.
Оригинал статьи ” Алюминий и алюминиевые сплавы ”
Источник
Вопросы, рассмотренные в материале:
- Как был открыт алюминий и каковы его основные свойства
- Основные физические свойства алюминия
- Основные химические свойства алюминия
- Как применяют основные свойства алюминия
- Как используют основные свойства алюминия в строительстве
Основные свойства алюминия делают этот материал по-настоящему универсальным и ценным. Его используют во всех видах промышленного производства, в сельском хозяйстве, в быту, в коммерции. Обладает огромным количеством преимуществ по отношению к стали и другим видам металла.
Самые популярные сферы применения алюминия – изготовление металлоконструкций и металлообработка. О том, какие свойства металла и где конкретно они нашли свое применение, читайте далее.
Как был открыт алюминий и каковы его основные свойства
Алюминий представляет собой парамагнитный металл, достаточно легкий, имеющий серебристый цвет. Он хорошо поддается механической обработке и литью, просто формуется. В земной коре этот элемент третий по распространенности, впереди только кислород и кремний. Наши недра содержат целых 8 % данного металла, что значительно больше золота, количество которого составляет не более пяти миллионных долей процента.
Алюминий активно используется в большинстве сфер производства. Его сплавы применяются для изготовления бытовой техники, транспорта, в машиностроении и электротехнике. Капитальное строительство также не может обойтись без него.
Он чрезвычайно распространен в земной коре, являясь первым из металлов и третьим химическим элементом (первое место у кислорода, второе – у кремния). Доля алюминия в наших недрах – 8,8 %. Металл является частью большого количества горных пород и минералов, основной из которых – алюмосиликат.
В виде соединений алюминий находится в базальтах, полевых шпатах, гранитах, глине и пр. Однако в основном его получают из бокситов, которые достаточно редко встречаются в виде месторождений. В России такие залежи есть только на Урале и в Сибири. В промышленных масштабах алюминий можно также добывать из нефелинов и алунитов.
Ткани животных и растений содержат алюминий в виде микроэлемента. Некоторые организмы, например, моллюски и плауны, являются его концентраторами, накапливая в своих органах.
Человечеству с давних времен знакомо соединение алюминия под названием алюмокалиевые квасцы. Применялось оно в процессе выделки кожи, в качестве средства, которое, набухая, связывает различные компоненты смеси. Во второй половине XVIII в. ученые открыли оксид алюминия. А вот вещество в чистом виде получили значительно позже.
Впервые это удалось Ч. К. Эрстеду, который выделил алюминий из хлорида. Проводя опыт, он обрабатывал соли калия амальгамой, в результате чего выделился порошок серого цвета, признанный всеми чистым алюминием.
В дальнейшем, исследуя металл, ученые определили его химические свойства, проявляющиеся в высокой способности к восстановлению и активности. Именно поэтому с алюминием долгое время не работали.
Но уже в 1854 г. французский ученый Девиль, применив электролиз расплава, сумел получить металл в слитках. Данный метод используется и сейчас. В промышленных масштабах алюминий стали производить в начале XX в., когда предприятия смогли получить доступ к большому количеству электроэнергии.
Сегодня алюминий является одним из самых используемых в производстве бытовой техники и строительстве металлом.
Основные физические свойства алюминия
Основные характеристики алюминия – высокая электро- и теплопроводность, пластичность, устойчивость к холоду и коррозии. Его можно обрабатывать посредством прокатки, ковки, штамповки, волочения. Алюминий прекрасно поддается сварке.
Примеси, присутствующие в металле в различных количествах, значительно ухудшают механические, технологические и физико-химические свойства чистого алюминия. Основными из них являются титан, кремний, железо, медь и цинк.
По степени очистки алюминий разделяют на технический металл и высокой чистоты. На практике различия данных типов – в стойкости к коррозии в различной среде. Стоимость напрямую зависит от чистоты алюминия. Технический металл подходит для производства проката, различных сплавов, кабельно-проводниковых изделий. Чистый используют для специальных целей.
Алюминий обладает высокой электропроводностью, уступая только золоту, серебру, меди. Однако сочетание данного показателя с малой плотностью позволяет использовать его при производстве кабельно-проводниковых изделий наравне с медью. Электропроводность металла может увеличиваться при длительном отжиге или ухудшаться при нагартовке.
Увеличивая чистоту алюминия, производители повышают его теплопроводность. Снизить данное свойство способны примеси меди, марганца и магния. Более высокую теплопроводность имеют исключительно медь и серебро. Именно благодаря данному свойству данный металл используют для производства радиаторов охлаждения и теплообменников.
Удельная теплоемкость алюминия, как и температура его плавления, достаточно высока. Данные показатели значительно превышают аналогичные значения большей части металлов. С повышением чистоты металла увеличивается и его способность отражать от поверхности световые лучи. Алюминий хорошо поддается полировке и прекрасно анодируется.
Металл близок по свойствам к кислороду, его поверхность на воздухе быстро затягивается пленкой из оксида алюминия – тонкой и прочной. Обладая антикоррозионными свойствами, она защищает металл от образования ржавчины и предупреждает дальнейшее окисление. Алюминий не взаимодействует с азотной кислотой (концентрированной и разбавленной) и органическими кислотами, он стоек к воздействию пресной, соленой воды.
Эти особенности алюминия придают ему устойчивость к коррозии, что и используется людьми. Именно поэтому его особенно широко применяют в строительстве. Интерес к нему увеличивается еще и по причине его легкости в сочетании с прочностью и мягкостью. Такие характеристики есть далеко не у всякого вещества.
Помимо вышеуказанных, алюминий имеет еще несколько интересных физических свойств:
- Ковкость и пластичность – алюминий стал материалом изготовления прочной и легкой тонкой фольги, а также проволоки.
- Плавление происходит при температуре +660 °С.
- Температура кипения +2 450 °С.
- Плотность – 2,7 г/см³.
- Наличие объемной гранецентрированной металлической кристаллической решетки.
- Тип связи – металлический.
Области использования алюминия определяются его химическими и физическими свойствами. Характеристики металла, рассмотренные выше, применяются в бытовых целях. Основные свойства алюминия, как прочного, особо легкого, антикоррозийного материала, используются в судо- и авиастроении. Именно поэтому важно их знать.
Основные химические свойства алюминия
С химической точки зрения алюминий является чрезвычайно сильным восстановителем, имеющим способность в чистом виде быть высоко активным веществом. Основное условие – убрать оксидную пленку.
Алюминий способен вступать в реакции с:
- щелочными соединениями;
- кислотами;
- серой;
- галогенами.
Алюминий не взаимодействует в обычных условиях с водой. Йод – единственный из галогенов, с которым у металла происходит реакция без нагревания. Для взаимодействия с прочими требуется увеличение температуры.
Рассмотрим несколько примеров, показывающих химические свойства данного металла. Это уравнения, иллюстрирующие взаимодействие с:
- щелочами: 2Al + 6H2O + 2NaOH = Na[Al(OH)4] + 3Н2;
- кислотами: AL + HCL = AlCL3 + H2;
- серой: 2AL + 3S = AL2S3;
- галогенами: AL + Hal = ALHal3.
Основным свойством алюминия считается его способность восстанавливать иные вещества из их соединений.
Реакции его взаимодействия с оксидами иных металлов хорошо показывают все восстановительные свойства вещества. Алюминий прекрасно выделяет металлы из различных соединений. Примером может служить: Cr2O3 + AL = AL2O3 + Cr.
Металлургическая промышленность активно использует эту способность алюминия. Методика получения веществ, которая основывается на данной реакции, называется алюминотермия. Химическая индустрия использует алюминий чаще всего для получения иных металлов.
Как применяют основные свойства алюминия
Алюминий в чистом виде имеет слабые механические свойства. Именно поэтому наиболее часто применяют его сплавы.
Таких сплавов достаточно много, вот основные из них:
- алюминий с марганцем;
- дюралюминий;
- алюминий с магнием;
- алюминий с медью;
- авиаль;
- силумины.
В основе этих сплавов лежит алюминий, отличаются они исключительно добавками. Последние же делают материал прочным, легким в обработке, более стойким к износу, коррозии.
Есть несколько основных областей применения алюминия (чистого или в виде сплава). Из металла изготавливают:
- фольгу и проволоку для бытового использования;
- посуду;
- морские и речные суда;
- самолеты;
- реакторы;
- космические аппараты;
- архитектурные и строительные элементы и конструкции.
Алюминий является одним из самых важных металлов наравне с железом и его сплавами. Эти два элемента таблицы Менделеева наиболее широко применяются человеком в своей деятельности.
Как используют основные свойства алюминия в строительстве
Строительство – одна из основных отраслей-потребителей алюминия. 25 % всего вырабатываемого металла используется именно в ней. Современный облик мегаполисов был бы невозможен без использования алюминия. Он дает возможность создавать функциональные и красивые здания, стремящиеся ввысь. Небоскребы офисных центров имеют фасады из стекла, закрепленные на прочных, легких рамах из алюминия.
Современные торговые, развлекательные и выставочные центры в основе своей имеют каркас из алюминия. Конструкции из данного металла используются для возведения бассейнов, стадионов и других спортивных строений. Алюминий – один из самых востребованных у архитекторов, строителей, дизайнеров металлов. Почему? Давайте разберемся.
Алюминий – прочный и легкий металл, не поддающийся коррозии, имеющий долгий срок службы и совершенно нетоксичный. Он легко поддается обработке, сварке, паянию, его просто сверлить, распиливать, связывать и соединять шурупами. Этот металл способен принять любую форму посредством экструзии. Алюминий поможет воплотить самый смелый замысел архитектора. Из него изготавливаются конструкции, которые невозможно сделать из иных материалов: пластика, дерева или стали.
За прошлый век алюминий прошел путь от металла, редко используемого в строительстве из-за дороговизны и недостаточных объемов производства, до наиболее часто применяемого. 1920-е годы стали переломными. Благодаря электролизной технологии значительно снизилась стоимость его производства – в 5 раз. Алюминий стали применять в производстве стеновых панелей и водостоков, декоративных элементов, а не только для сводов и отделки крыш.
Empire State Building – первый небоскреб, при возведении которого широко применялся алюминий. Он был построен в 1931 году и оставался самым высоким в мире до 1970 г.
Алюминий активно использовался в конструкциях этого здания. В интерьере его также применяли достаточно широко. Фреска, расположенная на стенах и полке лобби, являющаяся визитной карточкой сооружения, сделана из алюминия и золота в 23 карата.
80 лет – таков минимальный срок эксплуатации конструкций из алюминия. Применение этого металла не ограничено климатическими условиями, его свойства остаются прежними при температурах от -80 °С и до +300 °C. Пожары редко могут разрушить алюминиевые сооружения. Низкие же температуры, наоборот, увеличивают его прочность.
Примером может служить алюминиевый сайдинг. Отражающее покрытие в виде фольги и теплоизоляция создают вместе с ним прекрасную защиту от холода, которая в 4 раза более эффективна, чем облицовка кирпичом толщиной 10 см или камнем толщиной 20 см. Именно поэтому алюминий все чаще можно встретить при строительстве объектов в условиях холодного климата: в РФ – на Северном Урале, в Якутии и Сибири.
Но еще более важным качеством алюминия является его легкость. При одинаковой жесткости пластина из алюминия в два раза легче стальной. И все благодаря низкому удельному весу. Если посчитать, то выйдет, что вес алюминиевой конструкции при равной несущей способности в два, а иногда и в три раза ниже массы стальной и в семь раз ниже железобетонной.
В настоящее время алюминий используют для строительства небоскребов и иных высоких строений. Металл делает здание значительно легче, что удешевляет постройку за счет меньшей глубины фундамента. Ведь чем больший вес имеют сооружения, тем фундамент должен быть глубже. Разводные мосты, выполненные из алюминия, также имеют небольшой вес, что облегчает работу механизмов, противовесы для таких конструкций должны быть минимальными. Данный металл вообще дает возможность архитекторам не ограничивать фантазию. Да и работать с таким легким материалом значительно проще, быстрее и удобнее.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максималь?